
!TABS - A new software framework for document image processing,
I analysis, and understanding.

C. Cracknell, A. C. Downton, and L. Du
Department of Electronic Systems Engineering

University of Essex
Wivenhoe Park, Colchester CO4 3SQ, U.K.

e-mail: craccbQessex.ac.uk

Abstract

overview of a new software
has been designed to sup-

of image processing and
and components. Compared to

software frameworks, TABS
a number of novel features which make it particu-
suitable for use in applications where hypotheses

than single “hard” results are generated by sys-
and symbolic data are manipulated.

mage analysis systems typically consist of a num-
processing and image analysis compon-
connected together in a sequential man-

A framework dictates exactly how components
be connected, how data are to be transferred

components, and how components and sys-

isting frameworks have a number of deficiencies
it their suitability for use in certain domains
ple, support for components which generate
list of result hypotheses is usually particu-

been designed to attempt to
some of these deficiencies.

xisting frameworks and their limit-

developed for research in image pro-
[JK94] is now being used in a variety

’T BS is an acronym for “The Almost a Blackboard Sys-
tem s stem”. This rather obfuscated label was chosen due to
the a thor’s initial desire to create a framework based on a
black F oard architecture [JacQ4].

of scientific applications. Khoros is a rather graph-
ical framework, and includes a visual programming
environment (VPE) called Cantata. Khoros contains
a standard set of over 200 components for image pro-
cessing, each of which exists as an independent execut-
able program capable of being invoked either from the
command line, or from within Cantata.

In several respects, Khoros is quite a good environ-
ment for developing image analysis components. It
has serious weaknesses however, some of which are
given in the list below.

1.

2.

3.

4.

5.

6.

7.

Khoros components must be written in old style
(Kernighan and Ritchie) C.

An interface description (written in a special
“UIS” language) must be provided for each com-
ponent.

It is far more difficult to implement and visualise
potent control structures within Cantata than it
would be using a language (for example, C).

The default Khoros data file format (VIFF) is
overly complicated for simple 2-D image pro-
cessing applications, and, since many standard
Khoros components use VIFF exclusively, con-
versions to and from a more application-suitable
format may be required with in a system.

Component development takes place outside of
the Cantata visual programming environment.

Creating components which employ a graphical
user interface is very difficult and involves know-
ledge of the xv library.

Khoros is slow, memory intensive, disk space
intensive, and buggy.

0-8 186-7\898-4/97 $10.00 0 1997 IEEE 1001

http://craccbQessex.ac.uk

2.2 KBVision.

KBVision is a commercial product primarily
designed for image understanding problems. Like
Khoros, KBVision provides a visual programming
environment and comes with a set of standard com-
ponents.

Also supported by KBVision are a set of interme-
diate symbolic representations (ISRs). These allow
manipulation of non-pixel data, for example, poly-
gons, etc.). KBVision is currently used by a few
researchers concerned with computer vision and image
understanding problems. More details on KBVision
can be found on Amerinex’s world-wide web pages:

http://www.aai.com:SO/AAI/KBV/KBV.html

Never having used KBVision, the author is unable
to fairly criticise this product. However, from a brief
study of the available information it appears that
although KBVision’s provision of ISRs make it slight13
more favourable than Khoros for image understandin6
problems, it contains a VPE very similar to Cantata.

The use of a VPE is advantageous for demon-
strating image processing techniques in the classroom.
However, within the context of research, where m a -
imisation of control, speed, and accuracy are import-
ant factors, the VPE can be much less favourable than,
say, a good command language.

2.3 The IUE.

The image understanding envir?
onment (IUE) [CJC95] has been designed to support
research in image understanding. Its primary purposq
is to facilitate the exchange of research results between
research groups, industry, and the government. The
IUE i s currently a fairly large C++ class library con-
sisting of classes to aid the storage and manipulation
of image data. The current version (1.1) is available
freely, however, as the development of the IUE contin-
ues and the product becomes more stable it is expected
that Amerinex AI will make a small charge for either
the entire IUE, or, for individual parts of the IUE.

The IUE is still under development, and at this
stage is not mature enough to be considered stable.
Since the currently available IUE classes appear to
be fairly plentiful and potent, actually learning the
interface to the class library could take a considerable
amount of time and effort. Also, it appears that rapid
prototyping of systems is inhibited by the necessary
re-compilation and current lack of supporting devel-
opment tools.

In contrast to KBVision and Khoros, although the
IUE is functionally very powerful, there is no construc-
tion framework provided to ease the process of creat-
ing new systems or re-using existing sub-systems.

