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Abstract
The capacity of commercial massive multiple-in-

put multiple-output (mMIMO) systems is con-
strained by the limited array aperture at the base 
station, and cannot meet the ever-increasing traf-
fic demands of wireless networks. Given the array 
aperture, holographic MIMO with infinitesimal 
antenna spacing can maximize the capacity, but is 
physically unrealizable. As a promising alternative, 
reconfigurable mMIMO is proposed to harness the 
unexploited power of the electromagnetic (EM) 
domain for enhanced information transfer. Specif-
ically, the reconfigurable pixel antenna technology 
provides each antenna with an adjustable EM radi-
ation (EMR) pattern, introducing extra degrees of 
freedom for information transfer in the EM domain. 
In this article, we present the concept and benefits 
of using the EMR domain for mMIMO transmis-
sion. Moreover, we propose a viable architecture 
for reconfigurable mMIMO systems. The associ-
ated system model and downlink precoding are 
also discussed. In particular, a three-level precoding 
scheme is proposed, and simulation results verify its 
considerable spectral and energy efficiency advan-
tages compared to traditional mMIMO systems. 
Finally, we discuss the challenges, insights, and 
prospects of deploying reconfigurable mMIMO, 
along with the associated hardware, algorithms, 
and fundamental theory.

Overview of MIMO Systems
In 5G communication systems and beyond, 
multiple-input multiple-output (MIMO) technol-
ogy plays an ever-increasingly important role. 
Expanding the array aperture and integrating 
denser antenna elements within limited physical 
space are two possible approaches for improv-
ing the throughput of MIMO systems. In the first 
approach, massive MIMO (mMIMO) and extra-
large scale MIMO (XL-MIMO) emerge as the key 
technologies for exploiting the spatial domain 
resources [1]. In the second approach, holograph-
ic MIMO (HMIMO) has attracted increasing inter-
est thanks to its ability to provide unprecedented 
flexibility in manipulating the electromagnetic 
(EM) field [2].

Although numerous studies have been con-
ducted, mMIMO and XL-MIMO still face hardware 
implementation challenges. Existing MIMO archi-
tectures can be mainly categorized into fully-digital 
and analog/digital hybrid ones. Due to the prohib-
itive cost of equipping each antenna element with 
a dedicated radio frequency (RF) chain in a ful-
ly-digital array (FDA), various hybrid architectures 
have been proposed to trade off between hard-
ware cost and system performance [3]. By intro-
ducing a phase-shift network, a fully-connected 
array (FCA) divides the original high-dimensional 
digital domain processing into a high-dimensional 
analog domain operation and a low-dimensional 
digital domain processing, so that the number of 
RF chains can be significantly reduced. To further 
reduce the number of phase shifters, the sub-con-
nected array (SCA) has been proposed. From FDA 
to FCA to SCA, the hardware design becomes eas-
ier to implement at the cost of reduced degrees 
of freedom (DoFs) for the associated signal pro-
cessing. Although various sophisticated precoding 
algorithms have been proposed to compensate 
for this performance degradation, how to achieve 
a satisfactory trade-off between hardware cost and 
achievable performance remains an open problem.

On the other hand, as a theoretical concept, 
HMIMO aspires to provide maximum DoFs for 
the manipulation of the EM field. In contrast to 
conventional MIMO systems employing half-wave-
length critical antenna spacing, HMIMO systems 
are assumed to have a continuous aperture sur-
face with infinitesimal antenna spacing, and each 
point on the surface has theoretically independent 
adjustability of the corresponding excitation cur-
rent. As a result, HMIMO is expected to have the 
capability to flexibly generate any current density 
distribution on this aperture surface. Therefore, it 
should be able to customize any desired EM prop-
erties (e.g., polarization, radiation pattern, etc). 
However, it could be practically challenging to 
engineer such idealized HMIMO systems since 
the mutual coupling effect becomes more severe 
as the antenna spacing decreases. Moreover, it is 
also difficult to realize EM-level manipulations in 
existing MIMO systems, since the EM properties of 
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their antennas are fixed once the antenna has been 
designed and fabricated.

