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Abstract

This article proposes a flexible class of non-stationary and anisotropic spa-
tial models by using recently developed Gaussian predictive processes. So
far these processes are only used as approximate dimension reduction mod-
els for analysing large spatial data sets. The contribution of the current article
lies in proposing these models even for small sizes and studying the nature
of anisotropy implied by these predictive processes under various scenarios of
selection of the knot locations where the predictive process is to be anchored
for both small and large data sets. Results obtained here show that different
random and non-random choices of knot-locations lead to new flexible forms of
anisotropic covariance functions not yet studied in the literature. These new
covariance functions give rise to new flexible and accurate Bayesian predictive
models but do not complicate the fitting and analysis methods unlike other
models based on anisotropic covariance functions. The proposed methods are
illustrated using two practical data sets on modelling air pollution exposure in
London and the other on modelling a well-known data set on scallop abundance
in the Atlantic Ocean near the City of New York.

1 Introduction

Stochastic spatial models based on Gaussian processes are experiencing a surge of

popularity in recent literature due to their abilities to investigate spatial variation

in many physical quantities of interest in diverse application areas. A stationary

∗E-mail: S.K.Sahu@soton.ac.uk.
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Gaussian process with an isotropic covariance function is often the default choice

for statistical modellers since such an assumption implies a tractable model leading

to easily amenable analysis and computation. Popularity of these models also come

from their abilities to provide inference and prediction capabilities on dis-aggregated

spatial scales. This advance is also fuelled by increasing computing power and the de-

velopment of modern computational techniques based on Markov chain Monte Carlo

(MCMC) and Integrated Nested Laplace Approximation (INLA) and others imple-

mented as contributed software packages inside the R language environment. Recent

references include: Banerjee et al. (2015); Cameletti et al. (2013); Cressie and Wikle

(2011); Finley et al. (2015) and Bakar and Sahu (2015).

The Gaussian processes, used naively, lead to stationary and isotropic covariance

models for data. Due to their analytical tractability, these models are not only con-

venient to specify but also are easy to fit and analyse. However, such simplicity

does not often represent reality and practical data sets exhibit non-stationarity and

anisotropy. Spatial non-stationarity arises when features of the data distribution, e.g.,

means and variances, depend on the actual spatial locations where those are observed.

Anisotropy, on the other hand, points to un-equal and un-even variation of the data

as a function of either the direction or the distance between locations where the data

points have been collected. These un-even features are hard to generalise into a sim-

plistic parametric model and hence there has been a noticeable slow progress in the

literature regarding the use of non-stationary and anisotropic spatial models in place

of their stationary and isotropic counter parts. However, there is a relatively large lit-

erature on constructing non-stationary models using deformation, see e.g. (Sampson

and Guttorp, 1992; Schmidt and O’Hagan, 2003) and kernel mixing, see e.g. (Higdon,

1998; Paciorek and Schervish, 2006); Section 3.2 of Banerjee et al. (2015) provides

a review. More recent articles in this area include: Konomi et al. (2014) who use

a nonstationary covariance function constructed based on adaptively selected parti-

tions; Guhaniyogi et al. (2013) who use spatially varying cross-covariance models;

Katzfuss (2013) who uses spatial basis functions with nonstationary Matérn covari-

ance functions.

The main objective of this paper is to introduce a method to generate a flexible

class of anisotropic, as well as non-stationary, spatial models which are also based on

Gaussian processes. The generating mechanism relies on specification of a Gaussian

predictive process (GPP), see Banerjee et al. (2008) and flexibility is added through

the choice of a set of knot-locations where the predictive process is anchored. A

GPP is simply defined as the process induced by Kriging. Given a set of m locations

S∗m = (s∗1, . . . , s
∗
m), which are to be called the knot-locations or simply the knots, in
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a d-dimensional study region D (D is a subspace of Rd), the GPP at a new location

s, denoted by w̃(s), is defined as the conditional expectation of the GP w(s) given

realisations at the knots denoted by w∗ = (w(s∗1), . . . , w(s∗m))T . In particular,

w̃(s) = E [w(s)|w∗] . (1)

There are several questions regarding the use of w̃(s) in spatial modelling. What are

the covariance properties of this new process w̃(s)? How do those properties change as

the knots are moved around in the study region D? How does a particular clustering

of the knots affect these properties? What happens if the knots are instead specified

randomly according to a specific point pattern model, see e.g. Guhaniyogi et al.

(2011)? How does the choice of m influence the covariance structure of w̃(s)? What

effect does the assumed covariance structure of the GP w(s) have on w̃(s)? It is well

known that w̃(s) always generates a non-stationary and anisotropic spatial process

(Banerjee et al., 2008). However, there is no comprehensive study in the literature

which is able to answer all these questions.

Our main contribution here is to investigate these issues in detail with both the-

oretical and practical examples in order to develop accurate predictive models. Here

we find that w̃(s) defines a new class of flexible spatial models which are able to

capture highly un-structured concepts of anisotropy as yet un-explored in the lit-

erature. This new concept of anisotropy produces explicit non-stationary processes

based on parametric covariance functions and it can lead to many traditional notions

of anisotropy: geometric, sill, nugget, range and zonal, see e.g. Zimmerman (1993);

Ecker and Gelfand (1999). We compare the new anisotropic covariance models with

the default Gaussian process (GP) models in illustrative theoretical examples and also

show better model fitting and prediction results in two real life practical examples.

