MATH3012 — Statistical Methods II
S-Plus Worksheet 9 — Log-linear models for the 1ymphoma data set.

1 Finding a suitable model

1. The lymphoma dataset represents classification of 30 lymphoma patients by sex, cell type of
lymphoma and response to treatment and it is an example of a three-way contingency table.
Use log-linear models to determine how these three variables are associated.

Remission

Cell Type Sex No Yes
Male 1 4
Nodular Female 2 6
. Male 12 1
Diffuse Female 3 1

2. First, get the lymphoma dataset from the usual place. Now get the source file containing S-Plus
commands from the course website, usual place.

3. Asusual we first set the treatment contrasts. options(contrasts=c("contr.treatment", "contr.poly"))
4. Here the saturated model is the three factor interaction model Cell * Remis * Sex. We issue:

ly.sat <- glm(y ~ Cell * Remis * Sex, data=lymphoma, family=poisson)
5. The saturated model fits exactly. summary(ly.sat) confirms that we have zero deviance.

6. Now we drop the three factor interaction term. 1y.glml <- update(ly.sat, . ~ . - Cell:Remis:Sex)

Note the colon instead of the * in Cell:Remis:Sex. What happens if you use the *?7

7. Issue summary(ly.glml) followed by anova(ly.glml, test="Chisq"). From the output, we can see
that we can remove the Remis:Sex term and no more. We cannot remove any of the remaining two
interaction terms, Cell:Remis and Cell:Sex because of low p-values; we cannot remove any lower
order terms if they appear in higher order terms. Remember the principle of marginality!

8. Issue the following two commands.
ly.glm2 <- update(ly.glml, . ~ . - Remis:Sex)
summary (ly.glm2)

9. We issue the following commands to see the quality of fit. Compare the observed and fitted counts!
pcount <- predict(ly.glm2, type="response")
lymphoma$pcount <- pcount # See the lymphoma dataset

data.frame(observed=1lymphoma$y, fitted=pcount)



2 Investigating the dependence structure

1. Absence of the interaction term Remis:Sex from ly.glm2 does not imply the independence
of remission and sex. It merely implies that remission is independent of sex conditional on
cell type, that is

P(R,S|C) = P(R|C)P(S|C).

Another way of expressing this is
P(R[S,C) = P(R|C),

that is, the probability of each level of R given a particular combination of S and C, does
not depend on which level C takes. [Equivalently, we can write P(S|R,C) = P(S|C)]. This
can be observed by calculating the estimated odds in favour of R = yes over R = no for the
lymphoma dataset.

2. We now illustrate the above theory. We first find the 8 fitted probabilities which are simply
the fitted counts divided by 30 (which is the total number of patients classified).
fit.prob <- pcount/(sum(pcount))
lymphoma$fitprob <- fit.prob # See the lymphoma dataset
fit.prob

Using the above commands (and then by hand) we obtain the following table of fitted prob-
abilities.

Remission
Cell Type Sex No Yes
Male 0.0385  0.1282
Nodular Female 0.0615  0.2051
. Male 0.3824  0.0510
Diffuse Female 0.1176  0.0157

Subsequently, we form the odds ratios by dividing the probabilities, e.g. 33282 = 3.33.

Remission
Cell Type Sex No Yes Odds
Nodular Male 0.0385  0.1282 3.33
Female 0.0615  0.2051 3.33
. Male 0.3824  0.0510 .
Diffuse Female 0.1176  0.0157 0.13

Therefore, the odds depend only on a patient’s Cell type, and not on their Sex.



Remission Remission

Sex No Yes Total Sex No Yes Odds
Male 0.4208 0.1792 0.6 Male 0.4208 0.1792 0.43
Female 0.1792 0.2208 0.4 Female 0.1792 0.2208 1.23
Total 0.6 0.4 1

3. The above establishes that remission and sex are conditionally independent given cell type. It is easy
to see that they are not marginally independent, as the following table (left) demonstrates; the cell
probabilities are not the product of the marginal totals.

From the table on the right hand side, we see that male patients have a much lower probability
of remission. The reason for this is that, although R and S are not directly associated, they are
both associated with C. Observing the estimated values (last column of the very first table of fitted
probabilities) it is clear that patients with C' = nodular have a greater probability of remission, and
furthermore, that female patients are more likely to have this cell type than males. Hence females are
more likely to have R = yes than males. However, the conditional independence of R and S given C
implies that two patients with the same cell type are equally likely to have R = yes, even if one is
male and the other female.

3 Demonstrating the equivalence of logistic and log-linear models

1. First fit the Poisson GLM.
ly.pois <- glm(y ~ Cell+ Sex+ Remis+ Cell:Remis + Cell:Sex +
Sex:Remis, data=lymphoma, family=poisson)

summary (1y.pois)

2. Prepare the data for logistic regression.

makepropdata <- function() {
Cell <- c("nodular", "nodular", "diffuse", "diffuse")
Sex <- c("male", "female", "male", "female")
y <- c(4, 6, 1, 1)
n <- c(5, 8, 13, 4)
data.frame(Cell=Cell, Sex=Sex, y=y, n=n)
}
newlymphoma <- makepropdata() # Bring up this data set
ly.bino <- glm(y/n ~ Sex+Cell, data=newlymphoma, family=binomial, weights=n)
summary (1y.bino)

3. Compare the coefficients. Issue the commands coef (ly.pois) and coef(ly.bino). Using
the equivalence interpret the parameter estimates.

4. The binomial proportion model is equivalent to models from equivalent Bernoulli observations.

convbindata <- function()



{

Cell <- rep(lymphomal, 2], lymphomal, 1])

Sex <- rep(lymphomal, 3], lymphomal, 1])

Remis <- rep(lymphomal, 4], lymphomal, 11)

data.frame(Cell, Sex, Remis )

}

nlmph <- convbindata() # Bring up this data set

ly.bino2 <- glm(Remis~Sex+Cell, data=nlmph, family=binomial)
summary (1y.bino2)

coef (1ly.pois)
coef (1y.bino)
coef (1y.bino2)

Exercises: Demonstrate this equivalence for the heartattack dataset. Hint: See the source file
for this exercise sheet.