To break the performance limits of aperture-re-
stricted MIMO, this article proposes a feasible hard-
ware architecture called reconfigurable mMIMO 
(R-mMIMO). Different from other reconfigurable 
systems that directly control the amplitude/phase 
response of the incident signal, R-mMIMO can 
actively change the EM properties of the radiating 
antennas, and thereby indirectly influence the trans-
mission channel. In the following sections, we first 
provide a simple example to illustrate the theoret-
ical performance gain realized with R-mMIMO by 
exploiting the EM radiation (EMR) domain. Then, 
to showcase the practical feasibility of R-mMIMO, 
a detailed architecture of the proposed R-mMIMO 
is presented, and differences compared to tradi-
tional mMIMO (T-mMIMO) architectures are high-
lighted. Subsequently, the EMR domain precoding 
problem for R-mMIMO systems is investigated, and 
the spectral efficiency (SE) and energy efficiency 
(EE) of a viable R-mMIMO structure are compared 
to those of T-mMIMO designs. Finally, some open 
research directions and challenges for R-mMIMO 
are discussed.

EM Radiation Gain of R-mMIMO Systems
R-mMIMO [4] is a promising solution to enhance 
the MIMO capacity for a given antenna aperture. 
An R-mMIMO system can be obtained from a 
T-mMIMO system by replacing the conventional 
antennas with reconfigurable antennas. The basic 
idea of a reconfigurable antenna is to alter the 
physical structure of the antenna with the help of 
RF switches, so that the surface current density dis-
tribution becomes tunable. As an implementable 
solution based on state-of-the-art hardware fabri-
cation methodologies, the EM properties of each 
R-mMIMO antenna can be made configurable 

within a limited set of operation modes. By con-
trast, although HMIMO has the theoretical capa-
bility to manipulate the whole continuous antenna 
aperture, it is physically unrealizable in practice.

To provide an illustrative comparison of differ-
ent types of MIMO systems, Fig. 1 considers a free-
space propagation scenario, where a linear array 
is placed along the y-axis with its geometric center 
at the origin, and the received E-field intensity is 
simulated for the target receiver randomly locat-
ed in a given far-field area. Optimal singular value 
decomposition-based precoding is performed at 
the transmitter. Without loss of generality, we use a 
Hertz dipole antenna to model each element of the 
T-mMIMO system for its tractable EMR expression, 
while the same antenna model with the additional 
capability to rotate the radiation pattern is assumed 
for R-mMIMO and HMIMO. As we assume a fixed 
array aperture, we reduce the antenna spacing 
when increasing the number of array elements. 
As can be observed, there is a performance gap 
between T-mMIMO and HMIMO even for very 
large numbers of antennas. This is because the 
radiation pattern shape of a Hertz dipole antenna 
is not omnidirectional, but a sinusoidal function in 
elevation direction. Observe that for large numbers 
of antennas, R-mMIMO can largely fill the perfor-
mance gap between T-mMIMO and HMIMO by 
adjusting the main-lobe direction of each element’s 
radiation pattern. For comparatively small numbers 
of antennas, which is of practical relevance, R-mMI-
MO can reduce the performance gap between 
T-mMIMO and HMIMO. With the capability of 
providing directional beam patterns to regions out-
side the normal direction, R-mMIMO can radiate 
more energy to the target position compared to 
T-mMIMO. In fact, the performance of ultra-dense 
R-mMIMO converges to that of HMIMO as the 
number of antenna elements goes to infinity. In this 
article, we are interested in the practical case of a 
limited number of antenna elements, where R-mMI-
MO can provide significant performance gains over 
T-mMIMO at an acceptable hardware cost.

The reconfigurability of the EM properties pro-
vides R-mMIMO with extra DoFs. In particular, 
in this article, we consider a reconfigurable pixel 
antenna (RPA) structure with radiation pattern 
reconfigurability. In T-mMIMO systems, the radia-
tion pattern of each patch element is fixed, which 
means that the spatial coverage area of a pattern 
is always limited. By contrast, an RPA-based sys-
tem can reconfigure the surface geometry of its 
parasitic layer for each antenna independently, so 
that the E-field can be manipulated to generate 
different radiation patterns. To integrate RPAs into 
a real-world wireless systems, this article propose 
to deploy arrays of RPAs, which leads to a new 
architecture for R-mMIMO. The detailed architec-
ture of this proposed R-mMIMO is presented in 
the following section. This novel R-mMIMO is a 
candidate base station (BS) architecture providing 
enhanced precoding capabilities for future wireless 
communication systems.

