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Some Information Theory

● Why?
– Understand Kullback-Leibler divergence

– Useful in many other contexts in data mining

● Agenda:
– Information

– Entropy/Coding

– Mutual information

– Using information theory for feature selection

– Summary

– Problems



  

 Information Theory

● To really understand this, we need to know some basic 
stuff from information theory

● … So: What is information?

● Imagine a single piece on a chess board; you don't 
know where it is. How much information is there in 
knowing its location?



  

 Information Theory

● To really understand this, we need to know some basic 
stuff from information theory

● … So: What is information?

● Imagine a single piece on a chess board; you don't 
know where it is. How much information is there in 
knowing its location?

Can approach this as a sequence of YES/NO questions.

Want to ask the minimal number of such questions.

Divide remaining area of chess board into halves, and
ask in which half the piece is. Iterate this until we find the
piece.

We might identify the number of such questions with information.

Given that we have 64 squares, the number of such
questions we have to ask is log

2
64=6



  

Information Theory

● We can abstract this:
– Assume there is some probability space 
– And a pdf P() that assigns a likelihood to each 

member in 
– Say one element has been sampled from P() 

– How much information is there in knowing what 
element it was (retrospectively)? → Information

● A rare event will be difficult to figure out and thus will carry 
much information

– Alternatively: when sampling an event from P, how 
surprised are we to find certain events? → 
Uncertainty/Surprise

● Rare events will be unexpected and cause much surprise



  

Information Theory  (2)

● What if the probability of the piece being at some 
location is different from other locations?

● E.g. a random source emits one signal A,B,C, or D 
according to

● What is the optimal set of questions to figure out what 
symbol it was?

● How many questions do we need for A,B,C?

● What is the information content in A,B,C? 

{Pr (x=A)=1 /2, Pr(x=B=1/4), Pr (x=C)=1 /8, Pr (x=D)=1/8 }



  

Information Theory Detour (2)
● What if the probability of the piece being at some location is 

different from other locations?

● E.g. a random source emits one signal A,B,C, or D according 
to

● What is the optimal set of yes/no questions to figure out what 
symbol it was?

– Is it A? If not, is it B? If not, is it C(D)?

● How many questions do we need for A,B,C?

– A: 1=log22, B: 2=log24, C and D: 3=log28 

● What is the information content in A,B,C?

–  1 bit, 2bits, 3 bits ...

{Pr (x=A)=1 /2, Pr(x=B=1/4), Pr (x=C)=1 /8, Pr (x=D)=1/8 }



  

Entropy

● If we have a probability distribution p(x) x from X we 
can assign information values to each x

● The information of observing x then is log2 1/p(x)

(like in the chess board example each square had 
chance 1/64; this gives the same value in this case)

● Shannon (1948): 

● i.e. entropy of a distribution is the expectation of 
information of the distribution or the average 
surprise when sampling from the distribution

H ( p)=−∑x
p(x) log2 p(x) [bits]



  

Example (1)

● Let's say we toss an unfair coin, heads appears 
with probability p.

● Entropy? 



  

Example (1)

● Let's say we toss an unfair coin, heads appears 
with probability p.

● Entropy? H (P)=−p ln p−(1−p) ln(1−p)

Distribution has hardly any information
(since we know what to expect, it's either
almost always heads or tails)

Distribution has maximal information,
we do not know what to expect.

Entropy is thus a measure of uncertainty.



  

Entropy (2)

● Suppose we have a data stream that emits 
symbols x with according to a probability 
distribution p(x)

● We are looking for an optimal (min. number of 
symbols) encoding of messages from that 
stream

● Roughly: the entropy of p determines the length 
of such a code through  answers to optimal 
YES/NO questions, symbol length ~ -log 
– Frequent symbols get short codes, infrequent 

symbols get long codes



  

Example

● Back to the previous example:

● What codes would we choose for a binary 
alphabet?

Can do this by coding our answers to the yes/no

questions. 
– A → 1

– B → 01

– C → 001, D → 000

{Pr (x=A)=1 /2, Pr(x=B=1/4), Pr (x=C)=1 /8,Pr (x=D)=1/8 }



  

Entropy Example

● Can use this to analyse text from newspapers
● E.g.: 

– Somebody extracted all words from NYT articles for in 
2004. Let's say we want to build a code based on  
these words and use it to encode articles, say for one 
issue in 2004 and one issue in 2005.

– How can we extract information about these articles?
● Crude approach: “bag of words” idea – count frequencies of 

all words and store them in some vector; can then interpret 
this as a probability vector

● This ignores a lot of fine detail (e.g. correlations between 
words etc.)



  

Entropy Example

● OK, say we have one such vector 

– P(x) for the issue from 2004 

– Q(x) for the issue for 2005

● This allows us to evaluate the information content of both 
issues, e.g.

