MATH3012 — Statistical Methods II
S-Plus Worksheet 5 — Generalised linear models

Fitting generalised linear models in S-Plus is very similar to fitting linear models. You replace
the command 1m with the command glm. The distribution and link function which you require
for your model is specified by the argument family which is supplied to the model. For example
family=binomial(logit) fits a generalised linear model with binomial distribution and logistic
link. In fact family=binomial does the same, as the default is the canonical link. The form of the
linear predictor is specified in the model formula for glm in the same way as for 1m.

The result of the glm command is a generalised linear model object which can be used within
many of the same S-Plus commands as a linear model object. Useful ones are resid, coef,
deviance, fitted, plot, print, summary, update and anova. However, the commands add1
and drop1l do not produce useful output for generalised linear models.

1. Obtain the source. Fire up the internet explorer. Go to the course webpage
http://www.maths.soton.ac.uk/staff/Sahu/teach/math3012 or otherwise. Click on the
source file for worksheet 4.

2. Import the data

(a) To do this you just install the MATH3012 files and click on the beetle icon with the S
symbol on my computer window.

(b) This dataset represents the number of beetles exposed (n) and number killed (y) in eight
groups exposed to different doses (x) of a particular insecticide. Interest is focussed on
how mortality is related to dose. It seems sensible to model the proportion of beetles
killed in each group as a binomial random variable with probability of death depending
on dose.

3. Pretend that we do not know the GLM theory and are just going to use the normal linear
models. We issue the following commands.

beet.lm <- 1m(y/n ~ x , data=beetle, weights=n)

summary (beet .1m)

predict (beet.1lm)

The predicted probability for dose 1.88 is 1.085304! This is not the work of a good statis-
tician! Probability cannot be bigger than 1.

4. We should fit the logistic regression model. A logistic regression model is
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This is a generalised linear model with a binomial distribution for the response and logistic
link function.

5. To illustrate the effect the logit link function has, it is useful to plot y/n against z and
compare with a plot of the empirical logit, logit(y/n) against z. In fact, because there are
extreme values y/n = 1 in the data, we use the modified empirical logit, logit([y + 3]/[n + 1])
in the second plot. Does it look as if a linear logistic model will fit well? The commands are:



(a)
(b)
(c)

plot (beetle$x, beetle$y/beetledn)
p <~ (beetle$y+0.5)/(beetle$n+l)
plot (beetle$x, log(p/(1-p)))

6. To fit the linear logistic regression model in S-Plus, we use the command

beet.glm <- glm(y/n~ x, data=beetle, family=binomial, weights=n)

The response variable for a binomial GLM can be given in one of several formats. It can
just be a factor with two levels (one for success and the other for failure). Here we have
y out of total n, hence we have used this format. See ?7glm.

7. Interpreting the output

(a)

Issue the command summary(beet.glm). It provides similar information to the equiva-
lent command for a linear model.

Call confirms the model which was fitted.

Residuals gives a summary of the distribution of the deviance residuals. We will discuss
these later.

Coefficients provide the maximum likelihood estimates, together with their standard
errors. The column t-value should be compared to the cut-off point from the standard
normal distribution, e.g. 1.96 at the 5% level of significance. Using the asymptotic
normality of the mle’s we can obtain the confidence intervals as well. We interpret the
coefficient for x as follows. We fitted the model:

log (ﬁ’ﬂ) — B+ Poi = —60.72 + 34.27a;

— p(wi)
The maximum likelihood (ML) estimate of f; is 31 = —60.72 with s.e. (asymptotic
standard error) 5.18. From this we can test Hy : /1 = 0 by performing a normal

test. We will reject Hy if
significance.

The ML estimate of 8 is # = 34.27 with s.e. 2.91. We interpret this as follows. For
a unit change in = (dose), the estimated odds of beetle being killed are multiplied by
exp(34.27). For example, consider two beetles with z = 1.7 and 1.8 respectively. The
odds of the second beetle being killed is exp(34.27 x 0.1 ) times the odds of the first
beetle being killed. This means that the second beetle with a higher dose is much more
likely to be killed than the first beetle.

For (3, also we can perform Hy : 2 = 0 and form 95% confidence interval given by
Br £1.96 x s.c.

Bl/s.e.‘ > 1.96. In this case we do reject Hy at 5% level of

Residual Deviance is the scaled deviance for the model, which can be compared with
a chi-squared distribution to assess the goodness of fit of the model.

In our example, it is 11.23 on 6 degrees of freedom. This means that a deviance value of
only 11.23 is NOT explained by the fitted model. Put this on a theoretical x? distribution
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of 6 df. The residual is not large, since 1-pchisq(11.23, df=6) is 0.082. Thus the
residual deviance did not fall above the 5% critical value.

The deviance of a model provides an overall measure of goodness of fit which can be
calibrated. Generally, if the model is an acceptable fit then the residual deviance of the
model will be an observation from a chi-squared distribution whose degrees of freedom
are the same as the residual degrees of freedom of the model. If the model is a poor
fit then the deviance will be larger than would be predicted by the relevant chi-squared
distribution.

(f) Null Deviance is also provided, so that the model may be compared with the null model
(without the covariate x), again using an appropriate chi-squared distribution. This is
the residual deviance for the model with intercept only.

(g) Number of Fisher Scoring Iterations tells us how quickly the Fisher scoring algo-
rithm converged to the maximum likelihood estimate.

(h) Correlation of Coefficients is the estimated correlation of the estimates of the co-
efficients. If correlations are high, then removing terms from the model may result in
other coefficients changing their values considerably.

(i) Issue the command anova(beet.glm, test="Chisq"). It provides similar information

to the equivalent command for a linear model. It tests whether the it is worth including
x in the model.

Let us see the fitted probabilities. We issue predict(beet.glm, type="response") All
probabilities are between 0 and 1.

. Other link functions: S-Plus allows us to use link functions other than the canonical link.

For example, for binomial data, we can use

g(u) =" ()

where @ is the standard normal distribution function, so ®(z) = P(Z < z) where Z is a
standard normal random variable. This is the probit link function. Alternatively

g(p) = log[—log(1 — p)]

is called the complementary log-log link function. Note that both of these links map (0,1) on
to R.

Use the function comparelinks() to see the differences between these link functions. You
have to compile this function previously downloaded from the website.

Try fitting the models using these alternative link functions. For example,

beet.prlink <- glm(y/n~ x, data=beetle, family=binomial(probit), weights=n)

beet.cloglink <- glm(y/n ~ x, data=beetle, family=binomial(cloglog), weights=n)

summary ( beet.prlink)
summary ( beet.cloglink)

summary (beet .glm)



