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ABSTRACT: This paper proposes a new method to solve the controller-reduction problem based on the L1-norm. This
method uses a reduced-order closed-loop system to deduce reduced-order controllers. The problem of obtaining the
required lower-order closed-loop system was formulated as an L1-norm optimization, and the conditions were provided
for guaranteeing the internal stability and the existence of lower-order controllers from the obtained reduced-order
closed-loop system. In addition, the particle swarm optimization and sequence linear programming were adopted to
solve the resultant L1-norm optimization. Two numerical examples demonstrated the effectiveness of the proposed
method.  2008 Curtin University of Technology and John Wiley & Sons, Ltd.
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INTRODUCTION

The problem of L1 control was first formulated by
Vidyasagar,[1] which aims to minimize the maximum
of the peak–peak gain of a closed-loop system driven
by the bounded disturbance. The complete solutions to
general one-block L1 problems are given by Dahleh
and Pearson[2] for discrete-time systems by using Youla
parameterization and convex optimization. Although L1
controllers can be used in the areas of disturbance rejec-
tion or tracking of bounded input, they have certain
weaknesses that both the denominator and numerator
of the controller are irrational, which means infinite
dimensions. Yoshito and Kodama[3] found a way to
obtain the rational controller to approximate the optimal
controller. However, the resultant controller had a very
high order, which cannot be realized in practice. There
exist two approaches to solve this problem. The first
approach designs the low-order suboptimal controller
directly. Nagpal et al .[4] provided a method, which opti-
mizes the upper bound of the introduced L1-norm by
the linear matrix inequality (LMI) and obtained a con-
troller mostly with the same order of plant. The sec-
ond approach designs a high-order controller first, and
then reduces the controller order to obtain a low-order
one. Caponetto et al .[5] proposed a controller-reduction
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method based on genetic algorithms. Gugercin et al .[6]

introduced a Krylov-based controller-reduction tech-
nique for large-scale systems. In this paper, we focus
on the second approach.

In fact, controller reduction is a significant topic
that is discussed frequently. In Zhou et al .,[7] the H∞
controller reduction based on the weighted balanced
truncation method, which directly truncates the con-
troller’s state-space matrix, is discussed. Although the
stability of the closed-loop system is maintained, this
method does not guarantee the minimization of the error
between the new closed-loop system and the original
one. Furthermore, the H∞ - and L1-norms are defined
on different norm spaces. Therefore, techniques devel-
oped for the H∞ controller reduction cannot be applied
to the L1-norm reduction. Sarkar et al .[8] developed a
controller-reduction method based on the delta domain,
but yet this cannot be used for the L1 controller. In
this paper, we focus on the SISO controller because
although multiple-input and multiple-output (MIMO)
controllers are more useful and well developed,[9] many
of them can actually be decoupled and treated as multi-
SISO controllers.[10] The method proposed by us first
obtained an approximate and stable closed-loop system
from which the corresponding reduced-order controller
was derived. This led to an L1 -norm minimization
problem with constraints. Because the L1 -norm is the
integral of absolute value, techniques based on the dif-
ferential theory cannot be used directly to solve the
resultant L1 -norm optimization problem. In this paper,
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we have presented and compared two methods to opti-
mize the L1 -norm. The first one is an intellectual search
called particle swarm optimization (PSO).[11] In fact,
intellectual search techniques have been used in con-
troller design[12] and reduction,[5] which have shown
their power. The other method is based on sequence lin-
ear programming (SLP),[13,14] which is a conventional
optimization approach. Solving the L1 -norm optimiza-
tion problem based on the PSO or SLP can result in a
lower-order closed-loop system. Next, we derived the
required lower-order controller from this system. How-
ever, not all the lower-order closed-loop systems can
deduce a low-order controller by using this method.
The main contribution of this paper is to propose a new
framework to guarantee the existence of the low-order
controllers.

This paper is organized as follows: Section 2 provides
the mathematical preliminaries for the computation of
the L1 -norm optimization. Section 3 describes the
conditions for guaranteeing the existence of lower-order
controllers, and it contains the main result of the paper.
In Section 4, we discuss the two optimization methods
for solving the L1 -norm optimization. In Section
5, the complete procedure of the proposed controller
reduction based on the L1 -norm is summarized. Two
numerical examples are shown in Section 6, and the
paper concludes in Section 7.

MATHEMATICAL PRELIMINARIES

In this section, some mathematical preliminaries about
the L1 -norm are given.