3
3.1

1.

2.

3.

4.

5 .

6.

7.

Overview of TABS.
General features of the framework.

TABS does not have a restrictive visual program-
ming environment, instead, application systems
are implemented using a Tcl Tk [Ous94] script.
This supports very rapid prototyping by maxim-
ising the ability to re-use sub-systems, and avoids
costly recompilation.

TABS provides a layer of abstraction between the
way data are stored and the way they are manip-
ulated, hence allowing transparent access to data-
bases.

TABS is small, simple, and compiles very quickly
(a total re-build of all components and the frame-
work takes under two minutes on a Sun SLC
20MHz Sparc station with 8Mb of RAM).

In common with other frameworks, TABS can
save workspaces so that the current system and
all of its associated data can be held on disk and
restored at a later time.

TABS can perform simple performance monitor-
ing of components and systems. This feature is
suspiciously lacking from other frameworks.

TABS is capable of fully supporting components
and systems which manipulate various types of
intermediate symbolic representation.

The interface to TABS is totally separate to
its engine, allowing one-to-many or many-to-one
engine access via a network.

3.2 Features which support component

1. Components may be written in any combination

development and use.

of three languages: C, C++ and Tcl Tk.

2. Components written in alternative languages can
be supported through the use of a small wrapper
written in one of the native languages.

3. Components which generate or make use of either
multiple hypotheses, ordered sets of data, or hier-
archically structured data, can be easily utilised.

1002

http://www.aai.com:SO/AAI/KBV/KBV.html

TABS makes use of a simple set of public domain
image formats (namely pbm, pgm and ppm),
rather than more general image formats, thus
reducing the effort required for component devel-
opment.

Features which support system devel-
opment and use.

Systems can employ both top-down and bottom-
up control methodologies, feedback, recursion and
iteration [Nag821 by making use of the condi-
tional, looping and control structures available in
Tcl.

Systems do not have to halt when an error occurs
(they can take another course of action).

Systems can be made smart (not requiring any
user interaction), or dumb (requiring user interaca
tion), as desired. Also, systems and components
which require a GUI can be easily integrated.

t h e TABS framework is implemented by two
exeputable files. The first file (the core / engine)
is riesponsible for providing the functionality of the

ework, whilst the second file (the interface) cre-
an interface which may be used to communicate

witb the framework. The executable core is produced
by dhe compilation of several C++ and Tcl Tk source
filed. The executable interface is just a single Tcl

cript. The interface (labelled “TABS command
is shown in figure 5.

Using two distinct executable files in this manner
has everal advantages. Firstly, the (potentially CPU

the nterface being run locally. Secondly, changes to
the nterface do not require changes to the frame-
word, and vice versa, thus minimising any required re-

inte h sive) framework can be run remotely, with only

t
during interface or framework enhancement.
extending TABS to allow support for multiple
the same framework, or extending it to allow
user to access multiple frameworks becomes

the framework’s core consists of a set
blackboard, and a Tcl Tk interpreter

whicq allows external access to the blackboard and
the ckmponents. The blackboard is responsible for
m a n a p g all of the data which are associated with a
curre tly running system. Figure 1 shows the main
lines of communication present within the framework. !l

,
I

3.4 The blackboard’s architecture.

The blackboard which is present within the core of
the TABS framework is of particular importance to
the framework’s operation and flexibility and is solely
responsible for data management. Components and
systems send requests to the blackboard and receive
corresponding responses from the blackboard.

One of the main philosophies behind the TABS
framework is that any data which are created during
the normal operation of a system should remain avail-
able (for possible future use or inspection) unless expli-
citly removed. The reasoning behind this idea is that
TABS has been developed primarily as an environ-
ment suitable for performing rapid configuration and
testing of systems; whilst testing a new system, it is
obviously useful if all of the data which have been gen-
er‘ated are made available for inspection.

The blackboard fulfills two major requirements of
the TABS framework. Firstly, it allows any struc-
ture associated with data to be represented and stored.
Secondly, it allows easy integration of the framework
with any desired database. These two capabilities are
discussed in more detail below.

3.4.1 In-built support for structured data.

In an attempt to make the data presently available on
the blackboard more comprehensible to system design-
ers, a tagging system is enforced. Each datum is given
a mandatory tag (a simple name) by which it may then
be referred. When data are passed between system
components, or sub-systems, only their tags, or parts
of their tags, need to be communicated. Each tag is
responsible not only for identifying a datum uniquely
from all others, but also for recording the datum’s pos-
ition in any hierarchical or ordered structure which is
associated with the available data.

