
  

Difference Equations

● Definition and Motivation
● Fibonacci numbers
● Linear maps

● Examples
● Some theory how to solve them ...
● Classification

● Non-linear maps
● Cobwebs
● Equilibrium + stability analysis
● The logistic map and some cool stuff



  

Definition

● A difference equation is an equation that 
defines a sequence recursively: each term of 
the sequence is defined as a function of 
previous terms of the sequence

● Some people also call this an “iterated map” or a 
“recursion equation”

X t= f (X t−1 , X t−2 ,... , X 0)



  

Why Bother?

● In a way these are the simplest form of an equation 
that models an evolution in time through a 
“microscopic” principle that just states what 
happens at every instant of time
● e.g. for                      the state of the system at time t is 

given as a function of the state of the system at time t-1. 
What we want to know is X(t) for any t.

● We will see in the next lecture how this leads on to 
differential equations ...

● Other reasons:
● Recursion is very common in computer science, so often 

if we want to estimate time complexity we find them
● Often found in analysis of numerical methods

X t= f (X t−1)



  

Example: Fibonacci Numbers

● Model: a rabbit population. Rabbits never die. 
Every pair mates and then produces a new 
pair.

● More realistic: Logistic map

X t=X t−1+X t−2 1,1,2,3,5,8,13,21,35,...

X t+1=rX t(1−X t)



  

Example: Divide and Conquer

● Many algorithms break down a problem into 
smaller problems -> if we analyse running time 
we encounter recursion relations

● E.g.: searching an ordered list of n numbers
● Naively: search from left to right ... worst case T=n
● Binary search: 

– Always check element in the middle of the interval, then 
go left or right (discarding other half of interval)

– Number of comparisons given by

c1=1
cn=1+cn /2

cn∝ log 2(n)



  

Classification

● A difference equation is called linear if each 
term in the sequence is defined as a linear 
function of the preceding terms
●                             is linear
●                             is non-linear

● Order of the equation = number of preceding 
sequence members needed in definition
●                             is second order
●                             Is first order

X t=X t−1+X t− 2

X t+1=rX t(1−X t)

X t=X t−1+X t− 2

X t+1=rX t(1−X t)



  

Classification (2)

● A linear difference equation of order p has the 
form

● The equation is said to have constant 
coefficients if the     are independent of t

● The equation is homogeneous if
● For a p-th order equation, we need p values for 

initial conditions, i.e. for                       two values

      and     need to be given
● Solving the equation means finding    for general 

t and given initial conditions, e.g. for t=365

X t=a t−1 X t−1+a t−2 X t−2+ ...+a t− p X t−p+a0

a i

a0=0

X t=X t−1+X t−2

X 0 X 1

X t



  

Solving Linear Homogeneous 
Difference Equations

● Linear difference equations with constant 
coefficients -> there are methods to solve them

● E.g. let us consider

● Alternatively: could have “guessed” an ansatz
● Inserting into 
● And A from 

X t+1=a X t

=a (aX t−1)=a(a(aX t−2))=a (a (a ...(aX 0) ...))

=a t+1 X0

X t=A λ t

X t+1=a X t Aλ t+1=A a λt →λ=a

X 0=a0 A→ A=X0 X t=a t X0



  

Behaviour of the Solution



  

What about Inhomogeneities?

● E.g.:
● Trick: transform variables

(c to be determined suitably)

● We already know the solution for Y, i.e.
● Re-substitution:

● This trick works for all linear diff. eq. with const. coeff.

X t+1=a X t +b

Y t=X t+c

Y t+1−c=a(Y t−c )+b

X t=Y t−c

Y t+1=aY t−ac+b+c⏟
=0

c=
b+1
a

Y t=at Y 0

X t+c=a t(X0+c)

X t=a t X0+(at−1)( b+1
a )



  

What about higher Order Equations?