Definition 1: L1(R+) is defined as the set of the
Lebesgue intergratable functions on R+

‖F (s)‖1 =
∫ ∞

0
|f (t)|dt (1)

In order to solve the L1 control problem, we should
consider the computation of the L1 -norm first. Since
the L1 -norm is an integral from zero to infinite, it
is difficult to get the precise value. Many approximate
methods were introduced to calculate it. In this paper,
we have used the method given in Ref. [15] By this
approach, the error of the L1 -norm computation can be
made arbitrarily small.

For the transfer function

F (s) = bnsn + bn−1sn−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a1s + a0

b0, b1, . . . , bn ∈ R, a0, a1, . . . , an−1 ∈ R (2)

This can be transformed to the partial fraction expan-
sion form

F (s) =
q∑

j=1

mj∑
k=1

rjk

(s − pj )
k

+ bn (3)

where pj = αj + iβj , rjk = |rjk |eiθjk ;
pj is the pole of the function, q is the number of the

different poles, and mj is the number of multiple pole
pj . The computation of the L1 -norm is shown below.

Lemma 1: The L1 norm of the F (s) is approximated
to

‖F (s)‖1 =
∫ N

0

∣∣∣∣∣∣
q∑

j=1

mj∑
k=1

1

(k − 1)!
|rjk |t k−1eαj t cos(θjk + βj t)

∣∣∣∣∣∣
dt + |bn | (4)

where N is the number that ensures only a small amount
of errors.

The calculation of the value N and the proof of this
lemma can be found in Ref. [15].

MAIN RESULTS

The problem

Denote G(s) as the plant, K (s) the controller, and �(s)
the closed-loop transfer function. Let K̂ (s) be the low-
order controller and �̂(s) the new closed-loop system,
which is stable. The following equation is obtained.

�(s) = G(s)

1 + KG(s)
, �̂(s) = G(s)

1 + K̂ G(s)
(5)

Our aim is to search for a controller such that

K̂OP (s) = {K̂ (s)| min ‖�(s) − �̂(s)‖1} (6)

Internal stability

Let x and x̂ be the state vectors for G and K ,
respectively.

Definition 2: If the system is asymptotically stable at
(x , x̂) = (0, 0), it is internally stable.

To the feedback system, the internal stability is the
basic requirement which guarantees that, if the input
signal is bounded, all the output signals in this system
are bounded.

Let us define that nk is the number of poles in right
of poles in the right half-plane for controller K (s) and
np is the number of poles in right of poles in the right
half-plane for plant G(s).

Lemma 2[7]: The system is internally stable if and
only if

(1) the number of the poles in the right half-plane of
G(s)K (s) is nk + np and

(2) (I + G(s)K (s))−1 is stable.
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Simple case (relative degree is zero)

Let us consider a special system

G(s) = K
(s − q1)(s − q2) · · · (s − qn)

(s − p1)(s − p2) · · · (s − pn)
(7)

where q1, q2, · · · , qn < 0 and p1, p2, · · · , pn represent
the zeros and poles of the transfer function, respectively;
K is the gain and n is the degree of the denominator and
the numerator. Equation (7) is a system whose relative
degree is zero. Let us divide the zeros of Eqn (7) into
two parts: the first part is qi1, · · · , qim and the other is
qt1, · · · , qt(n−m). Then, we have the following theorem:

Theorem 1: For system (7), suppose we have the
closed-loop system

�̂(s) = a
(s − qi1) · · · (s − qim)(s − qc1) · · · (s − qcj )

(s − pc1)(s − pc2) · · · (s − pc(m+j ))
(8)

where a is the gain of the old closed-loop sys-
tem, qi1 . . . qim are part of the zeros of system (7)
pc1, pc2, . . . pc(m+j ) ∈ RH∞, and j is determined by the
requirement of the controller’s degree. Then, we can
obtain a controller K̂ (s) whose degree is j + n . Fur-
thermore, the system is internally stable.

Proof: From Eqn (5), we can obtain K̂ (s)

K̂ (s) = 1

�(s)
− 1

G(s)

=

m+j∏
k=1

(s − pck )

a
m∏

y=1

(s − qiy) ×
j∏

x=1

(s − qcx )

−

n∏
i=1

(s − pi )

K
n∏

i=1

(s − qi )

=
K

m+j∏
k=1

(s − pck ) ×
n−m∏
d=1

(s − qtd ) − a
n∏

i=1

(s − pi ) ×
j∏

x=1

(s − qcx )

a × K
n∏

i=1

(s − qi ) ×
j∏

x=1

(s − qcx )

(9)

Since the degrees of the denominator and the numer-
ator are equal, the controller is realizable and its order
is j + n .