We also argue that that a denseness condition on the set of knot locations is required

to guarantee a rich class of anisotropic models.

To illustrate the main ideas of this paper consider the real line R1 to be the

study region D. With one knot point, s∗1, say at the origin, and assuming the ex-

ponential correlation function with decay parameter φ > 0 in the GP with unit spa-

tial variance we can easily see that w̃(s) = exp(−φ |s|)w∗(0) according to (1) where

w∗(0) ∼ N(0, 1). It is now easy to see that the covariance between w̃(s) and w̃(s′)

will depend not only on the distance |s− s′| but also on the relative positioning of s

and s′ with respect to the origin, the sole knot-location here. It is also clear that the

covariance function will also be non-monotonic with respect to the distance |s − s′|,
even though the underlying stochastic process is Gaussian with a monotonic covari-

ance function. Further complexity in the covariance function are easily introduced
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by: (i) having more than one knot-locations so that w̃(s) is based on w∗ where m > 1,

(ii) assuming the knot locations to be assigned at random over a finite sub-interval

in D (iii) assuming specific clustering processes for the knot-locations. Clearly, using

this process we are able to construct a model possessing rich anisotropic and non-

stationary covariance structures. Further, illustrations with specific examples are

provided in Section 2.

Traditionally, predictive processes have been used as dimension reduction tech-

niques in the following sense. In the full dimensional model, each observation of a

spatial random variable, say Z(s), is assigned a spatial random effect w(s) which

is often assumed to follow a GP as above. However, when the number of obser-

vations n is very large, it is prohibitive to work with the full dimensional process

w = (w(s1), . . . , w(sn))T , giving rise to the so called big-n problem, since working in

a Bayesian inference set-up requires inversion of n × n matrices in iterative MCMC

based model fitting and prediction algorithms. The dimension reduction technique,

proposed by Banerjee et al. (2008), instead allows working with the m dimensional

w∗ where m is much smaller than n and here, each w(si) is replaced by the con-

ditional expectation w̃(si) as in (1). This approximation makes model fitting and

prediction tasks much easier even when n is very large and consequently Bayesian

R packages have been developed, e.g. spBayes (Finley et al., 2007) and spTimer

(Bakar and Sahu, 2015). In both these packages it is recommended that the required

knot-locations and their number m are specified either by trial and error on the basis

of out of sample predictions or by using space filling designs. However, Guhaniyogi

et al. (2011) propose fully adaptive GPP models based on random knot locations

which are distributed according to a point pattern model for large data sets.

Our proposal here is to use the predictive process w̃(s) even for small sizes where

dimension reduction is not needed. We propose to make m larger than n since this al-

lows us to gain important model flexibility regarding non-stationarity and anisotropy,

as illustrated with two practical examples in Section 5. As in Guhaniyogi et al.

(2011), we also propose random knot specification, and use their estimation method

that achieves better model fitting and prediction results. The required computation

burden, however, is still kept manageable as long as m is not allowed to be so large

as to hit the big-n problem, described above, for which dimension reduction through

a predictive process has been proposed in the first place.

The plan of the remainder of the paper is as follows. In Section 2 we review the

predictive process model and explore different ways to generate anisotropic models.

Section 3 illustrates the nature of anisotropy generated by the proposed method by

two theoretical examples. Full Bayesian hierarchical models and prediction details
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based on the anisotropic covariance functions are laid out in Section 4. Section 5

contains illustrations of the methods using two practical examples: one for the scallop

catch data set and the other modelling PM10 pollution levels in the City of London

in 2011. A few summary remarks are placed in Section 6.

2 GPP method for generating anisotropic models

Assume that w(s) is the spatial random effect at a location s and it follows a zero-mean

stationary GP with an isotropic covariance function σ2
wC(·) where C(·) is assumed

to be a member of the Matérn family. The correlation function, C(·), will depend

on two additional parameters: smoothness ν and the rate of decay φ but these are

suppressed from the notation C for convenience. To solve the big-n problem, GPP

approximation replaces w = (w(s1), . . . , w(sn))′ by

w̃ = E [w|w∗]

where (w,w∗) is assumed to follow the multivariate Gaussian distribution with mean

zero and a covariance matrix constructed using the underlying GP. Thus, marginally

w∗ is specified as N(0,Σw∗) where Σw∗ = σ2
wSw∗ where Sw∗ is an m×m correlation

matrix whose entries are formed using the correlation function C(·) of the underlying

GP. Multivariate Gaussian theory yields that

w̃ = C∗S−1
w∗ w∗ (2)

where C∗ is the n × m cross-correlation matrix between w and w∗, i.e. (C∗)ij =

C(|si − s∗j |) for i = 1, . . . , n and j = 1, . . . ,m. The spatial random effects surface, w̃,

is now based on linear functions of the m-dimensional w∗ instead of the n-dimensional

w. This leads to a reduction of computational burden when m is much smaller than

n. The focus of this paper, however, is not on the dimension reduction aspects, but

on studying the implied covariance structure of w̃(s).