System Model of R-mMIMO
Architecture of R-mMIMO

Figure 2a illustrates the schematic diagram and the 
hardware design of an R-mMIMO system. In addi-
tion to the RF network and antenna array of T-mMI-

FIGURE 1. Comparison of received E-field intensities for different MIMO systems. A ful-
ly-digital linear array with an aperture of 4l (operated at 3 GHz with l denoting the 
wavelength) is placed along the y-axis with its geometric center at the origin. The target 
receiver is randomly located in the area {(x, y)|x  [5, 50]m, y  [50, 100] m}, which is in 
the far-field region of the array. The results shown are averaged over 3,000 randomly 
generated target positions.
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MO, R-mMIMO includes an extra parasitic layer on 
top of its patch layer. This additional parasitic layer 
allows each antenna to shape its own radiation 
pattern. Without loss of generality, we take SCA-
based R-mMIMO as an example to illustrate the 
system modeling and evaluate performance, since 
it is easy to implement at low hardware cost for 
practical deployment and can be easily extended 
to the cases of FDA- and FCA-based R-mMIMO.

Figure 2b depicts a single RPA, which consists 
of a patch layer and a parasitic layer. The patch 
layer carries the patch antenna, which couples the 
energy from the RF chain into space. The para-
sitic layer is composed of multiple inter-connect-
ed metallic pixels. The operating principle of such 
an RPA system can be described by the theory of 
reactively controlled directive arrays developed by 
Harrington [5]. This theory shows that the radiation 
pattern of the original antenna can be reconfigured 
through proper reactive loading of the parasitic ele-
ments. The loading in the RPA system, that is, the 
metallic pixels, are typically interconnected by elec-
tronically controllable switches, such as PIN diodes 
or RF micro-electro-mechanical-systems (RF-MEMS) 
[6]. By setting the on-off status of the switches in 
the parasitic layer, the radiation pattern of each 
antenna can be flexibly reconfigured.

The design of the parasitic layer is the key to the 
reconfigurability of the radiation pattern. An RPA 
offers limited adjustability of the current distribution 
on the surface of the parasitic layer, and the avail-
able patterns of each RPA are also constrained by 
the designed parasitic layer. In the example shown 
in Fig. 2b, there are 12 PIN switches for the parasit-
ic layer above each antenna, which can potentially 
produce 212 = 4096 EMR patterns. However, not 
all the patterns are suitable for information trans-
fer. In [7], the authors proposed an offline genetic 

algorithm to choose suitable PIN connections, so 
that the desired steering angles can be custom-
ized. This helps to remove the unsuitable patterns 
to only keep the desired patterns that can be used. 
The actual hardware design is beyond the scope of 
this article, and interested readers may refer to [6] 
for more details.

Figure 2c shows an example of the radiation 
patterns produced by a single RPA, and its 2D hor-
izontal and vertical cuts are depicted in Fig. 2d. 
Denoting the azimuth angle with respect to the 
local coordinate of the BS by f, we consider four 
types of patterns with different radiation directions:
•	 Type 0: Normal pattern with peak gain at f = 0°
•	 Type 1: Tilt pattern with peak gain at f = 30°
•	 Type 2: Split pattern with peak gains at f = ± 56°
•	 Type 3: Tilt pattern with peak gain at f = –30°.
Intuitively, the EMR pattern of a T-mMIMO anten-
na has a fixed radiation direction like Type 0, 
which yields a lower coverage gain compared 
to R-mMIMO with multiple pattern choices. We 
note that in contrast to the simple Hertz dipole 
antenna considered in Fig. 1, practical RPAs can 
generate diverse radiation pattern shapes, such as 
the Type 2 split pattern. Therefore, RPAs can also 
provide more diverse patterns than what is possi-
ble by rotating conventional antenna patterns.

