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Abstract

Many signal processing applications pose optimization problems with multimodal and nonsmooth cost functions.
Gradient methods are ine!ective in these situations. The adaptive simulated annealing (ASA) o!ers a viable optimization
tool for tackling these di$cult nonlinear optimization problems. Three applications, maximum likelihood (ML) joint
channel and data estimation, in"nite-impulse-response (IIR) "lter design and evaluation of minimum symbol-error-rate
(MSER) decision feedback equalizer (DFE), are used to demonstrate the e!ectiveness of the ASA. ( 1999 Elsevier
Science B.V. All rights reserved.

Zusammenfassung

Viele Anwendungen der Signalverarbeitung werfen Optimierungsprobleme mit multimodalen und nichtglatten
Kostenfunktionen auf. Gradientenmethoden sind in diesem Fall une!ektiv. Das `adaptive simulated annealinga (ASA)
ist ein funktionsfaK higes Optimierungswerkzeug zur LoK sung dieser schweren nichtlinearen Optimierungsprobleme. Drei
Anwendungen, gemeinsame Maximum Likelihood (ML) Kanal- und DatenschaK tzung, Filterdesign mit unendlichen
Impulsantwort (IIR) und Berechnungen eines entscheidungsruK ckgekoppelten Entzerrers, der die Symbolfehlerrate
minimiert, werden verwendet, um die E!ektivitaK t des ASA zu zeigen. ( 1999 Elsevier Science B.V. All rights reserved.

Re2 sume2

De nombreuses applications de traitement de signaux posent des problèmes d'optimisation avec des fonctions de cou( t
multimodales et non lisses. Des meH thodes de gradient sont ine$caces dans ces situations. Le recuit simuleH adaptatif o!re
un outil d'optimisation viable pour traiter ces problèmes complexes d'optimisation non lineH aire. Trois applications,
l'estimation conjointe de canal et de donneH es par le maximum de vraisemblance, la conception de "ltres à reH ponse
impulsionnelle in"nie et l'eH valuation d'eH galiseurs à reH troaction de la deH cision à taux d'erreur par symbole minimal sont
utiliseH es pour deHmontrer l'e$caciteH du recuit simuleH adaptatif. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Optimization problems with multimodal and/or
nonsmooth cost functions are commonly encoun-
tered in signal processing applications. Conven-
tional gradient-based algorithms are ine!ective
in these applications due to the problem of local
minima or the di$culty in calculating gradients.
Optimization methods that require no gradient and
can achieve a global optimal solution o!er con-
siderable advantages in solving these di$cult op-
timization problems. Two best-known classes of
such global optimization methods are the genetic
algorithm (GA) [8,10,12] and the simulated anneal-
ing (SA) [7,16,31].

The GA and SA belong to a class of so-called
guided random search methods. The underlying
mechanisms for guiding optimization search pro-
cess are, however, very di!erent for the two
methods. The GA is population-based, and evolves
a population-based solution according to the prin-
ciples of the evolution of species in nature. The SA,
on the other hand, evolves a single solution in the
parameter space with certain guiding principles
that imitate the random behaviour of molecules
during the annealing process.

The GA seems to have attracted the main atten-
tion in the application to signal processing prob-
lems (e.g. [1,19,30]). The SA by contrast has not
received similar interests. The SA represents a glo-
bal optimization technique with some striking pos-
itive and negative features. An attractive feature of
SA is that it is very easy to program and the
algorithm typically has few parameters that require
tuning. Furthermore, its statistical guarantee of
convergence should make SA very appealing. How-
ever, a serious drawback of SA is that it is often
very slow. In many diverse applications, a standard
SA algorithm often requires much more number of
cost-function evaluations to converge, compared
with a carefully designed and tuned GA.

However, an improved version of SA, referred to
as the ASA [2,13}15,25], provides signi"cant im-
provement in convergence speed over standard ver-
sions of SA and maintains all the advantages of
standard SA algorithms. This paper aims to intro-
duce the ASA to the signal processing community.
To illustrate its simplicity and versatility, we apply

the ASA to three signal processing applications,
ML joint channel and data estimation, IIR "lter
design and evaluation of the MSER DFE. Our
study demonstrates that the ASA o!ers a viable
alternative to the GA as a global optimization tool
for solving diverse signal processing problems.