For the SISO system, we have

(I + GK )−1 = I + (I + GK )−1GK = I + �K (10)

The poles of I + �K are pc1, pc2, . . . pc(m+j ) and
qt1, · · · , qt(n−m), which are in the left half-plane.
Accordingly, (I + GK )−1 is stable.

Let qk1, qk2, . . . , qk(n+j ) denote the zeros of the
controller K (s). Because qi < 0, i = 1, 2, . . . , n , the
poles of K (s) in the right half-plane only exist in qcx ,
x = 1, 2, . . . , j . The unstable poles of G(s) exist in pi ,
i = 1, 2, . . . , n . Because the poles and zeros of K (s)
are derived from the optimization method, it is easy to
find the suitable value

qcx �= qi , x = 1, 2, . . . , j , i = 1, 2, . . . , n

and

qks �= pi , s = 1, 2, . . . , n + j , i = 1, 2, . . . , n

Then, the system satisfies Lemma 2 and it is internally
stable.

The reason we did not change the gain of the closed-
loop system is that, from Eqn (4), the system whose
relative degree is zero would have an extra item in
the L1 -norm computation. To minimize this value, the
relative degree of the error transform function should
not be zero. Apparently, when these two systems with
zero relative degrees have the same gain, their error
functions meet the above requirement.

Usually, the controller designed by the method given
in Ref. [3] has a degree much larger than that of the

plant. The above theorem, however, shows that we can
obtain lower-order controllers.

General case (relative degree is not zero)

In the special case, we assumed that the relative degree
of the system is zero. However, in reality, many systems
have nonzero relative degrees. The generic transfer
function of the plant can be expressed as

 2008 Curtin University of Technology and John Wiley & Sons, Ltd. Asia-Pac. J. Chem. Eng. 2008; 3: 688–694
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G(s) = K
(s − q1) · · · (s − qn−r )

(s − p1)(s − p2) · · · (s − pn)
(11)

where q1, q2, . . . , qn−r < 0 and p1, p2, . . . , pn represent
the zeros and poles of the transfer function, respectively.
K is the gain and the relative degree r > 0.

Theorem 2: For the system (11), assume that the
closed-loop system is

�̂(s) = K
(s − qi1) · · · (s − qim)(s − qc1) · · · (s − qcj )

(s − pc1)(s − pc2) · · · (s − pcl )
(12)

where qi1 . . . qim are the first part of the zeros of
system (11), as similarly defined for system (7), and
pc1, pc2, . . . pcl ∈ RH∞, which keeps the stability of
the closed-loop system. Moreover, we have l = r +
m + j . That is, the relative degree of Eqn (12) must
be equal to that of Eqn (11). Furthermore, for nota-
tional convenience, if we use k1, k2 . . . kn+j to repre-
sent qt1 . . . qt(n−r−m), pc1 . . . pcl , and use x1, x2 . . . xn+j

to denote qc1, qc2 . . . qcj , p1, . . . pn , the following equa-
tions are obtained:




∑n+j
i=1 ki = ∑n+j

i=1 xi∑
i1�=i2 ki1ki2 = ∑

i1�=i2 xi1xi2

...∑
i1�=i2�=···i (r−1) ki1ki2 · · · ki (r−1)

= ∑
i1�=i2�=···i (r−1) xi1xi2 · · · xi (r−1)

(13)

Then, the lower-degree controller K̂ (s) can be
obtained, whose order is n − r + j .

Proof: Similar to the proof of Theorem 1, we have

K̂ (s) = 1

�(s)
− 1

G(s)
=

l∏
k=1

(s − pck ) ×
n−r−m∏

d=1

(s − qtd ) −
n∏

i=1

(s − pi ) ×
j∏

x=1

(s − qcx )

K
n−r∏
i=1

(s − qi ) ×
j∏

x=1

(s − qcx )

(14)

The order of the denominator is n − r + j . If this
controller can be realized, its denominator must have
an order higher than or equal to its numerator’s order.
Accordingly, all the coefficients of the items of the
numerator, whose orders are higher than n − r + j ,
must be zero. We arrive at Eqn (13).

The proof of the internal stability is the same to that
of Theorem 1.

In practice, the gain of �̂(s) is not always equal to the
old closed-loop system. For convenience, we consider
the gain of the plant instead. Thus, if a closed-loop
system �̂(s), which satisfies Theorem 2 can be found,
the lower-order controller K̂ (s) can be obtained. In the
next section, we use PSO or SLP to find a closed-loop

system that minimizes the L1 -norm error and satisfies
Theorem 2.