In general, the extra parasitic layer does not 
incur much hardware cost and power consump-
tion, since metallic pixels and electronically con-
trollable switches are low-cost and consume low 
energy. Thus, due to the reconfigurability of its 
patterns, the considered SCA-based R-mMIMO is 
expected to achieve a comparable performance as 
FCA/FDA-based T-mMIMO but at a much lower 
hardware cost. We illustrate the performance of 
R-mMIMO for a typical urban macro (UMa) cell 
transmission scenario below.

FIGURE 2. Schematic diagram of R-mMIMO systems: a) Multi-user downlink transmission and the corresponding SCA-based R-mMIMO architecture; b) 
Structure of a single RPA; c) Examples of 3D radiation pattern produced by an RPA; d) 2D horizontal and vertical radiation pattern cuts of c).
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Downlink Precoding with R-mMIMO
We consider a downlink transmission system, 
where a BS with Nt/2 pairs of dual-polarized 
antennas and Mt ≤ Nt RF chains simultaneously 
transmits U ≤ Mt data streams to U single-antenna 
user equipments (UEs). Without loss of generality, 
we assume that each UE employs an ideal omni-
directional antenna, and each BS array element 
is an RPA, whose radiation pattern can be con-
figured within a pattern set of cardinality P. For 
example, the radiation patterns of Type 0–Type 3 
in Fig. 2c constitute a reconfigurable pattern set 
with a cardinality of four.

For serving the U scheduled UEs, the baseband 
information signal vector is first precoded with an 
Mt  U-dimensional digital precoder matrix FBB. 
Next, the precoded vector is up-converted to the 
RF before passing through an analog precoder 
FRF of dimension Nt  Mt. Finally, the RF signal is 
radiated into the channel which is affected by the 
tuning of the parasitic layer. To account for the 
radiation patterns of the antennas, let hu(µ) denote 
the Nt-dimensional channel vector between the BS 
and the u-th UE, where the Nt-dimensional vector µ 
indexes the adopted radiation patterns of the trans-
mit RPAs. In other words, the effects of the EMR 
pattern are included in the channel vector, see also 
[4, 8].1 Then, according to Shannon’s formula, the 
overall SE of the system is given by

𝑅𝑅 = # log! '1 +
|𝒉𝒉"#(𝛍𝛍)𝑭𝑭$%𝒇𝒇"|!

∑ |𝒉𝒉"#(𝛍𝛍)𝑭𝑭$%𝒇𝒇"|! + σ&!'
()"

3
'

"*+

,	

		  (1)
where fu is the digital precoder for the u-th UE, 
FBB = [f1, f2, …, fU], and sn

2 is the power of the 
complex additive white Gaussian noise (AWGN) 
at the receiver.

In SCA-based T-mMIMO, hybrid precoding 
aims to optimize the analog and digital precoders 
for maximization of the SE. Typically, the non-zero 
entries of the analog precoder are constrained 
by the phase-shift network connections, that is, 
they have constant modulus and finite phase res-
olution. Moreover, the Frobenius norm of the 
product of the analog precoder and the digital 
precoder is constrained by the transmit power. 
Numerous studies have been conducted to solve 
the resulting optimization problem so that the 
performance gap between SCA-based T-mMIMO 
and FDA-based T-mMIMO is minimized [3, 9]. 
However, the SE optimization for R-mMIMO sys-
tems is complicated by the additional index vec-
tor µ, which we also refer to as EMR precoder in 
this article. The EMR precoder performs EMR pre-
coding by selecting the radiation pattern for each 
RPA. Thus, a three-level precoding involving the 
digital, analog, and EMR precoders is required. 
We note that SCA-based T-mMIMO can be con-
sidered as a special case of SCA-based R-mMI-
MO, where all the RPAs at the BS use the same 
legacy radiation pattern, for example, Type 0.

Three-Level Precoding for R-mMIMO
Overview of Existing Schemes

To optimize SE, the joint design of the digital, ana-
log, and EMR precoders is needed. However, an 
efficient solution to this joint design problem is 
not yet available in the literature. The additional 

discrete-valued EMR precoder complicates the 
problem, rendering the joint design a highly com-
plex mixed continuous-discrete optimization prob-
lem, elaborated as follows: 
•	 The search space of the EMR precoder expands 

exponentially with the number of transmit 
antennas, and it is impossible to traverse all PNt 
options due to the prohibitive complexity.