2. Adaptive simulated annealing

The ASA, also known as the very fast simulated
reannealing, is a very e$cient version of SA. De-
tailed analysis of the algorithm can be found in
[2,13}15,25]. Many signal processing applications
pose the following general optimization problem:
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cost function J(w) can be multimodal and non-
smooth. The ASA is a global optimization scheme
for solving this kind of constrained optimization
problems.

2.1. Search guiding mechanisms

The ASA evolves a single point w in the para-
meter or state space W. The seemingly random
search is guided by certain underlying probability
distributions. An elegant discussion on how the
general SA algorithm works can be found in [25].
Speci"cally, the general SA algorithm is described
by three functions.

2.1.1. Generating probability density function

G(w0-$
i

,w/%8
i

,¹
i,'%/

; 1)i)n). (3)

This determines how a new state w/%8 is created,
and from what neighbourhood and probability dis-
tributions it is generated, given the current state
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Fig. 1. Flow chart of the adaptive simulated annealing.

w0-$. The generating `temperaturesa ¹
i,'%/

describe
the widths or scales of the generating distribution
along each dimension w

i
of the state space.

Often a cost function has di!erent sensitivities
along di!erent dimensions of the state space.
Ideally, the generating distribution used to search
a steeper and more sensitive dimension should have
a narrower width than that of the distribution used
in searching a dimension less sensitive to change.
The ASA adopts a so-called reannealing scheme to
periodically re-scale ¹

i,'%/
, so that they optimally

adapt to the current status of the cost function. This
is an important mechanism, which not only speeds
up the search process but also makes the optimiza-
tion process robust to di!erent problems.

2.1.2. Acceptance function

P
!##%15

(J(w0-$),J(w/%8),¹
!##%15

). (4)

This gives the probability of w/%8 being accepted.
The acceptance temperature determines the fre-
quency of accepting new states of poorer quality.

Probability of acceptance is very high at very
high temperature ¹

!##%15
, and it becomes smaller as

¹
!##%15

is reduced. At every acceptance temperature,
there is a "nite probability of accepting the new
state. This produces occasionally uphill move, en-
ables the algorithm to escape from local minima,
and allows a more e!ective search of the state space
to "nd a global minimum. The ASA also period-
ically adapts ¹

!##%15
to best suit the status of the

cost function. This helps to improve convergence
speed and robustness.

2.1.3. Reduce temperatures or annealing schedule
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where k
a

and k
i
are some annealing time indexes.

The reduction of temperatures should be su$-
ciently gradual in order to ensure that the algo-
rithm "nds a global minimum.

This mechanism is based on the observations of
the physical annealing process. When the metal is
cooled from a high temperature, if the cooling is
su$ciently slow, the atoms line themselves up and
form a crystal, which is the state of minimum en-

ergy in the system. The slow convergence of many
SA algorithms is rooted at this slow annealing
process. The ASA, however, can employ a very fast
annealing schedule, as it has self adaptation ability
to re-scale temperatures.

2.2. Algorithm implementation

Although there are many possible realizations of
the ASA, an implementation is illustrated in Fig. 1,
and this algorithm is detailed here. How the ASA
realizes the above three functions will also become
clear during the description.

(i) In the initialization, an initial w3W is
randomly generated, the initial temperature
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of the acceptance probability function,
¹

!##%15
(0), is set to J(w), and the initial tem-

peratures of the parameter generating prob-
ability functions, ¹

i,'%/
(0), 1)i)n, are set

to 1.0. A user-de"ned control parameter c in
annealing is given, and the annealing times,
k
i
for 1)i)n and k

a
, are all set to 0.

(ii) The algorithm generates a new point in the
parameter space with
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is calculated as
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and v
i
a uniformly distributed random vari-

able in [0,1]. Notice that if a generated w/%8 is
not in W, it is simply discarded and a new
point is tried again until w/%83W.
The value of the cost function J(w/%8) is then
evaluated and the acceptance probability
function of w/%8 is given by

P
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A uniform random variable P
6/*&

is generated
in [0,1]. If P

6/*&
)P

!##%15
, w/%8 is accepted;

otherwise it is rejected.
(iii) After every N

!##%15
acceptance points, re-

annealing takes place by "rst calculating the
sensitivies

s
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where w"%45 is the best point found so far, d is
a small step size, the n-dimensional vector
e
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Similarly, ¹
!##%15

(0) is reset to the value of the
last accepted cost function, ¹

!##%15
(k

a
) is reset

to J(w"%45) and the annealing time k
a

is res-
caled accordingly,
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(iv) After every N
'%/%3!

generated points, anneal-
ing takes place with
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otherwise, go to step (ii).
(v) The algorithm is terminated if the parameters

have remained unchanged for a few successive
reannealings or a preset maximum number of
cost function evaluations has been reached;
otherwise, go to step (ii).

