COMP6237 – Pagerank

Markus Brede

Brede.Markus@gmail.com

Lecture slides available here:

http://users.ecs.soton.ac.uk/mb8/stats/datamining.html

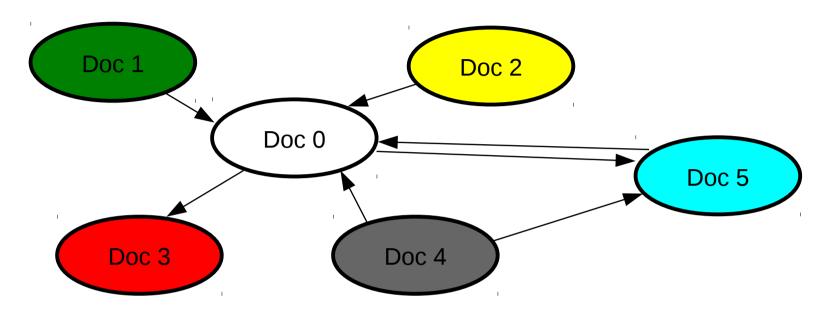
History

- Was developed by Larry Page (hence the name) and Sergey Brin
- First part of a research project about a new type of search engine. Started 1995, first prototype 1998.
- Shortly after Page and Brin founded Google ...
- Work has been influenced by earlier work on citation analysis by Eugene Garfield in the 1950s
- At the same time as Page and Brin Kleinberg published a similar idea for web search, the HITS (Hyperlink-induced topic search) algorithm

Outline

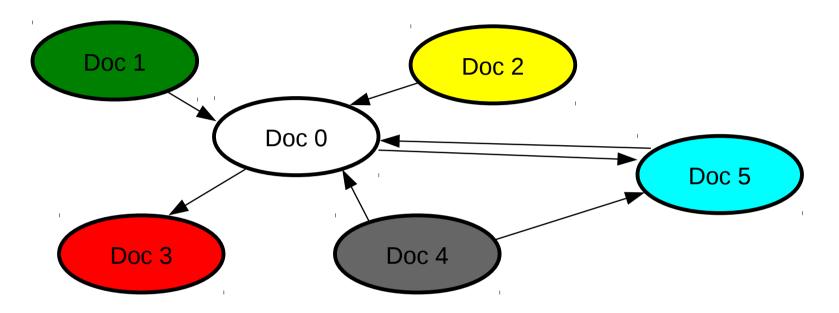
- Why?
 - Could use bag of words representation, cosine similarity and inverse document frequency weighting for search – works pretty well
 - There is often more information about documents
 - Web pages contain links to other pages. These reflect judgments about relevance – page rank aims to exploit this!
- Agenda:
 - Ideas to rank importance of webpages "centrality measures"
 - Degree centrality, eigenvector centrality, Katz centrality, ... pagerank
 - Page rank and random walks
 - Calculating page rank
 - Kleinberg's HITS algorithm
 - Summary

Main Idea



- Documents (web pages) refer to each other in some way
- Links are endorsements of relevance (i.e. if a links to b the creator of a thinks that b is relevant to the topic of a)
- Surely, pages with many incoming links are more relevant than such with less incoming links
- Want to exploit this link structure in a systematic way to **rank pages according to importance**, but when is a page/node important?!
- This is also useful for a lot of other data mining in social networks