•	 For each EMR precoder in the search space, 
the SE is a highly non-convex and non-differen-
tiable function, and it is very difficult to find an 
approximate objective function to optimize at a 
reasonable computational cost while ensuring 
good performance.
Rather than tackling the intractable joint design, 

existing schemes usually focus on the optimiza-
tion of the EMR precoder only, which we refer to 
as EMR domain precoding in this article. In [10], 
the authors considered FDA-based R-mMIMO with 
multi-user transmission. By adopting zero-forcing 
fully-digital precoding, the received signal-to-noise 
ratio (SNR) at the UE can be equivalently used as 
an optimization metric to maximize the SE, and the 
authors of [10] proposed an iterative mode selec-
tion method to design the EMR domain precoding 
by maximizing this SNR metric. The work in [11] 
considered a small-scale MIMO system with a single 
UE, where only EMR domain precoding was stud-
ied, and Thompson sampling and upper confidence 
bound algorithms were applied for its design. Obvi-
ously, when extending to hybrid arrays, mMIMO, 
and multi-user scenarios, these EMR domain precod-
ing methods cannot be directly applied.

Three-Level SE Optimization
To support multi-user and general wideband 
hybrid precoding in R-mMIMO systems, we fur-
ther extend the iterative mode selection meth-
od of [10] to a generalized solution. Specifically, 
given the full channel state information (CSI) for 
all UEs, the proposed three-level SE optimization 
algorithm can be divided into two stages. In the 
first stage, an EMR domain precoding algorithm is 
employed to optimize the EMR precoder. Given 
the optimal EMR precoder obtained in the first 
stage, we jointly optimize the analog and digital 
precoders based on the resulting equivalent chan-
nel, as traditional hybrid precoding algorithms 
do. Next, we provide a greedy search algorithm 
for the first stage. The proposed greedy search 
algorithm for EMR domain precoding is summa-
rized as follows. The search starts by initializing 
the pattern index of all transmit antennas to the 
legacy pattern, that is, setting all the RPAs at the 
BS to Type 0. Then, in each iteration, the EMR 
patterns for each RPA are selected sequentially. 
To be more specific, in the i-th iteration, in order 
to optimize the nt-th antenna’s pattern, we keep 
all the other antennas’ patterns fixed, and apply 
a standard hybrid precoding algorithm for all P 
possible EMR patterns for the current antenna 
and evaluate the corresponding P SE values. The 
pattern yielding the highest SE is selected for the 
nt-th antenna. After all Nt antennas have been 
configured one by one, the algorithm enters the 
next iteration. Typically, this greedy search meth-
od converges in Titer = 3 to 5 iterations.

Observe that with this EMR domain precoding 
algorithm, the number of searches for the EMR 
precoder is reduced to NtPTiter compared to PNt 

To optimize SE, the 
joint design of the dig-
ital, analog, and EMR 
precoders is needed. 
However, an efficient 
solution to this joint 
design problem is not 
yet available in the 
literature.

1 A detailed description of 
the impact of the RPA on the 
channel cannot be provided 
here due to the limited space. 
Interested readers may refer 
to our online supplementary 
material for more details, 
see https://github.com/
kekeyingBIT/R-mMIMO/
blob/main/supplement.pdf.
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for the optimal exhaustive search. Therefore, a sub-
stantial amount of computational resources and 
time can be saved. However, in general, the result-
ing greedy-search based EMR domain precoding 
scheme only finds a good feasible solution for the 
EMR precoder rather than the optimal solution. 
We note that more sophisticated search strat-
egies, such as evolutionary algorithms or swarm 
intelligence algorithms, can be applied to this con-
strained derivative-free optimization problem for 
the EMR precoder. These strategies can explore 
and exploit the search space more comprehensive-
ly. Nevertheless, our simulation results below show 
that the proposed greedy algorithm already yields 
considerable performance gains over T-mMIMO in 
typical application scenarios.