As in a standard SA algorithm, this ASA con-
tains two loops. The inner loop ensures that the
parameter space is searched su$ciently at a given
temperature, which is necessary to guarantee that
the algorithm "nds a global optimum. The ASA
also uses only the value of the cost function in
the optimization process and is very simple to
program.

2.3. Algorithm parameter tuning

For the above ASA algorithm, most of the algo-
rithm parameters are automatically set and
`tuneda, and the user only needs to assign a control
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parameter c and set two values N
!##%15

and N
'%/%3!

.
Obviously, the optimal values of N

!##%15
and

N
'%/%3!

are problem dependent, but our experience
suggests that an adequate choice for N

!##%15
is in the

range of tens to hundreds and an appropriate value
for N

'%/%3!
is in the range of hundreds to thousands.

The annealing rate control parameter c can be
determined form the chosen initial temperature,
"nal temperature and predetermined number of
annealing steps [13,14]. We have found out that
a choice of c in the range 1.0 to 10.0 is often
adequate.

It should be emphasized that, as the ASA has
excellent self adaptation ability, the performance of
the algorithm is not critically in#uenced by the
speci"c chosen values of c, N

!##%15
and N

'%/%3!
. This

has been observed in a variety of applications,
including the three problems given in the following
section and some other applications [2,3].

2.4. Statistical convergence to a global minimum

Su$cient conditions for various SA algorithms
to statistically converge to a global minimum are
known, and these conditions depend on the algo-
rithm annealing schedules being `slow enougha
[9,15,29]. For an SA algorithm to statistically con-
verge to a global minimum is to statistically (i.e.,
requiring many trials) assure that any state in the
parameter space can be sampled in"nitely often in
annealing time. It is informative to consider three
cases, namely, the standard SA with the Gaussian
generating function [9], the so-called fast SA with
the Cauchy generating function [29] and the ASA
with the generating function speci"ed by Eqs. (6)
and (7) [15].

A necessary and su$cient condition for the stan-
dard SA with Gaussian generating function to stat-
istically converge to a global minimum has been
proved [9]. It is required that the annealing sched-
ule selected is not faster than
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It is also known that the fast SA with Cauchy
generating function can statistically converge to
a global minimum if its annealing schedule is not

faster than [29]

¹
i,'%/

(k
i
)"

¹
i,'%/

(0)

k
i

. (15)

The ASA, on the other hand, is statistically guaran-
teed to "nd a global minimum with an annealing
schedule not faster than [15]
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The convergence rate of an SA algorithm is
determined primarily by its annealing schedule.
The slow convergence of the standard SA is in-
herent from the annealing schedule (14). The ASA
can use the much faster annealing schedule (16),
which is even faster than what can be used for the
fast SA. The ASA therefore has the fastest conver-
gence rate among the three algorithms discussed
here.

3. Optimization applications

The versatility of the ASA as a global optimiza-
tion tool is demonstrated on three very di!erent
problems.

3.1. ML joint channel and data estimation

Consider the digital communication channel
modelled as a "nite impulse response "lter with an
additive noise source. The received signal at sample
k is given by

r(k)"
na~1
+
i/0

a
i
s(k!i)#e(k), (17)

where n
a

is the channel length, a
i
are the channel

taps, the symbol sequence Ms(k)N is independently
identically distributed with an M-PAM symbol
constellation, and e(k) is a Gaussian white noise.
Let

r"[r(1)r(2)2r(N)]T,

s"[s(!n
a
#2)2s(0)s(1)2s(N)]T,

a"[a
0
a
12

a
na~1

]T

(18)
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Fig. 2. (a) Mean square error and (b) mean tap error against
number of VA evaluations averaged over 100 di!erent runs.
2-PAM and data samples N"50.