OPTIMIZATION

Using particle swarm optimization (PSO) to
solve the L1 -norm minimization problem

PSO is a guided random search optimization algorithm,
which was introduced by Kennedy and Eberhart.[11] Let
Xi = (Xi1, Xi2, Xi3 . . . , Xin) represent the current posi-
tion of particle i , Vi = (Vi1, Vi2, Vi3 . . . Vin) represent
the velocity and Pi = (Pi1, Pi2, Pi3 . . . Pin) represent
the past optimal position of each particle. Furthermore,
denote Pg = (Pg1, Pg2, Pg3 . . . Pgn) as the global opti-
mal position. The following equations can be used to
renew the current position.

Vi (t + 1) = C0Vi (t) + C1r1[Xi (t) − Pi (t)]

+ C2r2[Xi (t) − Pg(t)] (15)

Xi (t + 1) = Xi (t) + Vi (t) (16)

where C1 and C2 are constants in the range of [0, 2], r1
and r2 are the random numbers in the range of [0,1],
and C0 is the weight that keeps the momentum of the
particles. As X converges to the optimal position, C0
should be made smaller. We consider the poles and
unknown zeros in Eqn (12) as the vector of the position.
Then, we must cycle this process to renew the position
of the particles until we can find a vector that minimizes
the L1 -norm error as well as meets the constraints of
Eqn (13). If the vector of the position does not meet the
constraints of Eqn (13), it is discarded.

The main merit of PSO is that it can be realized eas-
ily. But its convergence usually cannot be guaranteed.
The algorithmic parameters affect the result dramati-
cally, and it is difficult to get the feasible vectors of the
position when there are many constraints.

Using sequence linear programming (SLP) to
solve the L1 -norm minimization problem

The L1 -norm of the transform function usually have
the following form:

∫ ∞

0
|g(t)|dt =

∫ ∞

0
|

n∑
i=1

ri e
−pi t |dt (17)

where pi are the poles of the transfer function and ri is
the numerator corresponding to pi in the partial fraction
expansion form.

This is a nonlinear function with absolute value and
integral. To solve its optimization problem, we have the
following methods:
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Step 1: Discretize (17), then we can obtain

∫ ∞

0
|g(t, p, r)| ≈

N∑
k=1

|g(tk , p, r)|

=
N∑

k=1

|
n∑

i=1

ri e
−pi tk | (18)

where tk is the sample point of the function and N is
same as that in Lemma 1. Because the function has
the term e−pt , it is believed that N is not big. The size
of tk is determined by N and the sample frequency.

Step 2: The above optimization problem is equal to the
following optimization problem:

Min
N∑

k=1

(mk + nk )

s.t .
{

g(tk , p) = mk − nk

(8)
(19)

The proof of this step is shown in.[14] In this step, the
absolute value is reduced successfully at the cost of
increasing 2N variables in this optimization problem.

Step 3: Define δ > 0 so that it is small enough to meet
our requirement. Choose the start values as p0 and r0,
then make the Taylor’s expansion to the constraints.

g(tk , p, r) ≈ gl(tk , p0, r0) = g(tk , p0, r0) + ∇g

(tk , p0, r0)
T (�p) + ∇g(tk , p0, r0)

T (�r) (20)

In order to keep the accuracy, �p should be limited in
a small range |�p| ≤ s . Then, the problem changes into
a linear programming problem. But Taylor’s expansion
can only promise the small error that occurred near
the expansion point. Hence, we should iterate this step
frequently until the error meets our demand. At the same
time, we could adjust the bound of �p to keep the
approximation to the real value. Let Pi and ri be the
solution of step 3. It is obvious that

preki = gl(t, po, r0) − gl(t, pi , ri ) ≥ 0 (21)

We can also obtain the real value

areki = g(t, po, r0) − g(t, pi , ri ) (22)

If arek ≥ 0, the ratio can be computed as follows:

ratioi = areki

preki
(23)

and the change of the boundary determined by it.
The detailed steps are shown as follows:

(1) Compute the Taylor’s expansion in the position
(p0, r0).

(2) Use linear programming to find the optimal value.
(3) If arek < 0, we deny the new position; let s = s/2,

and then return to step 1. If δ > arek ≥ 0, stop this
procedure, else let p0 = pi , r0 = ri and go to the
next step.