For two locations s and s + h, separated by the vector h, the correlation between

w̃(s) and w̃(s + h) is given by:

Cor (w̃(s), w̃(s + h)) ≡ C̃(s, s + h) = c∗(s)TS−1
w∗ c∗(s + h)

where c∗(s) denotes the m × 1 correlation vector between w(s) and w∗, given by

(C(|s− s∗1|), . . . , C(|s− s∗m|))
T . Clearly, the C̃(s,h) depends on both s and h and

not only on the separation vector h or the distance |h|. As a result, the model speci-

fication with w̃(s) as the spatial effects will also imply non-stationary and anisotropic
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correlation structure. Further exploration of the correlation structure is developed

using the traditional semivariogram, denoted by, γ̃(s,h) of the spatial effects w̃(s) as

follows:
2γ̃(s,h) = Var [w̃(s)− w̃(s + h)]

= E [w̃(s)− w̃(s + h)]2

= E
[
c∗(s)TS−1

w∗ w∗ − c∗(s + h)TS−1
w∗ w∗

]2
= E

[
(c∗(s)− c∗(s + h))T S−1

w∗ w∗
]2

= (c∗(s)− c∗(s + h))T S−1
w∗ (c∗(s)− c∗(s + h)) .

Non-stationarity of the w̃(s) is apparent from the dependence of the semivariogram,

γ̃(s,h) on both s and h. Traditional variogram analysis proceeds for stationary

models where γ̃(s,h) is assumed to depend on the separation vector h only. Here it

depends not only on s and h but also implicitly on the chosen knot-locations S∗m and

m, the number of knots. Moreover, the parameters of the correlation function of the

Gaussian process will also influence γ̃(s,h).

Can we treat γ̃(s,h) as a legitimate semivariogram? The answer must be no

since γ̃(s,h) is no longer an even function of h since γ̃(s,h) 6= γ̃(s,−h) due to its

dependence on s and also on the knots S∗m. However, we propose to treat this as a

function of the separation distance |h| and study its properties for varying configura-

tions of s, h and S∗m. In the sequel we also compare this with the isotropic correlation

function of the underlying stationary GP to investigate the nature of anisotropy and

non-stationarity introduced by the GPP specification.

The dependence of γ̃(s,h) on both s and h makes the comparison of the semi-

variograms for different distances or knot specifications difficult. We deal with this

difficulty by first fixing a ‘central’ location, s∗∗, which is assumed to be the centroid

of the study region D and then calculating distance |h| between s∗∗ and s∗∗ + h in

different directions within D. This allows us to study the induced directional corre-

lation structure as data locations move away from the centre s∗∗ to the edges of D.

If instead, the intention is to study correlation structure across diagonal distances

within D, then also we can use the same method but then we have many choices of

the particular point s∗∗ from which to calculate distance.

The number, m, and configuration of the knots plays a major role in dictating the

nature of anisotropy as the examples below will illustrate. A novel proposal here is to

allow the knot-locations to be random. This randomness generates further flexibility

in modelling and is the preferred approach as developed and illustrated in the later

sections. Before going into the specific modelling and computing details, we first note

that the covariance function γ̃(s,h) will be a random quantity if the knot locations

S∗m are also random. The true covariance function will then be the expected values of
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these random covariance function where expectation is taken over the distributions

of m and S∗m denoted respectively by π(m) and π(S∗m). In other words,

2γ̃(s,h) = Eπ(m),π(S∗m)E
[
{w̃(s)− w̃(s + h)}2 |m,S∗m

]
where we continue to use γ̃(s,h) to denote the expected semivariogram. We use

Monte Carlo sampling to evaluate the outer expectation as follows. At the `th Monte

Carlo replication (out of L where L is large) we generate an m` from π(m) and

and a set of m` random knots S∗ml
from π(S∗m`

) and evaluate the inner expectation

E
[
{w̃(s)− w̃(s + h)}2 |ml,S

∗
ml

]
. Finally, we approximate γ̃(s,h) by

1

2L

L∑
`=1

E
[
{w̃(s)− w̃(s + h)}2 |ml,S

∗
ml

]
.

Thus the most general method we propose to generate stochastic processes having

non-stationary and anisotropic correlation structure is based on a random number of

knots which are also selected according to a random point pattern distribution over

the study region of interest D. In addition, we also propose a number of intermediate

strategies ranging from this random allocation of m knots to a fixed space-filling

design to generate flexible models. These methods are illustrated in the next section

with two theoretical examples one each on one and two dimensional sub-spaces.

3 Theoretical examples

Assume that the study region D is the compact region, [−1, 1] and [−1, 1] × [−1, 1]

in one and two dimensional spaces respectively, so that the centroid s∗∗ in both cases

is the origin. We consider the following four scenarios of knot specification. The first

design is space filling with m = 25 knots within D and the second design corresponds

to random placement of the knots according to the complete spatial randomness

(CSR) point pattern within D. The third scenario places all the knots within a

particular sub-region of D which we choose to be the central region [−0.25, 0.25] in

one dimension and [−0.25, 0.25] × [−0.25, 0.25] in two dimension in our illustration.

This third design allows us to see the effect of clustering of the knots in one particular

sub-region which may have been incorrectly chosen by the modeller. The final design

considered here is also a CSR but we take the number of knots m to be selected at

random from the integers 1 to 25. This allows us to investigate any possible gain in

terms of extra flexibility in covariance structure by having a random number of knots.