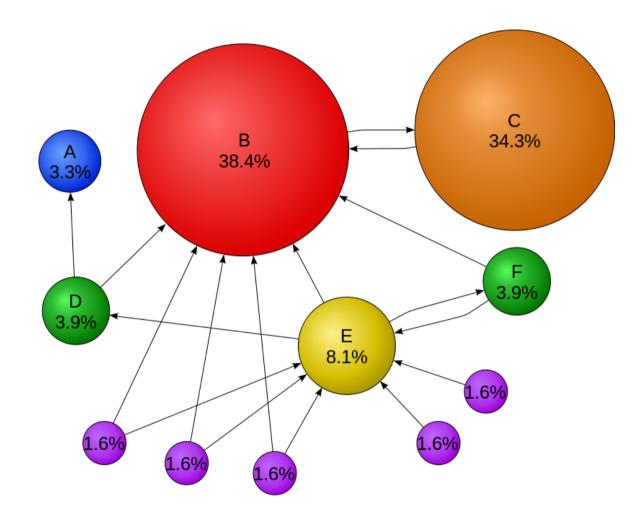
Reminder



- Suppose we have such a network, how to represent it on a computer?
 - Can label nodes by numbers 1 ... n
 - Network is given by an adjacency matrix A, entries of which are 1 if there is a connection between the respective nodes and zero otherwise

Degree Centrality

- Simplest idea:
 - Importance of a page = number of incoming links ("in-degree")
 - This is actually used quite often to evaluate scientific papers
 - Papers link to each other when they cite each other
 - In-degree = number of citations of a paper
- Advantage: very easy to calculate, e.g. $d_i = \sum_j a_{ji}$
- Problems:
 - A paper might be very important because it is cited by one very influential study (rather than by thousands of largely ignored low level papers)
 - Overlooks the global picture (a paper might be a very influential link between different disciplines, but not cited very much)



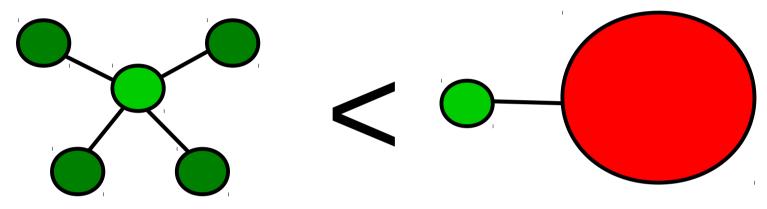
Link structure of web pages and a measure of their importance, page rank, discussed Later. Having many incoming links does not always mean a page is important.

Other Centrality Measures

- Quite a number of measures has been developed in network theory to overcome some of these problems of degree centrality, e.g.:
 - Closeness centrality
 - centrality of a node related to average graph distance to all other nodes on network
 - Betweenness centrality
 - Centrality of a node related to how many paths pass through the node if messages are passed along shortest paths between randomly selected source/target nodes
- Some of these are computationally quite expensive, so not straightforward to use for very large networks. What is used in web search nowadays builds on eigenvector centrality ...

Eigenvector Centrality

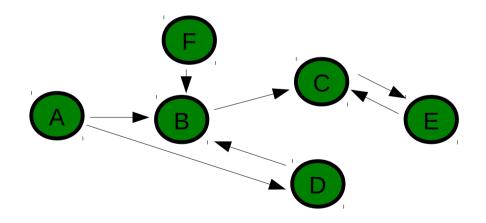
 Score "centrality points" for being connected to "important" nodes (Bonacich 1987)



- Imagine experiment:
 - Assign all nodes importance 1.
 - Then update $x'_i = \sum_j a_{ij} x_j \longrightarrow x(t) = A^t x(0)$
 - Say $x(0) = \sum_{i} c_{i} v_{i}$ \longrightarrow $x(t) = \sum_{i} c_{i} k_{i}^{t} v_{i} = k_{1}^{t} \sum_{i} c_{i} \left(\frac{k_{i}}{k_{1}}\right)^{t} v_{i} \rightarrow c_{1} k_{1}^{t} v_{1}$ Eigenvectors of {a}
 - EV centrality = eigenvector for largest eigenvalue of adjacency matrix

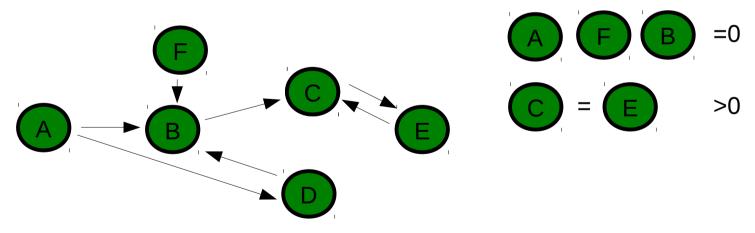
Eigenvector Centrality

- Problems:
 - Normalisation?
 - Directed networks, left or **right** eigenvectors?
 - What about this?