(4) Compare arek and prek by computing the ratio.
If ratio ≥ 0.75, let s = s × 2
If 0.75 > ratio > 0.25, s does not change.
If ratio ≤ 0.25, let s = s/2

(5) Return to the step 1.

This method is faster than PSO. Its convergence has
been proved by Zhang et al .[14] Compared with PSO,
its efficiency is not affected by constraints. But our
problem is nonconvex; it may converge to the local
optimal value.

For details and proof of this method, please see
Ref. [13,14].

SOLUTION STEPS

In this section, the summary of our solution steps is
given below:

Step 1: Design �̂(s) such that it satisfies the form of
Theorem 1 or 2, and determine m ,j according to the
requirements of the order.

Step 2: Use PSO or SLP, choose the poles and zeros of
�̂(s) and minimize the error.

Step 3:

K̂ (s) = 1

�(s)
− 1

G(s)
(24)

NUMERICAL EXAMPLE

Example 1

Let us consider a system[3]

G(s) = s + 1

s − 2
(25)

There is an L1 optimal controller

K (s) = −1.3186

s5 + 24.1s4 + 226.6s3 + 1002s2 + 1753s + 2439

s5 + 24.2s4 + 227.8s3 + 1000s2 + 1596s + 2106
. (26)

The gain of the closed-loop system is −3.1387. Appar-
ently, this controller’s degree is much higher than the
degree of the plant; and it should be reduced. The sys-
tem’s relative degree is zero. We could use Theorem 1
to obtain a three-degree controller.

 2008 Curtin University of Technology and John Wiley & Sons, Ltd. Asia-Pac. J. Chem. Eng. 2008; 3: 688–694
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Assume that

�̂(s) = −3.1387
(s + 1)(s − qc1)(s − qc2)

(s − p1)(s − p2)(s − p3)
(27)

Then, by using PSO, 10 particles and recycling 30
times, the result is

qc1 = −0.3038 qc2 = −2.3519 p1 = −6.6247

p2 = −5.3176 p3 = −0.2984 ‖�(s) − �̂(s)‖1

= 0.2216 (28)

According to the Theorem 1, the three-degree con-
troller is

K̂ (s) = −1.3186
(s + 0.2937)(s2 + 3.161s + 4.958)

(s + 1)(s + 2.352)(s + 0.3038)
(29)

Example 2

Let us consider a new example and try to optimize the
L1 -norm by two methods.

G(s) = 1

(s + 1)(s + 2)
(30)

Its relative degree is two and the controller is

K (s) = 1.2(s − 1.2)(s2 − 4s + 13.61)

(s + 3.2)(s + 4.25)(s + 1.8)(s2 + 4s + 32.09)
(31)

To reduce it to a one-degree controller, we should
assume that

�̂(s) = (s − qc1)

(s − pc1)(s − pc2)(s − pc3)
(32)

and the bound is

qc1 − 1 − 2 = pc1 + pc2 + pc3 (33)

By using PSO first, 10 particles and recycling 30
times, the result is

pc1 = −1.66 + 0.0142i pc2 = −1.66 − 0.0142i

pc3 = −0.8157 qc1 = −1.1357

The new controller is

K̂ (s) = 0.056826(s − 0.4134)

(s + 1.136)
(34)

‖�(s) − �̂(s)‖1 = 0.0022 (35)

Then, we also use SLP. We assumed that in the
sample, the period is 1 and the initial poles are −5,

−8, and −7. There are 17 zeros and the initial value of
s is 1. We can calculate parameters by SLP:

pc1 = −0.6783 pc2 = −1.9361 pc3 = −1.139

qc1 = −0.7534

The new controller is

0.030815(s − 0.3581)

(s + 0.7534)

‖�(s) − �̂(s)‖1 = 0.0029 (36)

Comparing the errors of these two methods, it is
indicated that the result of SLP is approximated to PSO;
however, PSO consumes much more time than does
SLP. Thus, SLP is a better optimization method.

CONCLUSION

A new approach has been proposed to solve the L1 -
norm-based controller-reduction problem. On the basis
of the idea of obtaining the controller through the
closed-loop system, a computational framework has
been developed to reduce the order of the controller.
Conditions for guaranteeing the existence of reduced-
order controllers have been established, and two effi-
cient optimization algorithms, namely the PSO and
SLP, have been adopted to solve the resulting L1 -norm
optimization. The major advantage of the proposed
method is its simplicity, and the resultant reduced-order
controller is not confined by the original controller. Two
numerical examples have demonstrated the efficiency of
this method.
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