For the examples in this section, we assume exponential correlation function with φ

fixed at 0.2 for illustrations.
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Figure 1 illustrates the theoretical semivariograms under four different knot de-

signs for the one dimensional example. In each sub-panel we plot two semivariograms

against values of distance from the origin: one in the positive and the other in the

negative direction. As expected the two directional semivariograms collapses into one

for the two fixed knot designs in the first column of the plot. The two semivariograms

vary slightly in the second column due to the random placing of the knots, but es-

sentially the same phenomenon occurs because of the averaging used to evaluate the

expectation over the distribution of the knots. The predominant wave pattern in

the two semivariograms in the first column emerges from the proximity of the lo-

cations, for which distance has been calculated from the origin s∗∗, to the nearest

knot-location. The semivariogram has local maxima when s∗∗ + h coincides with a

knot location s∗ since there is a random variable w(s∗) with its full variance instead

of the conditional expectation, with reduced variation, for locations away from the

knots. Clustering of the knots has the effect of creating anisotropic semivariograms

when the two locations are within the region where the knots are clustered. The

semivariograms smooth out when at least one of the locations are away from the clus-

tering region. Lastly, we note the similarity between the semivariograms in the two

panels in the second column. Here the effect of randomness in the number of knots,

m, has been averaged out by the outer expectation with respect to π(m). Thus, there

is no extra flexibility to be gained by varying the number of knots.

Results from the second example are illustrated in Figure 2 where the semivari-

ogram values are plotted against the radial distance for four different angles within

the first quadrant. Only the first quadrant is considered here since the semivariograms

will be same for the complimentary angles in the other quadrants. Distance is still

calculated from the origin s∗∗, but we consider four different angles for illustration pur-

poses instead of the only two possible directions in the one dimensional example. In

the first panel for the semivariogram at zero degrees, we see occurrence of local max-

ima when the point s∗∗+h coincides with a knot location. The similar phenomenon is

not observed for the semivariogram at other angles due to the non-coincidence of any

of the s∗∗ + h with any knot-location for those angles. Figure 3 shows the positions

of the knot-locations, the angular directions and the circles at fixed radii for which

we illustrate the semivariograms. The effect of clustering of the knots can be seen

in the bottom right panel of Figure 2 by omission of the local maxima beyond any

distance from the last knot-location placed within the smaller sub-region. The semi-

variograms under the two random scatter designs for the knot-locations are similar

and the conclusions here are also similar to the ones for the one dimensional example.

The only difference to be noticed is that the semivariograms for different angles can
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be somewhat different which confirms a form of angular anisotropy induced by these

predictive processes.

The angular anisotropy, induced by the predictive processes, is studied further in

Figure 4. Here each semivariogram in each sub-panel corresponds to a fixed radial

distance r and the points for which the semivariogram values are calculated lie on

the circumference of the circle. Given an angle, say ψ, between 0 and 2π, and a

radius r, we consider the point h = (r cos(ψ), r sin(ψ)) and then calculate the value

of the semivariogram γ(0,h). For a fixed value of r, the semivariogram varies accord-

ing to the angle ψ and shows angular anisotropy since the corresponding isotropic

semivariogram will be a constant if r is fixed even if ψ varies. The semivariogram

is essentially flat when the radius is small since there are not many locations placed

within the circular region centred at the origin. Increasing the radius r implies in-

creasing the number of knot-locations within the circular region and the variability

increases as the effect in variation is greater with a greater number of nearby knot-

points. Here the shape of the semivariograms are not always monotonic and hence

the curves are for neither a geometric nor a zonal anisotropy.

How can this sort of unstructured flexible anisotropy can be guaranteed in the

model? The plots in Figure 4 suggest that the semivariogram will have a local maxima

if at least one of the two locations for which it is calculated coincides with a particular

knot location. This in turn implies that a high level of anisotropy can be guaranteed if

there is a knot-location present in ‘every’ neighbourhood containing any two possible

locations in the study region D. Thus, to guarantee a degree of anisotropy we need to

spread the knot-locations throughout the study region possibly using a space-filling

design. Intuitively, we can now infer that a topological denseness condition on the set

of knot-locations within the study region D will guarantee high level of anisotropy.

Also, to encourage further flexibility we propose the use of random space filling designs

where the data will help us to pin-point the optimal knot-locations.

4 Hierarchical model specification

Our starting point of spatial modelling is an assumed data realisation of the random

variable Z = (Z(s1), . . . , Z(sn))′ at n-locations, s1, . . . , sn, which we assume not to

be preferentially sampled, see e.g. Gelfand et al. (2012). Also assume that there are

p-covariates, x(s) measured along with Z(s) at each data and prediction site s. A

spatial random-effect model with nugget effect, see e.g. Cressie and Wikle (2011) is

given by:

Z(s) = x(s)Tβ + w̃(s) + ε(s)
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where β denotes the unknown regression coefficients and ε(s) ∼ N(0, σ2
ε ) is the nugget

effect measuring micro-scale variation around s and is independent across locations

and also independent of w̃(s).