be the vector of N received data samples, the trans-
mitted data sequence and the channel tap vector,
respectively. The joint ML estimate of a and s is
obtained by maximizing the conditional probabil-
ity density function of r given a and s. Equivalently,
the ML solution is the minimum of the cost func-
tion

J
c
(a, s)"

N
+
k/1
Ar(k)!

na~1
+
i/0

a
i
s(k!i)B

2
, (19)

that is,

(aH, sH)"argCmin
a,s

J
c
(a, s)D. (20)

This joint ML estimate, however, is too expensive
to compute except for the simplest case. In practice,
suboptimal solutions are adopted for computa-
tional purpose. The algorithm based on a blind
trellis search technique [27] is such an example.

The joint minimization process (20) can also be
performed using an iterative loop "rst over the
data sequences s and then over all the possible
channels a,

(aH, sH)"argCmin
a Amin

s
J
c
(a, s)BD. (21)

The inner optimization can be carried out using the
Viterbi algorithm (VA). The previous research has
used the quantized channel algorithm [33] and the
GA [1] to perform the outer optimization. In this
study, we apply the ASA to perform the outer
optimization. Speci"cally, given the channel esti-
mate a( , let the data sequence decoded by the VA be
s( H. The cost function used by the ASA is the mean
square error (MSE):

J(a( )"
1

N
J
c
(a( , s( H). (22)

The search range for each channel tap is
!1.0)a

i
)1.0, since the channel can always be

normalized.
The following numerical example was used to

illustrate the combined ASA and VA approach for
ML joint channel and data estimation. The channel

was given by

a"[0.407 0.815 0.407]T. (23)

Because the true channel length n
a
"3 is unknown,

an estimated length n(
a
"4 was assumed in the

simulation. In practice, the performance of the al-
gorithm is observed through the MSE. In simula-
tion, the performance of the algorithm can also be
assessed by the mean tap error (MTE), de"ned as
MTE"DDa(!aDD2. Figs. 2 and 3 show the evolutions
of the MSE and MTE with 2-PAM and 4-PAM
symbols and di!erent signal to noise ratios (SNRs),
respectively. All the results were averaged over 100
di!erent runs. Each run had a di!erent noisy re-
ceived data sequence and a di!erent random initia-
lization of the algorithm. No divergence was
observed for any run.

It can be seen from Figs. 2 and 3 that the MSE
converged to the noise #oor. Compared with the
results of using the GA [1], the ASA required
a slightly more VA calls but obtained more accu-
rate solution. It should be emphasized that no
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Fig. 3. (a) Mean square error and (b) mean tap error against
number of VA evaluations averaged over 100 di!erent runs.
4-PAM and data samples N"100.

Fig. 4. Schematic of adaptive IIR "lter for system identi"cation.

other existing methods, except the GA based one
[1], have been observed to achieve such an accu-
rate true ML solution of the blind joint channel
and data estimation problem based on such a short
data sequence.

3.2. IIR xlter design

Consider the IIR "lter with the input}output
relationship governed by

y(k)#
M
+
i/1

b
i
y(k!i)"

L
+
i/0

a
i
x(k!i), (24)

where x(k) and y(k) are the "lter's input and output,
respectively, and M (*¸) is the "lter order. The
transfer function of this IIR "lter is

H
M

(z)"
A(z)

B(z)
"

+L
i/0

a
i
z~i

1#+M
i/1

b
i
z~i

. (25)

The IIR "lter design can be formulated as an op-
timization problem with the cost function

J(w
H
)"E[e2(k)]"E[(d(k)!y(k))2], (26)

where d(k) is the "lter's desired response, e(k) is the
"lter's error signal and

w
H
"[aT bT]T

"[a
0

a
1 2 a

L
b
1 2 b

M
]T (27)

denotes the "lter coe$cient vector. The goal is to
minimize the MSE (26) by adjusting w

H
. In practice,

ensemble operation is di$cult to realize, and the
cost function (26) is usually substituted by the
time-averaged cost function

J
N
(w

H
)"

1

N

N
+
k/1

(d(k)!y(k))2. (28)

A major concern in IIR "ltering applications is
that the cost function of IIR "lters is generally
multimodal, and a gradient-based algorithm can
easily be stuck at local minima. The GA has been
applied to IIR "lter design (e.g. [19,20,32]) to over-
come this di$culty. We demonstrate that the ASA
o!ers an alternative to IIR "lter design. To main-
tain the stability during optimization, we convert
the direct-form coe$cients b

i
, 1)i)M, to the

lattice-form re#ection coe$cients i
i
, 0)i)

M!1, and make sure that all the i
i
have magni-

tudes less than 1. Thus the "lter coe$cient vector
used in optimization is w"[a

0
a
12

a
L

i
02

i
M~1

]T. Converting the re#ection coe$cients
back to the direct-form coe$cients is straightfor-
ward [11].

