MATH3012 — Statistical Methods II

S-Plus Worksheet 3 — Factorial models

1. Import the data

(a)

To do this you just install the MATH3012 files and click on the survival icon with the
S symbol on my computer window.

This dataset represent survival times (in 10 hour units) of 48 animals each allocated to
one of 12 combinations of 4 treatments and 3 poisons. The treatments are in column t
and the poisons are in column p.

The aim of the experiment is to determine the dependence of survival time on the
explanatory variables treatment (7') and poison (P).

The values of these explanatory variables are categories. We refer to categorical explana-
tory variables as factors. The values assigned to the variables are just labels distinguish-
ing between categories. Even if we used numerical labels, their values would have no
intrinsic meaning. Therefore, we cannot include such variables directly in a linear model.
We need to convert the two explanatory variables into factors.

Open the survival data using the object explorer. On the righthand pane of the object
explorer you will see three column names, y, t, p and their data classes. Here y should
be numeric. We make t and p as factors by first highlighting the two columns in the
data spreadsheet and then following the path Data — Change Data Type. Now
select factor in the New Type dialog and press OK. This should do it. Check the object
explorer.

2. Modelling with factors

(a)

To model the dependence of the response on an explanatory factor, we include a model
coefficient for each level of the factor. For example, a model which allows survival time
(Y) to depend on P might be written as

where p; is the level of P for the ¢th observation. Here « takes different values depending
on the level of the factor P.

Note that this model is overparameterised, in that it would be possible to add some fixed
constant to each a(p;) and subtract the same constant from g and end up with exactly
the same dependence of Y on P. Therefore, in practice, we impose a constraint on .
The easiest to interpret is to constrain «(p) to be equal to 0 at the first level of P. In
S-Plus we do this by

> options(contrasts=c("contr.treatment", "contr.poly"))

3. Models

(a)

The model (1) is then fitted by survival.lml <- lm(y~p,data=survival)



(b)

()

Factors are included in the standard linear model structure by creating a dummy variable
for every level of the factor. The dummy variable at level f of a factor F' takes the value
1 for every observation where F' = f and 0 for all other observations. The dummy
variables are incorporated in the design matrix in the usual way. The model coefficient
a(f) corresponds to the dummy variable at level f.

Factorial models may include more than one factor. For example, we can model the
dependence of Y on T and P using the linear model

Yi=p+alp)+pt)+ea i=1...,n

fitted in S-Plus by survival.lm2 <- 1m(y~p+t,data=survival)

This is an additive model, which assumes that the effect of a treatment is the same for
every poison, and conversely that the effects of a poison are the same for every treatment.
These effects of poison and treatment are called main effects.

4. Models with interactions

(a)

The additive model may not be appropriate. Different poisons may respond differently
in combination with different treatments. We call this interaction. A model with inter-
action is

Yi=p+alp)+B) +ylpiti) +ea  i=1...,n

We require constraints on the interaction parameters =y, similar to those on the main
effects. Usually, we constrain 7y(p;, t;) to be equal to 0 for all combinations where either
P or T are at their first level.

The model with interaction can be fitted using

survival.lm3 <- 1lm(y~p+t+p:t,data=survival)

where p:t indicates an interaction between P and 7. Do not attempt to include an
interaction term without the corresponding main effects (the model is meaningless).
Note that in factorial models it rarely makes sense to model some of the levels of a factor
but not others. Therefore, when we add an explanatory factor F' into the model, we are
adding [ — 1 extra coefficients, where [ is the number of levels of the factor concerned.
As usual, we can use an F test to determine whether adding a factor leads to a significant
improvement in fit.

5. Exercises

(a)

(b)
(c)

For this dataset, fit factorial models which include T, P, both, neither, and the model
with interaction. By comparing models using F tests (remember the anova command)
determine which model you prefer. Is it a good model?

Now transform the response to death rate (reciprocal of survival time). Try modelling
death rate using factorial models. Which model do you prefer now?

In each case, write down your model and the corresponding parameter estimates. Over-
all, what is your preferred model. What conclusions do you draw about the effects of
the different poisons and treatments?



Some notes

This dataset represent survival times (in 10 hour units) of 48 animals each allocated to one of
12 combinations of 4 treatments and 3 poisons. The aim of the experiment is to determine the
dependence of survival time on the explanatory variables Treatment (7') and Poison (P).