● For example consider

● Try ansatz
● Inserting into 

● Only λ which fulfill the characteristic equation 
are suitable for our ansatz

● Solutions:

X t=X t−1+X t−2 , X 0=0, X1=1

X t=A λ t

X t=X t−1+X t−2

Aλ t=A λ t−1+A λt−2

0=λ2−λ−1 “characteristic equation”

λ1 /2=
1±√5

2

(*)



  

Higher Order (cont.)

● Hence:

are solutions of (*)
● Since our equations are linear, any linear 

combination of solutions is a solution, so 
solutions can have the form:

with coefficients to be determined from the 
initial conditions.

X t=c1 λ1
t X t=c2 λ2

t
and

X t=c1 λ1
t +c2λ2

t



  

Higher Order (cont.)

● Let's calculate the c's. From initial conditions 
we have:

● i.e.
● And:

0=X0=c1+c2

1=X1=c1 λ1+c2 λ2=0
c1=−c2

1=c1(λ1−λ2)

c1=1 /√5 ,c2=−1/√5

0=X0=c1+c2

X t=
1

√5 ( 1+√5
2 )

t

⏟
λ1>1

−
1

√5 ( 1−√5
2 )

t

⏟
−1<λ2<0

∼
1

√5 ( 1+√5
2 )

t

for large t.



  

Fibonacci (cont.)

● Why is this useful? Without explicitly iterating 
we can calculate that we have 7.692E64 rabbits 
after 1 year (t=365)

● As an aside ...
● There also is a connection to the Golden ratio, i.e. 

the ratio between sequence members converges to 
it

X t∼
1

√5 ( 1+√5
2 )

t

X t+1/X t →( 1+√5
2 )



  

Another Example

● Consider:

● Characteristic equation:

● Roots:

● Solution ... as before

X t+2−2X t+1+2 X t=0

λ2−2λ+2=0

λ1 /2=1±√1−2=1±i Roots are complex!

X t=c1 λ1
t
+c 2λ2

t

X t=c1(1+i)t
+c2(1−i)t



  

Example (cont.)

● Use of the complex domain can just be a help for 
calculations, real initial conditions -> real solution

● Suppose:

● To see why this is real, remember

X 0=0, X1=1

X 0=0: c1+c2=0
X 1=1: c1(1+i)+c2(1−i)=1

c1=−i /2,c2=i /2

X t=−i /2 (1+i)t +i /2(1−i)t

a+bi=r exp(i ϕ)

X t=1/2e−π/2 i
(√2e iπ/4

)
t
+1 /2e iπ /4

(√2e−iπ/4
)
t



  

Example (cont.)

● ... and after a bit of algebra:

... which is oscillating and exponentially growing 
and real.

● Generally, the systems behaviour can be 
classified by the roots of the characteristic 
equation, roughly:
● Complex -> sin/cos oscillations
● |lambda| < 1 -> convergence to a fixed point
● |lambda| > 1 -> exponential divergence

X t=√2t sin (π /4 t)



  



  

Systems?

● What about a system like:

... can be written as a single second order equation 
and then solved as before. To see this, e.g., add up 
a

22
*(1) and -a

12
*(2) and solve for Y

t+1
:

● This gives Y
t
 which can be inserted into (1)

X t+1=a11 X t+a12Y t

Y t+1=a21 X t+a22Y t

(1)
(2)

Y t+1=−1 /a12 ((−a11 a22+a12 a21)X t+a22 X t+1 )

X t+1−(a11+a22)X t+(a11 a22−a12 a21)X t−1=0



  

A Note on Multiple Roots

● What about if roots of the characteristic 
equation have multiplicity != 1?
●  e.g.:

has the root lambda=2 with multiplicity 3.

● In this case we multiply lambda^t with 
increasing powers of t up to multiplicity -1
● e.g. for the above example:

(λ−2)3
=0

X t=c12 t
+c2 t 2t

+c3 t
22t



  

Recap: Linear Maps

● To solve a (system of) linear maps of any order, 
we just:
● Determine the roots of the characteristic equation; 

they already determine the systems long-term 
dynamics if any |lambda|>1 the system “explodes” 
to infinity

● The coefficients c required for exact solutions can 
be determined from initial conditions

● In detail this might be a lot of algebra, but in 
principle nothing too complicated.