Performance Comparison
In this section, we evaluate the performance of 
the proposed SCA-based R-mMIMO architecture 
and compare it with that of FDA- and SCA-based 
T-mMIMO architectures. We adopt the QuaD-
RiGa software package for channel generation 
[8]. As illustrated in Fig. 2a, we consider down-
link transmission in the UMa cell scenario. The BS 
employs an SCA with Nt/2 = 16 pairs of dual-po-
larized antennas and Mt = 8 RF chains. For each 
cell, a total of 15 UEs are randomly distributed, and 
each UE is equipped with a single omnidirection-
al antenna. Penetration loss is taken into account 
for indoor UEs. For each transmission time interval 
(TTI), round robin scheduling is employed to select 
U ≤ 8 UEs for performing downlink precoding. Fur-
thermore, the overall transmit power for each cell 
is 42 dBm and the noise power spectral density is 
–174 dBm/Hz. Throughout the simulation, inter-
cell interference is neglected in order to keep our 
numerical comparison simple. For the baseline pre-
coding algorithm, we adopt the eigen-zero-forcing 
method for FDA and the extended algorithm of [9] 
for SCA, respectively. Moreover, a reconfigurable 
pattern set containing Type 0 to Type 3 from Fig. 
2d is considered for SCA-based R-mMIMO (P = 4), 
and a fixed pattern Type 0 is utilized for FDA/SCA-
based T-mMIMO.2 

The absolute SE gains achieved by SCA-based 
R-mMIMO over SCA-based T-mMIMO for UEs in 
different geographic regions are shown in Fig. 3a. 
Note that U = 1 UE is served in each TTI for each 
cell. Here, we divide the geographic region into 
different parts according to the horizontal distance 
between the UE and the BS, and the average SE 
results for the near (35 m  100 m), middle (100 
m  200 m), far (200 m  289 m) regions as well 
as the entire (35 m  289 m) region are presented 
as bar charts. As can be seen, the proposed R-mMI-
MO architecture achieves a higher SE than T-mMI-
MO for the UE at any distance. Intuitively, this can 
be explained by the fact that the EMR pattern used 
in this example is reconfigurable in the horizontal 
plane, and thus, a more flexible horizontal beam can 
be customized for a given channel environment.

Figure 3b compares the cumulative distribu-
tion functions (CDFs) of the SE for the considered 
different array architectures, that is, SCA-based 
T-mMIMO, FDA-based T-mMIMO, and SCA-based 
R-mMIMO. When the number of scheduled UEs 
is one, two, four, and six, respectively, the average 
SE gain of SCA-based R-mMIMO over SCA-based 
T-mMIMO is 15.1 percent, 20.0 percent, 24.9 

FIGURE 3. a) SE gains achieved by R-mMIMO for different geographic regions; b) CDF 
curves of the overall SE under different BS architectures; c) EE of different BS architec-
tures.
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percent, and 33.3 percent, respectively. Intrigu-
ingly, in this application scenario, the proposed 
scheme even achieves a better SE than FDA-based 
T-mMIMO. For any system architecture, the num-
bers of RF chains and antennas are fixed once 
the system design is determined. Therefore, the 
average SE performance for each UE decreases 
with the increasing number of scheduled UEs. The 
proposed R-mMIMO can provide extra precod-
ing DoFs to mitigate this performance degrada-
tion to some extent. Consequently, the relative SE 
gain provided by R-mMIMO increases with the 
increased number of scheduled UEs, which indi-
cates that the reconfigurability in the EMR domain 
can provide considerable SE gains.

Next, we compare the EE performance of the 
three considered array architectures. The EE is 
defined as the SE divided by the total consumed 
power. The total consumed power includes the 
precoder power consumption and the transmit 
power consumption. For FDA-based T-mMIMO, 
the precoder power consumption is mainly caused 
by the Nt RF chains, with each RF chain consist-
ing of two digital-to-analog converters (DACs), 
two low-pass filters (LPFs), two mixers (MXs), and 
a local oscillator (LO) which is shared by all the 
chains. The power consumptions of these compo-
nents are given by PDAC = 200 mW, PLPF = 14 mW, 
PMX = 19 mW, and PLO = 5 mW, respectively [12]. 
For SCA-based T-mMIMO, the precoder power 
consumption is mainly due to its Mt RF chains and 
Nt phase shifters. The power consumption of a 
single phase shifter (PS) is given by PPS = 30 mW 
[12]. In our proposed SCA-based R-mMIMO archi-
tecture, extra power is consumed by the parasitic 
layer. In this example, each RPA contains 12 elec-
trically-controlled switches with each switch (SW) 
consuming PSW = 5 mW [12]. Therefore, an addi-
tional power consumption of 60 mW is assumed 
for each RPA. The transmit power is set to Pt = 
14.4 W, which is a typical value for the UMa cell 
scenario. It can be seen from Fig. 3c that the pro-
posed SCA-based R-mMIMO architecture offers 
significant EE benefits over FDA-based T-mMIMO 
and SCA-based T-mMIMO. Also, as expected, 
FDA-based T-mMIMO has the lowest EE.