Again, I think the safest way to fit models is to start with the most complex model and try
to eliminate explanatory variables. Therefore, I first fitted the model with interaction. However,
there is no evidence that interaction is required, as removing the interaction does not significantly
increase the deviance, but does considerably reduce the complexity (the interaction term contributes
6 parameters to the model). Formally, the F statistic is 1.874 on 6,36 degrees of freedom, leading
to a p-value of 0.1123.

Neither P the main effect of Poison (F' = 20.6 on 2,42 d.f. p-value=0.0000) or 7" the main effect
of Treatment (F = 12.3 on 3,42 d.f. p-value=0.0000) should be removed from the model T+ P.

The chosen model T' + P can be written as

Yi=p+oalp)+BEt)+e i=1,...,48 (1)
where (p;,t;), i = 1,...,48 are the observed categories of P and T, Y7,...,Ys are the survival
times, and €y, ..., €8 are independent N(0, 02) residuals.

Based on the observed data, our least squares estimates, together with their standard errors
and 95% confidence intervals are

Parameter Estimate Standard error Confidence interval
I 0.452 0.056 (0.339,0.565)
a(I) 0
a(1T) -0.073 0.056 (-0.186,0.040)
dA(III) -0.341 0.056 (-0.454,-0.228)
@ (A) 0
B(B) 0.363 0.065 (0.232,0.493)
ﬁ(C) 0.078 0.065 (-0.052,0.209)
B(D) 0.220 0.065 (0.090,0.350)

The unbiased estimate for o2 is 0.15822 = 0.02503.

The consequence of the model is that both P and T have a significant effect on survival time,
but they do not interact. In other words, the effect of a particular poison (treatment) does not
depend on the treatment (poison) it is combined with. Poisons I and IT have similar effects, but
Poison III gives an estimated expected survival time 3.4 hours less than Poison I and 2.7 hours less
than Poison II. Similarly, the treatments can be ranked BDCA, in order of expected survival time,
with the expected difference between B and A being 3.6 hours. We can make these statements
comparing treatments or Poisons, because there is no interaction. In the presence of interaction,
individual combinations of factors need to be considered separately.

The R? coefficient is 65.0%, which indicates that the model is not a very good fit, and that
a large proportion of the variability remains after fitting the model. Furthermore, residual plots
indicate serious cause for concern. The plot of residuals against fitted values exhibits marked
‘funneling’, and the normal plot has obvious curvature at its upper end.

With death rate (reciprocal of survival time) as the response variable, we again choose the
model T'+ P, as we can eliminate the interaction (F' = 1.09 on 6,36 d.f. p = 0.3867) but neither
the main effect P (F' = 71.7 on 2,42 d.f. p = 0.0000) or T' (F = 28.0 on 3,42 d.f. p = 0.0000).
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Figure 1: Residual plots for the response survival times

The chosen model T + P is now written as

1 .
?:,u—f-a(pi)-f-,@(ti)-i-ei 1=1,...,48. (2)

Based on the observed data, our least squares estimates, together with their standard errors and
95% confidence intervals are

Parameter Estimate Standard error Confidence interval
fi 2.698 0.174 (2.346,3.050)
a(I) 0
a(11) —0.469 0.174 (0.117,0.820)
dA(III) -1.996 0.174 (1.645,2.348)
g (A) 0
B(B) -1.657 0.201 (—2.064,-1.251)
B(C) —0.572 0.201 (—0.978,-0.166)
B(D) -1.358 0.201 (-1.765,-0.952)

The unbiased estimate for o2 is 0.4931% = 0.2431.

Qualitatively this model is much the same. P and T effect survival time independently (no
interaction). There is now a more marked distinction between Poisons I and II, with Poison
IT having an estimated expected death rate 0.47 deaths/10 hours greater than Poison I. Poison
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Figure 2: Residual plots for the death rate response.

III remains the most lethal with estimated expected death rate 2.00 greater than Poison I and
1.53 greater than Poison II. The treatments can still be ranked BDCA, in order of survival time
(increasing death rate), with the expected difference between B and A being 1.66 deaths/10 hours.

The R? coefficient is a much more satisfactory 84.4%, and the residual plots look fine. Altogether
model (2) seems much better than model (1).