The full Bayesian hierarchical model is specified is as follows. As in Guhaniyogi

et al. (2011), we allow the m-knots S∗m to be random according to a non-homogeneous

Poisson point process model with an assumed intensity function λ(s) so that

π (S∗m) = (λ(D))−m
m∏
j=1

λ(sj),

where λ(D) =
∫
D
λ(s)ds. There are many possibilities for choosing the intensity

function λ(s). For example, one can assume spatially varying explanatory variables,

q(s) say, to inform the intensity, i.e. log(λ(s)) = q(s)Tγ where γ are unknown

parameters. In a similar vein, Guhaniyogi et al. (2011) propose that

log(λ(s)) =
1

m

m∑
j=1

N2 (s | uj,Σλ) ,

where N2 (s | uj,Σλ) denotes the density, evaluated at s, of the bivariate normal

distribution with unknown mean uj and covariance matrix Σλ. These unknown pa-

rameters are then proposed to be estimated using the full Bayesian model which is

completed by assuming suitable prior distributions for them. However, we can avoid

this extra level of parametric uncertainty by discretizing the study region as follows.

We envision that there are M total number of possible knot locations denoted by

s∗1, . . . , s
∗
M each having an associated probability of selection

π(s∗j) =
p(s∗j)∑M
j=1 p(s

∗
j)

(3)

where p(sj) is thought to provide a covariate like information for selecting the knots.

For example, we may use a population density surface in an environmental monitoring

situation that will guarantee knots being placed at high density areas. We propose

sampling without replacement to avoid duplicated knots.

Conditional onm we assume the GPP specification (2) given by w̃(s) = c∗(s)S−1
w∗ w∗

where w∗ is a realisation of the underlying zero mean Gaussian process with spatial

variance σ2
w and isotropic Matérn correlation function C(·; ν, φ) where ν and φ are

the smoothness and the decay parameter respectively.

The Bayesian model is completed by assuming suitable prior distributions for

all the parameters and the hyper-parameters. As is often used, we shall assume

normal prior distribution with zero mean and large variance, 104 say, for the regression
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parameter β. For the variance components σ2
ε and σ2

w we assume that their inverses

follow the Gamma distribution with parameters a and b, which we take to be 2 and

1 respectively. These values imply a proper prior distribution for each of the two

variance components and experimentation here shows that inference is not sensitive

to these choices.

The logarithm of the full posterior distribution is given by:

log (π (m,S∗m,w (S∗m) ,θ|z)) ∝ −n
2

log(σ2
ε )

− 1

2σ2
ε

∑n
i=1

(
z(si)− x(si)

Tβ − w̃(si)
)2

− m log(λ(D)) +
∑m

j=1 log(λ(sj))

− m
2

log(σ2
w)− 1

2
log |Sw| − 1

2σ2
w

(w∗)TS−1
w w

+ log(π(θ))

where θ = (β, σ2
ε , σ

2
w, ν, φ)T and π(θ) denotes the prior distribution of θ. Implement-

ing the Gibbs sampler with Metropolis-Hastings steps is straightforward, see e.g.

Section 3.2 of Guhaniyogi et al. (2011). Our implementation differs from theirs only

when updating the knot-locations S∗m. Discretization of the space with M possible

grid locations allows us to avoid having to evaluate the integral for λ(D). Conse-

quently, to update S∗m we can simply simulate m proposed knots from the prior (3)

without replacement and then use a Metropolis-Hastings step to accept the proposed

knots. Alternatively, conditional on m, to update S∗m, we can find a new set of m

proposal knots based on the current set by shifting each knot according to a random

walk centred around the corresponding current knot. The proposed set of knots is

then accepted using the appropriate Metropolis-Hastings step. Acceptance rate of

this scheme is dependent on the step size of the random walk and is tuned to have

about 30% (Gelman et al., 1996). The starting configuration of the knots is taken to

be according to a space filling design.

Predicting the response Z(s0) at a new location s0 is achieved by the posterior

predictive distribution

π(z(s0)|z) =

∫
π(z(s0)|m,S∗m,w∗,θ, z)π(m,S∗m,w

∗,θ|z)dmdS∗mdw
∗dθ

where θ denotes the parameter vector (β, σ2
ε , σ

2
w, ν, φ)T . Note that since m is as-

sumed to be discrete, integrating m out in the above must be taken as an appropriate

summation. MCMC samples from the posterior distribution facilitate evaluation of

the above predictive distribution. Here z(s0) is assumed to be independent of z ac-

cording to the top level model given all the parameters and the realisation of the

GP. Now π(z(s0)|m,S∗m,w∗,θ) requires w̃(s0) which is calculated as c∗(s0)S
−1
w∗ w∗,

continuing to use (1). At the jth MCMC iteration with a posterior sample of
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m(j),S
∗(j)
m ,w(S

∗(j)
m ),θ(j) we simulate z(s

(j)
0 ) from the normal distribution with mean

x(s0)
Tβ(j) + w̃(j)(s0) and variance σ

2(j)
ε for j = 1, . . . , J where J is the total number

of MCMC simulation. Finally, we form ergodic averages of z(s
(j)
0 ), or its transformed

values, to estimate features of the posterior predictive distribution.

We perform model validation using the root mean square prediction error (RM-

SPE) and also a cross-validation version of it. We also report the mean absolute

prediction error to confirm robustness of the findings. The cross-validation RMSPE

is calculated by first setting aside and then predicting each of the n observations in

turn and then calculating
√

1
n

∑n
i=1(z(si)− ẑ(si))2 where ẑ(si) is the cross-validation

prediction for the observation z(si). We also use the Bayesian predictive model choice

criterion (PMCC) proposed by Gelfand and Ghosh (1998) using independent predic-

tive replicate Zrep,i at location si of the observed data. The PMCC is sum of two

parts: a goodness of fit G and penalty P where G =
∑n

i=1(z(si) − E(Zrep,i))
2 and

P =
∑n

i=1 Var(Zrep,i).