Eigenvector Centrality

- Problems:
 - Normalisation? We only care about rankings.
 - Directed networks, left or **right** eigenvectors?
 - What about this?



 According to this definition only nodes in strong components or their out-components have centrality > 0!

Katz Centrality

- Katz (1953); every node gets some amount of centrality for "free" $x=\alpha Ax+\beta 1$
- Re-arranging: $x=(I-\alpha A)^{-1}1$
 - Where alpha balances relative importance of eigenvector component and "free" component
 - α should be between 0 and 1/kmax
 - In practice: better solve by iteration than by inverting the adjacency matrix
- Potential problem:
 - All nodes pointed to by a high centrality node receive high centrality! (i.e. if I am one of a million guys a big guy points to I become big myself ...)

Pagerank

• To overcome the problem of Katz centrality we could consider:

$$x_i = \alpha \sum_j a_{ij} x_j / k_j^{out} + \beta$$

- In matrix form: $x = \alpha A D^{-1} x + \beta 1$ with $D_{ii} = max(k_i^{out}, 1)$
- Conventionally $\beta = 1 \alpha$: $x = (I \alpha A D^{-1})^{-1} (1 \alpha) = D(D \alpha A)^{-1} (1 \alpha)$
- In principle this is what google uses with α =0.85
- Could give nodes different intrinsic importance $\boldsymbol{\beta}$

 $\longrightarrow x = D(D - \alpha A)^{-1}\beta$

Pagerank and Random Walkers

- Imagine a random walker on a network
 - From each node one outgoing link is chosen at random to continue the walk
 - If there is no outgoing link the walk continues at a randomly chosen node
 - Let N(i,t) be the number of times page i is visited until time t
 - Then: $x_i = \lim_{t \to \infty} \frac{N(i,t)}{t}$
 - Can see this by writing down the transition matrix for the above Markov process, i.e. P_{ij} = 1/k(i)_{out} for j linked to by I or 1/n if there is no outgoing link
 - Consider a vector v of probabilities of staying at node i, then: $v_{t+1} = Pv_t$ (\rightarrow see previous slide!)

How to use Page Rank in Web Search?

- Simplest form:
 - Crawl links between pages to construct adjacency matrix
 - Calculate page rank once
 - Given a query Q, find all pages that contain all words in Q.
 - Return the page with the highest page rank among those (or the k pages with largest pagerank)
- Problems with this ...
 - Pages are scored mainly on the basis of link structure.
 This can be exploited quite easily ...

"Link Farms"

- Collections of artificially created nonsensical pages that link to each other and acquire importance this way.
- Can than be used to boost importance of desired other pages.
- Not so easy to distinguish those from "real pages" like wiki pages
- Proprietary fine tuning by google ...

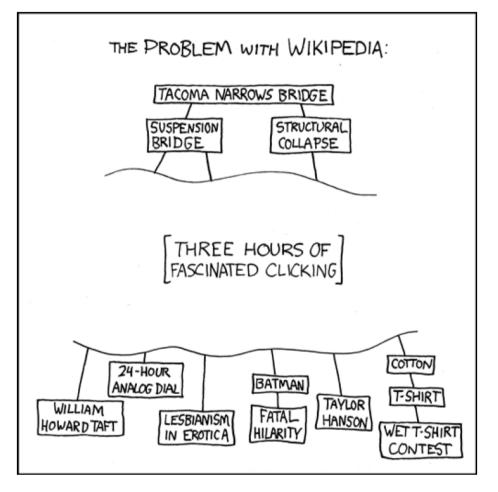
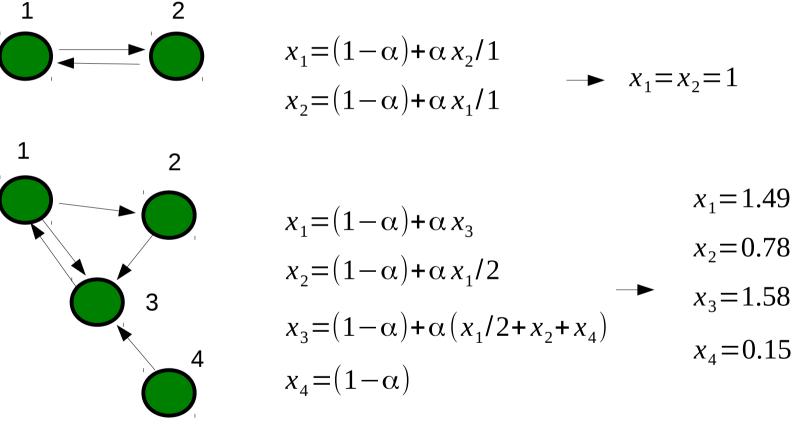