X t=c1 λ1
t
+c2λ2

t
+...+cnλn

t



  

Cobwebs

A graphical way to illustrate the dynamics of 1d maps

X n+1

X n



  

Non-Linear Difference Equations

● Getting analytical results becomes much more 
difficult, if not impossible ...

● We can often understand something about 
equilibrium points, i.e. stationary points at 
which the system does not change any more 
and

● E.g., for the logistic map

one has:

i.e.:

X t
stat

=X t−1
stat

X t+1=rX t(1−X t)X t+1=rX t(1−X t)

X stat=rX stat (1−X stat)

X stat=0 or X stat=1



  

Stability Analysis

● What is often important when analysing the 
convergence of numerical algorithms is what 
happens close to an equilibrium point
● Say ... numerically we have not quite got it right. 

Will small differences blow up/die out over time?

● This is what we do in stability analysis:
● We perturb the system a tiny bit
● We try to figure out the fate of these perturbations

● Mathematically:
● This often means linearizing around the equilibrium 

point and then using the theory of linear maps from 
previous slides



  

Fixed Points

● Fixed point:
● Stability?

● Consider nearby orbit                    Is it attracted or 
repelled from x*?

● Neglect O(η2) terms -> linearized map with 
eigenvalue/multiplier λ=f'(xstat)

● |f'(xstat)|<1 -> linearly stable, =1 marginal, >1 unstable
● f'(xstat)=0 -> superstable

xstat
= f ( xstat

)

xn= x*+ηn

xn+1=xstat+ηn+1=f (xstat+ηn)=f ( xstat)+ f ' ( xstat) ηn+O(ηn
2)

ηn+1=f ' (xstat)ηn+O(ηn
2)

ηn=λ
n
η0

ηn∝η0
(2n

)



  

Examples

● Let's have a look at
xn+ 1=sin xn xn+1=cos xn

xstat=0 xstat=0.739 ...

λ= f ' (0)=cos (0)=1 λ=−sin(0.739...) ,0>λ>−1



  

However ...

● In general, for non-linear iterated maps, even in 
1d, far more exciting behaviour than seen for 
linear systems so far is possible ...

● To get some idea of this, let's have a look at the 
logistic map

● Easy to build a computer simulation to 
implement the following yourself



  

Logistic Map

● Remember the logistic map

● x
n
 ... population in nth generation

●  r ... growth rate, consider 0<=r<=4

xn+ 1=r xn(1−xn)



  

Let's just simulate for increasing r ...

Period
Doubling

Period
Doubling

fixed point 2-cycle

4-cycle

Further Period
Doublings to 8, 16, 32, ... cycles



  

Period Doubling

● r
n
 ... value of r where 2n-cycle is born

● r
1
=3 2-cycle

● r
2
=3.449... 4-cycle

● r
3
=3.54409... 8-cycle

● r
4
=3.5644... 16-cycle

● r
inf

=3.569946... infinite cycle

● Distances between successive bifurcations become 
smaller and smaller ... geometric convergence

● What about r>r
inf

?



  

Chaos ...

● For example r=3.9 – aperiodic irregular dynamics similar
 to what we have seen for continuous systems

● However ... not all r>r
inf

 have chaotic behaviour!



  

Bifurcation Diagram

● For r>r
inf

 diagram shows mixture of order and chaos,

 periodic windows separate chaotic regions
● Blow-up of parts appear similar to larger diagram ...
● This is still an exciting problem of study for complexity theory

stable 3-cycle



  

Summary

● What is important to remember:
● What is a map? 
● What is a linear map? How can we solve them?
● Cobwebs
● How to do equilibrium analysis for non-linear maps
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