5 Practical examples

5.1 Scallop data example

We consider the scallop data example studied by Ecker and Gelfand (1999) to illus-

trate the fitting and performance of the proposed anisotropic models. In this data set,

recorded is the number of scallop catches for the year 1990 from 146 different locations

in the North Atlantic near the City of New York. Following Ecker and Gelfand we

also log-transform the data to reduce variability and to encourage Gaussianity. There

is no spatially varying covariate available for this data set. Hence we work with a

constant mean surface taking the value β at any location s within the study region.

The mean parameter β is given the normal prior distribution with mean 0 and vari-

ance 104. We assume the exponential correlation function for the underlying GP and

following Ecker and Gelfand we assume the uniform prior distribution U(0.001, 30) for

the decay parameter φ. This prior distribution allows for an effective range between

0.1 to 3000 kilometres. As mentioned before, 1/σ2
ε and 1/σ2

w are assigned the Gamma

prior distribution with parameters 2 and 1.

As in Ecker and Gelfand we explore the nature of anisotropy present in the scallop

data by the semivariogram contour plots. These plots are based on distance between

locations described by differences in both the coordinates in a two dimensional study

region rather than the scalar distance. The empirical version, see Banerjee et al.

(2015), is described briefly as follows. Assume that we have n observed values of the

12



spatial random variable z(si), i = 1, . . . , n in the study region D which is a subset of

R2. First we calculate the separation distances hx and hy in the x and y coordinates

respectively for each of the nC2 pairs of locations where to hy is taken to be greater

than zero to avoid the impact of the order of the pair of locations. These separation

distances are aggregated into rectangular bins Bij and the empirical semivariogram

value for the (i, j)th bin is calculated by

γ∗ij =
1

2NBij

∑
{(i,j):((k,l):(sk−sl)∈Bij}

(z(sk)− z(sl))
2 ,

where NBij
is the number of sites in bin Bij. The bin width in y axis is taken to be

half of that for the x axis since hy > 0 for all pairs but hx’s are unrestricted. Also the

middle class of the x-axis is centred around zero since the differences are symmetric.

The empirical semivariogram plot (ESC) is the three dimensional contour plot of γ∗ij
against the centre of the bin Bij denoted (xi, yj). A smoothed version of this plot is

called the empirical semivariogram contour plot (Banerjee et al., 2015).

Analogous to the ESC plots we define theoretical semivariogram contour (TSC)

plot as the smoothed contour plot of E
(
γ∗ij
)

against the centre (xi, yj) assuming that

the expectation exists. Isotropic models will show circular contours while geometric

anisotropy is captured by elliptical contours.

Figure 5 illustrates the TSC and ESC plots for the 1990 scallop data set. The

top left panel of this figure, as expected, show the circular contours corresponding

to a stationary Gaussian process. The top right panel is the ESC plot of the data

where the plotted contours do not show any predominant circular or elliptical pattern.

Rather it detects many local anisotropic patterns of different shapes pointing to the

difficulty in modelling with isotropic and stationary models. The TSC plot for the

100-knot GPP model with a fixed space-filling design for the knot selection appears

in the bottom left panel while the same for the random space filling design is depicted

on the bottom right panel. Clearly, the patterns evident in the ESC plot of the data

match much more closely with the patterns present in the TSC plots of the proposed

models than those of an isotropic model, which conquers the quest of Ecker and

Gelfand to search for possible anisotropic models for these data. All these anisotropic

models are compared next using out of sample cross-validation methods.

To facilitate model comparison we split the data set into a training set, with 136

observations, and a validation set with the remaining 10 observations. The validation

observations have been chosen to be at the same 10 sites as in the Ecker and Gelfand

paper so that we can make a fair comparison of out of sample predictive performances

of their model with that of the proposed ones.
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We first select the number of knot locations using the RMSPE and the mean

absolute prediction error (MAPE) based on the 10 validation observations. Table 1

provides the validation error estimates for the knot sizes of 100, 136, 225 and 400 for

the two models where the knots are chosen by a space-filling design and the other

one using a random placement of the knots. We include the model with a knot size

of 136 since there are 136 observations in the fitting data set. As expected, the error

estimates first decrease with the increasing knot-size and then start to increase after

reaching a plateau of minimum values. The model with 225 knots and a random space-

filling design seems to be the best according to the two error criteria. Henceforth, we

proceed with this model, denoted by RSF225.

We now compare the best performing model with the following relevant modelling

suggestions. We compare the performances of simple Kriging, and two models com-

pared by Ecker and Gelfand: one with a general exponential covariance structure but

with anisotropy as defined by their Equation (10) and the other with six parameter

range anisotropic Matérn family as defined by their Equation (13). We denote these

models by EGM I and II respectively. Table 2 provides the validation error estimates.

The model RSF225 performs the best compared to all the other models including the

EGM I model and the default GPP model with 136 knots.

Finally, we examine the predictions made using the anisotropic EGM I and the

RSF225 at the 10 validation sites in Table 3. The values for the EGM II model are

taken from the Ecker and Gelfand paper. The prediction standard deviations are

lower for the proposed RSF225 and also as expected, the individual predictions are

closer to the actual observed values.