Challenges and Future Directions
The proposed R-mMIMO architecture has the 
potential to revolutionize MIMO systems in future 
6G networks. However, there exist some key 
challenges that must be addressed before large-
scale deployment becomes feasible.

Theoretical Capacity
R-mMIMO outperforms T-mMIMO owing to the 
additional DoFs in the EMR domain. Intuitively, 
these DoFs enable the transmitter to actively adjust 
the energy distribution between multiple paths to 
obtain an improved channel capacity. However, 
there is no available research that analyzes the fun-
damental capacity limits of R-mMIMO systems, 
and how to design optimal EMR patterns efficiently 
to approach this capacity is still unknown.

As a trade-off between T-mMIMO and HMIMO, 
the design of R-mMIMO systems involves both sig-
nal processing and EMR pattern design, which calls 
for a fundamental analysis using tools from EM infor-
mation theory [13] for transmission modeling, DoF 
analysis, and performance evaluation. Pattern space 

analysis is expected to be one potential approach. 
In [4], the authors adopted a Gram-Schmidt tech-
nique to decompose the radiation pattern into a 
set of orthogonal basic patterns, which allows the 
antenna radiation pattern to be decoupled from the 
rest of the channel environment. Based on this, the 
transmission model can be reduced to the multipli-
cation of the equivalent channel and the signal in 
the pattern space. This facilitates tractable transmis-
sion modeling and fundamental theoretical analysis 
of generic R-mMIMO systems.

Multifunctional Reconfigurable Antennas
The RPA discussed in this article only consid-
ers the reconfigurability of the radiation pattern 
shape in the E-field. The authors in [6] presented 
experimental results and design techniques for 
multifunctional reconfigurable antennas (MRAs), 
which offer a potential approach to design anten-
na hardware with the capability of providing other 
desirable EM properties.

An MRA can integrate the reconfigurability of 
multiple domains (e.g., the frequency, pattern, and 
polarization domains) into a compact structure 
at a low cost. The EM behavior of MRAs can be 
changed by altering their physical or geometrical 
properties using some common tuning mecha-
nisms, such as electronic devices like diodes and 
varactors, artificial metamaterials like microfluid-
ics, liquid crystals, graphene, and so on. Through 
flexibly configuring their EM properties, MRAs 
can be used at both the BS and the UE to provide 
multi-domain diversity, co-channel interference mit-
igation, and reliable links with enhanced data rate 
in wireless communication systems.

CSI Acquisition
In R-mMIMO systems, CSI acquisition, which 
involves a completely new dimension owing to 
the reconfigurability of the EMR pattern, is a chal-
lenging task that must be resolved. It is impossible 
to estimate the full CSI at a time due to the fact 
that the training overhead increases linearly with 
the number of available EMR patterns.

In [4], the authors propose a combined chan-
nel estimation and prediction scheme, where only 
a subset of the EMR patterns are trained for esti-
mation, and the untrained patterns are predicted 
exploiting the correlations between the different 
patterns. To further extend this idea, one can uti-
lize more sophisticated approaches, such as com-
pressed sensing or deep learning, to acquire the 
estimates of the channel parameters (such as 
angles, gains, and delays) from the legacy pattern. 
Then, the CSI for other reconfigurable patterns 
can be constructed using these estimated param-
eters. Another challenging issue is that a long 
training progress may cause outdated CSI, which 
can affect the accuracy of data detection and the 
efficiency of precoding. A potential solution is to 
take statistical CSI into account for more accurate 
channel estimation. Furthermore, in a time-varying 
environment, multi-user scheduling, CSI feedback, 
and channel tracking also need to be optimized 
accordingly, which deserves further study.