● Can assign information content to words (-log 1/F(x)); 
most frequent words do not carry content, so we expect 
these non content words in equal proportions in 2004 and 
2005 

∑x
P (x) log

1
P (x)

=12.94 bits ∑x
Q (x) log

1
Q (x)

=12.77bits



  

“non content words”



  

Popularity Comparisons ...



  



  

Example, cont.

● Let's quantify the difference:
– Q(x) … prob. of x in 2004, P(x) in 2005

– Averaging over the distribution of words of the 2005  
paper the expected difference in code length is

● If we use the code from 2004 to encode 2005 paper

● If we code using the frequencies from 2005:

log 1/Q (x)−log 1/P ( x)=log
P ( x)
Q (x)

∑x
P (x) log

P (x)
Q(x)

∑x
P (x) log

1
Q (x)

=13.29bits

∑x
P (x) log

1
P (x)

=12.94 bits



  

 K-L Divergence

● Given two probability distributions f(x) and g(x) 
for a random variable x, the K-L divergence (or 
relative entropy) is:

● Comments:
– Compares the entropy of two distributions over the 

same random variable

– Heuristically: number of additional bits encoding a 
random variable with distribution f(x) using g(x)

D( f‖g )=∑x∈X
f (x) log

f (x)
g(x)



  

 Cross Entropies (1)

● Suppose we want to measure the information 
content of some prob. distribution p(x) but 
measure it based on a code optimal for some 
other “artificial” q(x)

● → Cross entropy

● → 

D( p‖q )=∑x
p(x) log

p(x)
q(x)

H ( p ,q)=−∑x
p(x) log2 q(x)

H ( p)=−∑x
p(x) log2 p(x)

H ( p ,q)=H ( p)+D ( p‖q )



  

 Cross Entropies (2)

● Have seen before that we can see regression 
methods as trying to minimize K-L divergences

● When minimizing K-L against a fixed reference 
distribution p, minimizing K-L is equivalent to 
minimizing cross entropies (→ “Principle of 
minimum cross entropies”)

● Can easily see how this links to estimation 
problems

 



  

 Cross Entropies + Estimation

● Suppose we have a training set in which the 
empirical frequency of occurrences of outcomes 
is N pi and the estimated probability of outcome i 
is qi

● Likelihood function then is

 

● Maximizing likelihood functions often equivalent 
to minimizing cross entropies

L(qi ; pi)∝∏i
qi

Npi

1/N log L(qi ; pi)∼∑i
pi log qi=H ( p ,q)



  

Conditional Entropy

● Let's say we have two random variables C and X 
which are not independent

● So if we observe one feature in X this will change 
our knowledge about C, i.e. if we observe x our 
uncertainty about C changes by the conditional 
entropy

● The difference between the entropy of H[C] and the 
conditional entropy H[C|X] is realized information 

H (C|X=x )=−∑c
Pr (C|X=x ) log2 Pr (C|X=x )

I [C ; X=x ]=H (C)−H (C|X=x )

(i.e. by how much did uncertainty change due to observing x)



  

Realized Information

● Is not necessarily positive!
– i.e. suppose C is “it rains today” and the probability 

that it rains is 1/7. Then H[C]=0.59 bits (check it!)

– Suppose X=cloudy and the probability that it rains 
when it is cloudy is ½. Then H[C|X=cloudy]=1

– Realized information from the observation of clouds 
is -0.41 bits, i.e. uncertainty has increased.

I [C ; X=x ]=H (C)−H (C|X=x )



  

Mutual Information

● Mutual information is the expected information a 
feature gives us about a class

● Some remarks:
– Mutual information is always positive

– Is only zero if X and C are statistically independent

– Is symmetric in X and C

I [C ;X ]=H (C )−∑x
Pr (X=x)H (C|X=x )



  

Example: How much do words tell 
us about topics? 

● Let's say we generate bag of words vectors and 
read all articles to classify them into two 
categories, articles about art and articles about 
music.

● Investigate the word “paint”. In how many 
articles in the arts or music categories is the 
word “paint” present

Class c

Indicator X

“paint” “not paint”

art

music

12 45

45

(i.e. we have 57 articles about art and 45 about music, 12 art stories contain paint, no
Music stories contain paint, etc. ...)