5.2 London air pollution data example

As a second data example we consider annual air pollution data from 16 monitor-

ing sites within the City of Greater London. These monitoring sites along with the

boundaries of the 32 local health authorities are shown in Figure 6. We illustrate with

the particulate matter PM10 which are pollution particles less than 10 micrometers

in size. In addition to these monitored data, we also make use of output of a numer-

ical model, Air Quality Unified Model (AQUM) developed by Savage et al. (2013).

AQUM is a large computer simulation model and uses emission inventory and many

meteorological variables such as wind speed and direction to produce air pollution

estimates at 1-kilometre square grids. We use the AQUM outputs in a downscaler

regression model following Sahu et al. (2009) and Berrocal et al. (2010). Throughout,

we model the data on the square root scale that encourages symmetry and normality.

However, all the predictions are performed and compared on the original scale of the
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data for ease of interpretation.

Here we compare the following four methods for modelling the air pollution data.

The first method is the full spatial random effects model with the Matérn covariance

function denoted by GEM16. We compare this base model with the following models:

FCL16 for which 16 knots are clustered within a smaller sub-region, FSF16 where

16 knots are selected according to a space filling design and kept fixed, and finally

we consider the random space filling designs for knot selection with 9, 16 and 25

knots denoted respectively by RSF9, RSF16 and RSF25. Figure 6 shows the smaller

clustering sub-region and also the 16 knot-locations for the FSF16 model. All of the

models are implemented with the Matérn covariance function where the smoothing

parameter ν is kept fixed at 0.2 which encourages a lower level of smoothing than

the exponential model at ν = 0.5. The results reported below, however, remain

unchanged qualitatively if the exponential model is assumed instead. We do not

attempt to estimate ν in this small data example as there are problems in estimating

all the parameters under a general Matérn model, see e.g. Zhang (2004). For the

decay parameter φ we use a Gamma prior distribution with hyper-parameter values

1.06 and 1 having mean 1.06. These values achieved the best predictive performance

for the models. In general, a tuning experimentation is required to choose the hyper-

parameter values.

The first part of Table 4 shows the values of the PMCC (Gelfand and Ghosh,

1998). According to PMCC, we see that the RSF25 model is the best, although it

has a higher G term. The random placing of the knots is able to reduce the predictive

penalty P term substantially but at the cost of increasing the G term. This however

is a not a concern since the out of sample predictions as summarised by the cross-

validation RMSPE and MAPE. The model RSF25 reduces the RMSPE’s for the

GEM16 model by about 45% pointing to a substantial gain. Table 6 examines these

leave one out cross-validation predictions with further details providing the standard

deviations of the predictions and the 95% prediction intervals. Exactly one out of the

16 prediction intervals fails to contain the true observed value. Otherwise, a broad

agreement is seen between the observed and predicted values, but the model based

predictions are generally smoother than the observations, as expected.

The parameter estimates for the two models, GEM16 and RSF25 models are

provided in Table 5. The estimates for the intercept from both the models show large

negative bias of the AQUM output as has been noted by Savage et al. (2013) and

this negative bias is significant under the RSF25 model, which also shows that the

slope is significant. This confirms that the AQUM model output has a significant

positive relationship with the observed PM10 values even under a spatial model. In
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fact, corresponding to the actual observations provided in Table 6, all the AQUM

values (not shown here) were between 11 and 12. Both the models suggest strong

spatial correlation with an effective range between 1 and 2 kilometres. The estimate

of the spatial variance parameter (σ2
w) is larger than that for the nugget effect σ2

ε

under the RSF25 model which confirms that spatial variability is the dominant of the

two variance components which in turn signifies presence of a spatial story. Lastly,

Figure 7 provides an interpolated surface showing the posterior probability of the

knot-locations for the RSF25 model. The plot reveals that locations closer to the

observation sites are slightly more likely to be selected as knots.

6 Discussion

This paper finds that the GPP models, which originated as dimension reduction

methods, are also able to generate flexible non-stationary and anisotropic models for

spatial data. The paper demonstrates that structured selection of the knots leads to

structured form of non-stationary and anisotropic models. The paper investigates the

nature of anisotropy generated by these models and shows that the models generate

different general forms of anisotropy which can accommodate the known types such as

geometric and zonal anisotropy, see e.g. Chiles and Delfiner (2012) and Zimmerman

(1993). These models are also shown to perform well using out of sample cross-

validation predictions for two practical examples.

Novelty of our proposal also lies in recommendation of the models even for a

smaller number of data points where dimension reduction is not required. Theoreti-

cal investigation and empirical evidence from two practical examples confirm that a

random space filling design for knot selection for the predictive processes is the best

which has been also observed by Guhaniyogi et al. (2011), but for large data sets

in the context of dimension reduction. Future work will explore these methods in

spatio-temporal data modelling settings with the added complexity of dynamic knot-

designs at different time points. Work here will extend the space-time GPP models

implemented in Bakar and Sahu (2015). Extension is also required for multivariate

spatial data modelling.
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100 136 225 400

RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE

SF 0.85 0.74 0.87 0.74 0.88 0.74 0.80 0.66

RSF 0.78 0.67 0.77 0.66 0.73 0.62 0.79 0.68

Table 1: Validation error estimates for the two models: space filling (SF) and random

space filling (RSF) with different number of knots.