System identi"cation application, depicted in
Fig. 4, is used in the experiment. The unknown
plant has a transfer function H

S
(z), and the ASA is

employed to adjust the IIR "lter that is used
to model the system. When the "lter order M is
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Fig. 6. Trajectories of the "lter parameter vector averaged over 100 di!erent runs of the ASA, started from the "xed initial positions: (a)
[0.9 !0.9]T, (b) [!0.8 0.0]T, (c) [0.9 0.9]T and (d) [0.114 0.519]T, for Example 1.

Fig. 5. Normalized cost function versus number of cost function
evaluations averaged over 100 random runs of the ASA for
Example 1. The dashed line indicates the global minimum.

smaller than the system order, local minima prob-
lems can be encountered [28], and this is used to
simulate a multimodal environment. Two examples
were tested.

Example 1. This example is taken from [28]. The
system and "lter transfer functions are respectively

H
S
(z)"

0.05!0.4z~1

1!1.1314z~1#0.25z~2

and (29)

H
M

(z)"
a
0

1#b
1
z~1

.

The analytical MSE (26) in this case is known when
the input is a white sequence and the noise is
absent. The MSE has a global minimum at
w'-0"!-"[!0.311 !0.906]T with the value of
the normalized MSE 0.2772, and a local minimum
at w-0#!-"[0.114 0.519]T. Fig. 5 depicts the evolu-
tion of the normalized MSE averaged over 100
di!erent runs of the ASA. Each run had a randomly
chosen initial w and a random algorithm setting.
Fig. 6 shows the trajectories of the "lter parameter
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Fig. 8. Convergence behaviours of the gradient algorithm,
started from the two initial conditions: (a) [0.0 0.0 0.3 0.1]T
and (b) [0.0 0.0 0.3 0.0]T, for Example 2.

Fig. 7. Cost function versus number of cost function evaluations
averaged over 100 random runs of the ASA for Example 2.

Fig. 9. Schematic of a generic DFE.

vector averaged over 100 di!erent runs of the ASA,
started from four "xed initial positions. It can be
seen that the ASA consistently found the global
optimal solution.

Example 2. This is a third-order system with the
transfer function given by

H
S
(z)"

!0.3#0.4z~1!0.5z~2

1!1.2z~1#0.5z~2!0.1z~3
. (30)

The system input was a uniform white sequence
taking values in [!0.5, 0.5], and the SNR was 30
dB. The data length used in calculating the MSE
(28) was N"2000. When a reduced-order "lter
with M"2 and ¸"1 was used, the MSE was
multimodal. Extensive simulation showed that the

MSE had a global minimum of 0.059. The ASA
consistently reached this global minimum, as
shown in Fig. 7. To illustrate the multimodal
nature of the cost function, Fig. 8 shows the
behaviours of a standard gradient algorithm when
started from two quite closed initial positions.

The IIR "lter design has been an active research
topic and a variety of techniques have been de-
veloped. The two examples used here are well-
known benchmark problems, and the GA method
has been applied to them [20,30]. Compared with
the results of using GAs for adaptive IIR "ltering
available in the literature, the e$ciency of the ASA
appears to be in the same order as GAs.

3.3. MSER decision feedback equalizer

Equalization is a powerful technique for combat-
ing distortion and interference in communication
links [22,24] and high-density data storage systems
[18,23]. The DFE, in particular, is widely used in
practice as it provides a good balance between
performance and complexity. A generic DFE struc-
ture is shown in Fig. 9. For the channel given by
(17), the DFE produces an estimate s( (k!d) of
s(k!d) by quantizing the "lter output

f (r(k), s(
b
(k))"wTr(k)#bTs(

b
(k), (31)

where w"[w
02

w
m~1

]T and b"[b
12

b
n
]T are

the coe$cients of the feedforward and feedback
"lters, respectively, r(k)"[r(k)2r(k!m#1)]T is
the channel output vector and s(

b
(k)"

[s( (k!d!1)2s( (k!d!n)]T is the past-detected
symbol vector. It is su$cient to choose the decision
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Fig. 10. Schematic of the translated DFE.

