next up previous contents
Next: Simulation Up: Computational models Previous: The Stoner-Wohlfarth model   Contents


The Landau-Lifshitz-Gilbert equation

With the rapidly-increasing processing capability of modern computers, there has been a surge of interest in the field of computational micromagnetics, and indeed computer-based simulation in general. An important differential equation was derived by Landau and Lifshitz (1935).

The Landau-Lifshitz-Gilbert equation, briefly introduced in section 2.5, is a fundamental part of time-dependent computational micromagnetics. Different arrangements of this equation are used in calculations and simulations.The OOMMF simulation software (Donahue and Porter, 1999) uses the Landau and Lifshitz form:


$\displaystyle {{\mathrm{d}\ensuremath{\mathbf{M}}(\ensuremath{\mathbf{r}},{t})} \over{\mathrm{d}t}}$ $\displaystyle =$ $\displaystyle -\vert\bar\gamma\vert\ensuremath{\mathbf{M}}(\ensuremath{\mathbf{...
...uremath{\mathbf{H_{eff}}}(\ensuremath{\mathbf{M}}(\ensuremath{\mathbf{r}},{t}))$  
    $\displaystyle - {\vert\bar\gamma\vert\alpha \over M_s}\ensuremath{\mathbf{M}}(\...
...remath{\mathbf{H_{eff}}}(\ensuremath{\mathbf{M}}(\ensuremath{\mathbf{r}},{t})))$ (2.36)

$ \ensuremath{\mathbf{M}}$Magnetisation $ \ensuremath{\mathbf{H}}_{\mathrm{eff}}$The effective magnetic field, a function of the total energy $ \mathcal{E}$ $ \alpha$The Landau and Lifshitz phenomenological damping parameter which is more commonly written as
$\displaystyle {{\mathrm{d}\ensuremath{\mathbf{M}}}\over{\mathrm{d}t}} = {-\vert...
...thbf{M}} \times (\ensuremath{\mathbf{M}} \times \ensuremath{\mathbf{H_{eff}}})}$     (2.37)

where $ \ensuremath{\mathbf{M}}$ is the magnetisation (i.e. the magnetic moment per unit volume), $ \ensuremath{\mathbf{H_{eff}}}$ is the effective magnetic field, $ \alpha$ is the Landau and Lifshitz phenomenological damping parameter (where $ \bar\alpha$ from equation 2.34 is equivalent to $ \vert\bar\gamma\vert\alpha$) and $ \bar\gamma$ is the Landau and Lifshitz electron gyromagnetic ratio (the ratio of the magnetic dipole moment to the mechanical angular momentum of some system). If one assumes
$\displaystyle \gamma = (1 + \alpha^2)\bar \gamma$     (2.38)

then this can be shown to be mathematically equivalent to the Gilbert form (Gilbert, 1955)
$\displaystyle {{\mathrm{d}\ensuremath{\mathbf{M}}}\over{\mathrm{d}t}} = {-\vert...
...f{M}} \times {\mathrm{d}\ensuremath{\mathbf{M}} \over {\mathrm{d}t}} \right )}}$     (2.39)


next up previous contents
Next: Simulation Up: Computational models Previous: The Stoner-Wohlfarth model   Contents
Richard Boardman 2006-11-28