Kriging EGM I EGM II RSF225

RMSPE MAPE RMSPE MAPE RMSPE MAPE RMSPE MAPE

1.08 0.63 0.99 0.84 0.89 0.77 0.73 0.62

Table 2: Validation error estimates for different models for the 1990 scallop data set.
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Figure 1: Semivariogram plots under different knot configurations. Solid line is used

for the semivariogram in the positive direction from the origin and the dotted line is

for the semivariogram in the negative direction.
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Figure 2: Semivariogram plots against radial distance for the two dimensional example

under different knot configurations.
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Figure 3: A plot of the two dimensional study region with the“+” sign denoting 25

knot-locations. Also shown are four angular directions at 0, 25, 45 and 60 degrees

and three concentric circles with radii values 0.3, 0.5 and 1.0.
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Figure 4: Semivariogram plots against angle for the two dimensional example under

different knot configurations.
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Figure 5: Semivariogram contour plots for the 1990 scallop data set. (a) Theoretical

contours for a stationary and isotropic model. (b) ESC plot of the observed data.

(c) TSC plot for a fixed space filling knot design with 100 knots. (d) TSC plot for a

random space filling knot-design with 100 knots.
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Figure 6: A map of greater London showing the monitoring sites as numbered texts,

and the corners of the 1 kilometre square grid cells as red plus signs. Large triangles

show the knot locations for the space filling design with 16 knots. The rectangular

box in the middle represent the area where all the knots were assumed to be under

the clustering design for knot selection.

0.005

0.010

0.015
1

2

3

4

567

89
10

11

12

13

14

15

16

Figure 7: An interpolated surface showing the posterior probability of the knot-

locations. The observation sites are superimposed.

23



EGM I RSF225

Site Z(s) Mean SD Mean SD

1 1.946 2.181 1.331 2.00 1.141

2 1.792 2.745 1.372 2.558 1.283

3 4.007 3.666 1.369 3.455 1.286

4 4.331 4.318 1.325 4.370 1.302

5 5.501 4.463 1.330 4.754 1.235

6 5.645 4.456 1.309 4.358 1.295

7 5.620 4.131 1.369 4.780 1.112

8 4.394 3.718 1.374 3.525 1.252

9 3.332 2.756 1.240 3.10 1.263

10 0 1.216 1.304 0.797 1.312

Table 3: The predicted values along with their standard deviations using the two

models.

Model GEM16 FCL16 FSF16 RSF9 RSF16 RSF25

G 0.91 3.39 3.12 2.71 2.30 1.54

P 9.43 13.04 6.84 5.54 6.08 6.62

G+P 10.33 16.43 9.96 8.25 8.38 8.16

RMSPE 8.87 11.76 11.66 5.28 5.29 4.80

MAPE 6.74 10.24 8.35 4.39 4.42 3.93

Table 4: PMCC values and summaries of leave one out cross-validation values for

models fitted to annual PM10 data from 16 monitoring sites in London for the year

2011. GEM16 stands for the full dimensional spatial random effects model. FCL16

is the model based on 16 clustered knots and FSF16 is the model with 16 fixed knots

chosen according to a space filling design. RSF9, RSF16 and RSF25 denotes models

with random space filling design with 9, 16 and 25 knots respectively.
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Parameter GEM16 RSF25

β0 –14.35 (–33.21, 14.51) –20.03 (–29.93, –10.52)

β1 5.72 (-5.76, 9.62) 7.39 (4.60, 10.31)

σ2
w 0.35 (0.13, 0.75) 0.73 (0.51, 1.32)

σ2
ε 0.35 (0.15, 0.82) 0.28 (0.20, 0.33)

φ 2.46 (0.06, 4.59) 1.51 (0.49, 2.36)

Table 5: Parameter estimates (posterior means) for all the parameters under different

models fitted to annual PM10, data from 16 monitoring sites in London for the year

2011. GEM16 stands for the full dimensional spatial random effects model. RSF25

denotes random space filling with 25 knots.

site observed predicted sd 95% prediction limits

1 20.9 25.8 6.06 (15.89, 39.69)

2 21.0 26.1 6.09 (15.51, 37.18)

3 39.0 26.2 5.49 (17.36, 35.50)

4 22.6 26.3 6.62 (18.73, 42.53)

5 23.2 27.6 7.13 (15.93, 39.80)

6 17.8 24.5 5.96 (14.89, 35.37)

7 19.4 24.2 5.48 (13.81, 34.99)

8 31.5 27.9 6.65 (16.92, 41.25)

9 22.4 24.6 5.54 (14.10, 35.56)

10 31.4 28.7 6.21 (16.98, 41.81)

11 26.2 25.4 5.37 (15.04, 38.25)

12 26.8 28.0 6.01 (16.70, 40.64)

13 23.8 20.9 5.52 (11.17, 32.27)

14 26.3 24.3 5.46 (14.52, 35.75)

15 32.1 30.3 6.35 (15.94, 38.29)

16 27.7 24.4 6.54 (14.13, 36.58)

Table 6: Observed PM10 and leave one out cross-validation predictions at all the

16 data sites using the RSF25 model. Also shown are standard deviations and 95%

prediction limits.
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