MATH3012 — Statistical Methods 11
S-Plus Worksheet 8 — Modelling counts

Analysis of Road traffic accident data

1.

The accident dataset concerns the number of road accidents and the volume of traffic ob-
served on Mill Road and Trumpington Road in Cambridge during morning, midday and
afternoon. By analysing this we should be able to answer questions like: (i) Is Mill Road
more dangerous than Trumpington Road? (ii) How does time of day affect the rate of road
accident? The data have been obtained from Prof Pat Altham (Cambridge University).

Accidents 1978-81, for traffic into Cambridge
Number of  Estimated
Time of day  accidents traffic volume

Mill Road  (07.00-09.30) 4 1399
(09.30-15.00) 20 2276
(15.00-18.30) 4 1417
Trumpington Road  (07.00-09.30) 11 2206
(09.30-15.00) 9 3276
(15.00-18.30) 4 1999
. We assume
Y;; ~ Poisson(p;;), i = 1,2 for Road, j = 1,2, 3 for time.
. We might reasonably expect the number of accidents to depend on traffic volume, v;;. It is

better to work with log volume rather than volume itself since those are very high.

. Use the Poisson GLM with canonical log link.

log(pij) = p + o + B + v log ;.
This is equivalent to assuming:

pij = constant X ith road effect x jth time effect x volume”

. By setting the following treatment contrasts we set @; = 0. Thus ap = 0 if the roads are

equally risky. By the same command we also set #; = 0. Then (5 represents difference
between time 2 and 1, and B3 represents difference between time 3 and 1.

options(contrasts=c("contr.treatment","contr.poly"))

Issue the command
acc.glm <- glm(nacc ~ road + time + log(volume), data=accident, family=poisson)
summary (acc.glm). The output seems to say Mill road is more dangerous than Trumpington

road. The mornings and afternoons are about as dangerous as each other and each is quite a
lot more dangerous than the midday.



8. anova(acc.glm, test="Chisq"). The model seems to fit well, deviance 1.88 is non-significant
when referred to x? with 1 degree of freedom. The accident rate has a strong dependence on
the traffic volume.

Analysis of Hodgkins data

1. Consider the hodgkins dataset where 538 patients with Hodgkin’s disease have been cross-
classified according to two factors, H, the histological type of their disease (4 levels) and R,
their response to treatment (3 levels).

Response to treatment

Histological type Positive  Partial None
Lymphocyte predominance 74 18 12
Nodular sclerosis 68 16 12
Mixed cellularity 154 54 58
Lymphocyte depletion 18 10 44

2. Classification data are extremely common, and can be modelled very effectively using gener-
alised linear models. The observations of the response variable are taken to be the counts (in
this case the 12 patient totals) and a generalised linear model is used to determine how the
expected counts depend on any explanatory variables (in this case, the factors H and R).

3. Counts are non-negative integers, so one approach is to treat them as observations of Poisson
random variables. The canonical link function is then the log function, and Poisson generalised
linear models with the log link are called log-linear models. A possible log-linear model for
this data set is:

Y; ~ Poisson(p;)  logui = a+ Bu(hi) +Br(ri)  i=1,...,12, (1)

where Y; is the ith count (in the S-Plus spread-sheet), and h; and r; are the corresponding
levels of H and R.

4. Note: This can be written with the ¢ and j notations like the previous example, e.g. we can
write: Y;; = number of patients with the sth histological type and jth response to treatment,
1=1,2,3,4and 57 =1,2,3.

5. We use the commands:

(a) hod.glm <- glm(y~h+r, data=hodgkins, family=poisson)
(b) summary (hod.glm)

(c) anova(hod.glm, test="Chisq")

(d) plot(hod.glm)

(e) u <- resid(hod.glm, type="pearson") # The Pearson residuals are in u

(f) v <- resid(hod.glm, type="deviance") # The deviance residuals are in v



(g) sum(u"2) # The result is the Pearson X"2 statistic

(h) sum(v"2) # The result is the scaled deviance

6. By comparing the H + R model with the model H + R+ HR (= H * R) we are determining
whether H and R are independent or whether there is significant evidence of association. As
every combination of H and R appears exactly once, the model H * R is the saturated model,
so the test we require compares model (1) with the saturated model (a goodness of fit test).

7. The independence model [H + R; (1)] fails to fit. Its scaled deviance is 68.3 on 6 degrees
of freedom, which is far to large to have reasonably come from a x2 distribution (p-value
< 107'2). The residual plot indicates why the model fails to fit. In particular, the residual for
observation 12 is very high, and observation 10 is rather low. Therefore, the main reason that
we are unable to draw the conclusion that response to treatment is independent of histological
type is that the prognosis for individuals with Lymphocyte depletion is significantly worse
than for other patients. Conversely, patients with Lymphocyte predominance and Nodular
sclerosis fare rather better. Our conclusion is that response to treatment is associated with
histological type.

8. The residual plot displays both the deviance (circle) and Pearson (square) residuals. They
are generally quite close, as might be expected with relatively large counts. The Pearson X2
statistic is 75.8, also on 6 degrees of freedom, providing even stronger evidence against the
independence model.

Exercise: Analyse the job satisfaction data.