Fig. 11. Evolution of the training SER versus number of SER
evaluations. SNR"20 dB and the initial w is the Wiener solu-
tion.

delay d"n
a
!1, the feedforward order m"n

a
and

the feedback order n"n
a
!1 (see [4,5]).

The Wiener or minimum MSE (MMSE) solution
(w

MMSE
, b

MMSE
) is often said to be the optimal solu-

tion for the coe$cients of the DFE [6]. However,
the MMSE solution does not correspond to the
MSER solution, the symbol error rate (SER) being
the ultimate performance criterion of equalization.
It can be shown that the decision feedback
bT
MMSE

s(
b
(k) in a DFE performs a space translation

which maps the DFE onto a `lineara equalizer in
the translated observation space [4,5]:

f @(r@(k))"wTr@(k), (32)

where r@(k) is the translated observation vector.
This equivalent DFE is depicted in Fig. 10. In
principle given the channel model, the analytic ex-
pression of the SER, P

E
(w), for the DFE with the

weight vector w can be derived and the MSER
solution w

MSER
can be obtained by minimizing

P
E
(w). Furthermore, it becomes clear that the

Wiener solution is not the MSER solution.
For the 2-PAM case, the gradient algorithm has

been used to optimize P
E
(w) to obtain the MSER

solution [4,5]. For high-order PAM channels, how-
ever, the optimization based on gradient method
becomes highly complex and very costly. We pro-
pose a Monte Carlo approach based on the ASA to
achieve the MSER solution for the general M-PAM
channel. The SER can be approximated as

PK
E
(w)"

1

N

N
+
k/1

d(s( (k!d)!s(k!d)), (33)

where the indicator function

d(s( (k!d)!s(k!d))

"G
0, s( (k!d)"s(k!d),

1, s( (k!d)Os(k!d)
(34)

and N is the number of training data. The MSER
solution w

MSER
is obtained by minimizing PK

E
(w)

using the ASA algorithm.
The proposed Monte Carlo approach was tested

using the following example:

Channel a"[0.3482 0.8704 0.3482]T

and (35)

4-PAM symbols.

For the case of SNR"20 dB and N"2000 with
the initial w set to the w

MMSE
, Fig. 11 depicted the

evolution of the training SER. The SERs obtained
by the MSER DFE and the MMSE DFE with
detected symbols being fed back are compared in
Fig. 12. The number of training data N for evaluat-
ing PK

E
(w) ranged from 100 to 100,000, depending on

the SNR. The number of symbols used to estimate
the SERs of the trained equalizers, shown in Fig.
12, was su$ciently large to produce 400 error
counts for each SNR.

As expected, the MSER solution is superior over
the MMSE solution. This Monte Carlo algorithm
is block-data based, and is particularly suited for
data storage systems, as in many commercial disk
drives, the equalizers are trained at the factory
#oor and then are `frozena before shipping. For
communication links, the approach is suitable for
the initial set up of the DFE. For the cases of high
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Fig. 12. Performance comparison for the MSER and MMSE
DFEs with detected symbols being fed back.

SNR, the conventional Monte Carlo method will
require a large number of training samples. How-
ever, this problem can easily be overcome by ad-
opting importance sampling techniques [17,21,26]
in estimating the SER.

4. Concluding remarks

The ASA is a global optimization technique
having certain advantages. The algorithm is versa-
tile and very easy to program, and has very few
parameters that require tuning. In this paper, we
have provided a detailed description of the ASA,
including how the algorithm works and the choices
of the algorithm parameters. With the aim of intro-
ducing the ASA to the signal processing commun-
ity, we have applied the ASA to three di!erent
signal processing problems, ML joint channel and
data estimation, IIR "lter design and evaluation of
the MSER DFE. Our results have demonstrated
that the ASA provides a viable alternative to better
known GAs for solving diverse signal processing
applications with multimodal and nonsmooth cost
functions.
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