
 
 

FEEG6002 Coursework 2014/15: PDE methods 
Due: Wednesday 7th January 2015 (12 midday). 50% weighting. 
Aims: In this coursework you will investigate methods for solving PDEs. The preferred 
language for submission is Python. Solution may be done in other languages (e.g. C) 
Objectives: To develop solvers using the course notes & references and further investigate them 
when solving a partial differential equation. 
Requirements and hand-in: You should email two files (together as attachments to a single 
email) to feeg6002@soton.ac.uk with the email subject “Coursework” 
Files to email in:  (1) The filename for the code (not an executable) must be “multi.py” 

(2) The write-up in a single pdf “multi.pdf” 
The single “.py” file should set up and solve the PDE as per each question and when executed 
and leave the answer to questions (1 - 4) as a single line of output each to the screen 
appropriately labelled. You should clearly label the functions which you write in each question 
in the code. The “.pdf” file should give the answer to question (5). 
[Special note for submission in other languages please add a 3rd file to your submission called 
e.g. “multi.c”, and ALSO submit an empty “multi.py” file, and let me know by email.] 

Questions 
Consider solving the PDE (which we refer to as PDE (1) throughout the questions) 

 ρ=∇ u2 , PDE (1) 

where u = u(x , y), and ρ(0.5, 0.5) = 2 (and zero elsewhere) where  0 ≤ x, y, ≤ 1, and u = 0 on the 
boundaries. 
In each of the questions (1-4) marks will be awarded for the code, implementation and the write-
up in question (5) demonstrating systematic testing and explanation. The course notes and 
references [1, 2] may be helpful. For each of questions (1-4) the code, when executed, should 
produce a single output to the screen which checks whether the solution obeys 22 =∇ u  at (0.5, 
0.5). 
1) Develop an enhanced and debugged implementation of the code in section 4 of the notes to 

solve the above partial differential equation PDE (1). The code, when executed, should 
produce a single output which checks whether the solution obeys 22 =∇ u  at (0.5, 0.5). 

(20 marks) 
2) Instead of using a built-in solver method, implement and use a successive over-relaxation 

solver within your code to solve PDE (1) – see section 2 of the notes for the formula, and 
include in your write-up consideration of the parameter ω. Remember to give a single output 
for the check. 

(20 marks) 
3) In the notes we considered the first central difference approximation for the second 

derivative of f(x). It is possible to derive higher order derivatives to various orders of 
accuracy. Replace the simple 4 point stencil with the following stencil in your code for 
question (1) and solve PDE (1). Remember to give a single output for the check. 
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4) In computational methods, it is often necessary to investigate and implement alternative 
methods either to use, or as an independent check for a code that you are working on. For 
this question, you need to investigate and find-out about an enhancement to the Gauss-Seidel 
method often called the “red-black” formulation. It is also sometimes used as a 
demonstration for parallel programming in high performance computing. Develop a Gauss-
Seidel “red-black” solver and use it to solve PDE (1). You may find refs [1,2] helpful. 
Remember to give a single output for the check. 

(15 marks) 
5) Give a short write-up for the codes you have written in questions 1-4 (no more than 6 sides) 

demonstrating systematic testing and explaining and justifying what you have done, showing 
e.g. convergence of the methods and other relevant information. You should also include 
correctly and clearly labelled axis plots for the results from the questions. Where appropriate, 
compare the methods. Comment on how you might speed-up your code further. Include in 
your write-up a brief comparison with the multigrid method explained in reference [2]: you 
do NOT need to implement code for this. 

(35 marks) 
Prof Simon Cox, sjc@soton.ac.uk. Building 176/5003 Phone Ext 23116. 
 
References 
 
You may find these references useful: 
 
[1]  From http://www-users.cs.umn.edu/~saad/books.html (link check Nov 14) 

Saad, Y. “Iterative Methods for Sparse Linear Systems” (2003) 
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf 

 (direct link checked Nov 14) 
[2]  Press, WH, Teukolsky, SA, Vetterling, WT, and Flannery BP (1992, 1996, 2007,  and later) 

“Numerical Recipes in C” , “Numerical Recipes in Fortran”, “Numerical Recipes 3rd Edition”. These 
books contain both code and algorithms. 
See www.nr.com for more details: you can also read these books (2nd edition) online for free (you 
may need to install an Adobe plugin). Note that the 2nd edition code in these references is old and 
uses “1 based” indexing for the arrays- this was updated in the 3rd edition code. 
http://www.nrbook.com/a/bookcpdf.php 
http://www.nrbook.com/a/bookcpdf/c19-0.pdf 
http://www.nrbook.com/a/bookcpdf/c19-5.pdf  
http://www.nrbook.com/a/bookcpdf/c19-6.pdf 

 

 2 

http://www-users.cs.umn.edu/%7Esaad/books.html
http://www-users.cs.umn.edu/%7Esaad/IterMethBook_2ndEd.pdf
http://www.nr.com/
http://www.nrbook.com/a/bookcpdf.php
http://www.nrbook.com/a/bookcpdf/c19-0.pdf
http://www.nrbook.com/a/bookcpdf/c19-5.pdf
http://www.nrbook.com/a/bookcpdf/c19-6.pdf