  

Words, Topics, Information

● Entropy of C? H[C]=0.99
● H[C|X=”paint”]=0

– i.e. if we find paint we can be certain that the story is about art

● H[C|X=”not paint”]=1.0
– i.e. if “paint” is absent we are as uncertain as we are about a fair coin flip (i.e. 

a bit more uncertain as we were before checking for paint with H[C]=0.99)

● I[C;X]=H[C]-Pr(X=1)H[C|X=1]-Pr(X=0)H[C|X=0]=0.99-12/102*0-
90/102*1=0.11
– The expected reduction in uncertainty when checking for the indicator X is 

fairly small (0.11 bits)

Class c

Indicator X

“paint” “not paint”

art

music

12 45

45



  

Finding Informative Features

● This leads to an idea for an information theoretic 
procedure to find important words:
– Count how often each class c=1,…,K appears

– For each word, build the Kx2 table of classes by word indicators

– Compute the mutual information in each table

– Return the m most informative words, i.e. those with the largest 
mutual information

● This might work as a first attempt, but ignores a number 
of important factors, e.g.:
– That combinations of features might be useful

– That some features might be redundant given others

– To remedy these problems we need to look at interactions



  

Joint and Conditional Entropy

● Joint entropy:

● Remarks:
– This is sub-additive: 

– Mutual information: 

– Conditional entropy:

● Can also condition mutual information

– i.e. we ask how much information does Y contain 
about C if we “control” for X 

H [X ,Y ]=−∑x , y
Pr (X=x ,Y= y) log2 Pr(X=x ,Y = y)

H [X ,Y ]≤H [X ]+H [Y ]

I [X ;Y ]=H [X ]+H [Y ]−H [X ,Y ]

H [Y |X ]=H [X ,Y ]−H [X ]

I [C ;Y |X ]=H [C|X ]−H [C|Y , X ]



  

Interaction

● Conditional mutual information I[C;Y|X] is positive
– But might be smaller/larger/equal to I [C;Y]

– If I[C;Y|X] =I[C;Y]: C and Y are conditionally 
independent given X; otherwise there is an 
interaction between X and Y (regarding their 
information about C)

– I[C;Y|X] <I[C;Y]: Some of the information in Y about C 
is redundant given X

– Use this to define interaction information

I(C;Y;X)=I[C;Y]  - I[C;Y|X]



  

Finding Informative Features (2)

● Can use this to improve the algorithm from earlier on, 
i.e. have p features Xi and want to use it to predict C
– Find I[C;Xi]. Select feature with most mutual information 

with C, say X1.

– Given k selected features, calculate I[C;Xi|X1,…,Xk] for all 
non selected variables I

– Select Xk+1 as the feature with most conditional mutual 
information and iterate.

● This is a greedy algorithm, so it does not necessarily 
come up with the best combination of features

● We need to impose a stopping condition, e.g. a 
threshold for I[C;Xi|X1,…,Xk] or a maximum number 
of features  



  



  

Venn Diagram for Information 
Content of 2 Random Variables

Overall: H(X,Y)

H(X) H(Y)

H(X|Y) H(Y|X)I(X;Y)

I(X;Y)=H(Y)-H(Y|X)=H(X)-H(X|Y) or
H(X,Y)<=H(X)+H(Y) etc.



  

Venn Diagram for Information 
Content of 3 Random Variables

H(x)

H(z)

H(y)

Overall: H(X,Y,Z)



  

H(Y)

H(Z)

H(X)

I(X;Y|Z)=?

This representation is useful to remember relationships between information theoretic measures
for correlated (=”overlapping”) variables.



  

H(Y)

H(Z)

H(X)

I(X;Y|Z)=H(X|Z)-H(X|Y,Z)

I(X;Y|Z)



  

Summary

● Important to remember:
– How can we quantify information?

– Entropy/Mutual information … and ideally a bit more 
information theory

– Be able to apply these concepts in basic settings (try the 
problems in the next slides)

– Idea of feature selection using information theory.

● Further reading:
– An easily accesible  primer on information theory: 

http://alum.mit.edu/www/toms/papers/primer/primer.pdf

– A more detailed and technical paper:

 http://arxiv.org/pdf/cs/0308002v3.pdf

http://alum.mit.edu/www/toms/papers/primer/primer.pdf
http://arxiv.org/pdf/cs/0308002v3.pdf


  

Problem (1)

● Assume that we have some random source that 
emits one of M symbols with equal likelihood. 
What is the entropy?

● Assume a source is restricted to emitting one of 
 M symbols at a time. What is the distribution of 
probabilities over these symbols that maximises 
 the average uncertainty of the receiver?



  

Problem (2)

● Polynesian languages are famous for their 
small alphabets. Assume a language with the 
following letters and relative frequencies:
– p (1/8), t (¼), k (1/8), a(1/4) i (1/8), u (1/8)

– What is the per-character entropy for this 
language?

– Design an (optimal, i.e. short) code to transmit a 
letter.

 



  

Problem (3)

● Find an example for three random variables 
X,Y,Z with 
– Negative interaction I(X;Y|Z)<I(X;Y) and one for

– Positive interaction I(X;Y|Z)>I(X;Y)
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