Figure 1: How do we distinguish this, automatically, from a link farm? (By Randall Munroe, <code>http://xkcd.com/214/.</code>)

Examples

What is the page rank of all nodes in the following situations?



• More examples, see, e.g.:

http://www.cs.princeton.edu/~chazelle/courses/BIB/pagerank.htm

Calculating Page Rank in Practice

- Equation for page rank defines a linear system of equations (which can be millions of equations for practical applications!)
 - Could solve those exactly, e.g. Gauss algorithm or similar
 - O(n³), i.e. maybe impractical
 - Could simulate a random walker on the network
 - Takes forever ...
 - Best way is to solve system iteratively, i.e. guess a solution (say x=1) and then iterate

$$x_i = \alpha \sum_j a_{ij} x_j / k_j^{out} + (1 - \alpha)$$

until convergence.

Calculating Page Rank in Practice

- Equation for page rank defines a linear system of equations (which can be millions of equations for practical applications!)
 - Could solve those exactly, e.g. Gauss algorithm or similar
 - O(n³), i.e. maybe impractical
 - Could simulate a random walker on the network
 - Takes forever ...
 - Best way is to solve system iteratively, i.e. guess a solution (say x=1) and then iterate

$$x_i = \alpha \sum_j a_{ij} x_j / k_j^{out} + (1 - \alpha)$$

until convergence.

Problems with Pagerank

- Good:
 - Robust to spam
 - Global measure
- Problems:
 - Favours older pages
 - Link farms
 - Buying links from high pagerank websites?

Kleinberg's HITS Algorithm

- Based on the idea that there are two kinds of useful web pages for broad topic search
 - Authoritative sources of information authorities (e.g. a medical research institute)
 - Hand-compiled lists of authoritative sources hubs (e.g. an association promoting health care)
- Basic properties:
 - Good hubs point to many good authorities
 - Good authorities are pointed to by many hubs
 - (But authorities will not necessarily be linked!)
- Idea:
 - Give each node two scores, a hub score (h) and an authority score (a)

HITS (2)

- Start with a set S of web pages (composed of most relevant pages for the search query, usually around 200 and those linked to by it), initially set a(v)=h(v)=1 for all members v of this set
- Consider the following iteration:

 $a_{t+1}(v) = \sum_{y \text{ points to } v} h_t(y)$ (authority update)

A page gets good authority if pointed to by many hubs.

 $h_{t+1}(v) = \sum_{v \text{ points to } y} a_t(y)$ (hub update)

A page is a good hub if pointing to many good authorities.

Normalise by respective square roots of sums of squares.

Problems of HITS

- Calculated on the fly, query time evaluation is slow
- Easily spammed it is easy to create out-links on ones page
- Has problems with advertisements

Summary

- Idea: exploit link structure between documents as indications of relevance
- How to measure centrality
 - Eigenvector, Katz, Pagerank
- The HITS algorithm
- Original paper on HITS:

http://www.cs.cornell.edu/home/kleinber/auth.pdf

• Original paper on pagerank:

http://www-db.stanford.edu/~backrub/google.html