Low Complexity Precoding
This article considers a three-level precoding algo-
rithm for multi-user wideband transmission, which 
introduces additional complexity in the EMR 

Through flexibly 
configuring their EM 
properties, MRAs can 
be used at both the BS 
and the UE to provide 
multi-domain diversity, 
co-channel interference 
mitigation, and reliable 
links with enhanced 
data rate in wireless 
communication  
systems.

2 Practical results [10] 
showed that RPAs achieve an 
additional antenna gain com-
pared to conventional anten-
nas. However, considering 
the introduction of an extra 
parasitic layer, we assume this 
additional antenna gain is fully 
compensated by the insertion 
loss. Therefore, we assume 
all radiation patterns have 
the same maximum radiation 
gain, as shown in Fig. 2d.
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domain precoding stage. Existing heuristic algo-
rithms, such as the greedy search adopted in this 
article, may not meet practical complexity con-
straints since the SE objective function is compu-
tationally complicated and hard to approximate. 
Therefore, it is critical to investigate low-complex-
ity EMR domain precoding algorithms without 
sacrificing too much of the SE performance. In 
addition to intelligent search algorithms, like evo-
lutionary algorithms and swarm intelligence algo-
rithms, one possible method is to model the EMR 
domain precoding as a decision process and use 
deep reinforcement learning methods. By inter-
acting with the channel environment and learning 
from the data, the BS can learn a good radiation 
pattern selection strategy during exploitation and 
exploration. Moreover, neural networks can also 
be exploited to reduce the computation com-
plexity of the objective function, which can help 
to simplify the algorithm design. Another possi-
ble solution is to model the explicit relationship 
between the radiation pattern and the channel. 
After optimizing the radiation pattern in a con-
tinuous space through derivative-based meth-
ods, the EMR precoder can then be acquired by 
quantizing the result to the nearest discrete grid 
value. Furthermore, interference from neighboring 
cells should not be overlooked when deploying 
R-mMIMO in wireless networks. Since the ana-
log radiation patterns may cause interference to 
nearby cells when enhancing the coverage of the 
local cell, cooperative optimization of multi-cell 
precoding is required. 

Integration with Other Technologies
The extra DoFs of R-mMIMO allow us to trans-
mit additional information in the EMR domain 
or to customize more preferable channel condi-
tions. Specifically, reconfigurable antennas have 
been exploited for mode shift keying transmission 
[14], which employed radiation patterns with low 
correlation, therefore achieving better detection 
performance than traditional spatial modulation. 
Some recent works proposed to use polarization 
domain DoFs for carrying information [15], where 
a polarization modulation scheme was developed 
to boost the system throughput. It is reasonable 
to expect that the joint exploitation of all DoFs 
offered by radiation patterns and polarization will 
be possible in the future given the rapid devel-
opment of reconfigurable antennas. Moreover, 
R-mMIMO can be also applied in sensing and 
communication systems. For example, by cus-
tomizing channels with lower cross correlations 
among potential targets, more accurate sensing 
can be achieved. Meanwhile, R-mMIMO can 
reshape the relative energy distribution among 
multipath components, which might be helpful 
in unfavorable propagation environments. Finally, 
R-mMIMO could be exploited to introduce ran-
domness into the channel, which might be bene-
ficial for covert communication based on channel 
randomization or radiation pattern hopping.

Conclusions
An innovative R-mMIMO system based on RPA 
was proposed in this article. A typical example of 
UMa downlink transmission was studied to demon-
strate that SCA-based R-mMIMO with three-level 
precoding is capable of achieving SEs and EEs that 

are noticeably superior to those of existing SCA- 
and FDA-based T-mMIMO. In particular, our sim-
ulation results have confirmed that R-mMIMO can 
provide higher SE and EE gains with the increased 
number of scheduled UEs. Moreover, we have dis-
cussed critical challenges pertaining to R-mMIMO 
and presented new research directions toward 
making R-mMIMO a practical technology for 6G 
communication systems.
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