Hierarchical relationships are maintained by cre-
ating tags which look rather like widget names in
Tk, or filenames specified from the root (/) directory
in UNIX. For example, “Form. 1 .Field.l.Character. 1”
would refer to the first hand-printed character in the
first field of the first scanned form image.

3.4.2 Data management.

If an external database is used, then it is the black-
board’s responsibility to communicate with that data-
base whilst ensuring that data integrity is maintained.

1003

At any given moment during a system’s operation,
the blackboard will hold a dynamic list of all the tags
which exist, and for each tag also hold some additional
information (such as the age of the tag, the type of
data it references, etc.).

The blackboard implements a file paradigm to allow
components easy but controlled access to the actual
data content associated with a tag. Like files in UNIX,
a tag may be opened (in one of a number of pos-
sible modes), have its content analysed, or changed,
and must then be closed. Each component is respons.
ible for opening any tags it requires, performing any
required functionality involving the data referenced
by those tags, and then closing the tags again before
returning control to the framework.

3.5 Component and system development

Developing components for TABS is a two-stage
process. Firstly, the component source is written in
a supported language. Secondly, the component is
registered with the Tcl Tk interpreter which is imple
mented within the core. Once these two processes are
complete and the core has been re-built, the frame-
work is ready for use (new component included).

Whilst developing new components requires the
framework to be re-built, developing new systems
using an existing framework requires no rebuilding
whatsoever. Systems are written as Tcl Tk scripts (in
this context called control scripts) which are passed
to the core’s interpreter via the framework’s interface.
Control scripts can call upon any of the standard Tcl
Tk commands, as well as several other non-standard
commands which have been registered with the core’s
interpreter. Non-standard commands are used for two
purposes, firstly to allow control scripts to interrogate
the blackboard, and secondly, to allow components to
be called.

Developing sub-systems for use within TABS is
particularly straightforward. Sub-systems are simply
implemented as Tcl procedures within the control
script. Once sub-systems have been created, not only
can they be re-used within the same system, but they
can also be re-used by different systems. An example
control script which contains three sub-systems is
shown in figure 3.

4 Implementation.
Whilst the framework’s interface has been imple-

mented entirely in Tcl Tk, the core has been imple-
mented mostly in C++, but with some Tcl Tk embed-

in TABS.

ded where required. The TABS framework incorporat-
ing the set of components currently used by the author
consists of just over eighteen thousand lines of source
code. Integrating Tcl Tk with C++ has been made
possible thanks to the excellent ET (embedded 2%)
package by Hipp [Hip96].

Having been developed by a single student rather
than by a team of researchers, TABS must cur-
rently be considered to be immature and unsuppor-
ted. Unlike other frameworks which typically contain
over 200 fairly potent components, TABS only con-
tains just over 30 at present, all of which are rather
simplistic, performing rudimentary image handling
tasks such as image resizing, binary connected com-
ponents analysis, etc.

It has been stated that TABS makes the integ-
ration of external databases particularly straightfor-
ward; this will hopefully soon be demonstrated by
integrating TABS with an object-oriented database
suhh as Object-Store.

TABS currently runs happily under both X and
Windows NT 4.0.

5 An example use of TABS.
Some figures are provided below to illustrate how

TABS may be used to prototype a simple form pro-
cessing system. The form image shown in figure 2
is placed on the blackboard and then processed by
sourcing the control script shown in figure 3. Figure 4
shows the dialog generated by a simple TABS compon-
ent (called “fnDisplayBlackboard”) which is capable
of displaying various items of information about each
datum currently on the blackboard. Finally, figure 5
shows TABS displaying some images and some classi-
fication results.

6 Conclusions.

A new software framework for image analysis, pro-
cessing and understanding has been overviewed in this
paper. It has been proposed that the new frame-
work (TABS) is especially suited to applications where
rapid system prototyping is required, where maximum
use is required of control methodologies, and where
probabilistic components are employed. The frame-
work achieves considerable flexibility through a novel
approach to the management of the data and com-
ponents within the framework. TABS has been crit-
ically compared to several other frameworks and has
been successfully used to implement a number of hand-
printed form processing systems.

1004

Fidure 1: Communication within the TABS
woik.

Address

street

Postoode

izl

frame-

Figure 5: TABS displaying some results from a form
processing system.

It is hoped that in the near future TABS will be
keleased into the public domain.

Figure 2: A form image to be processed.

Figure 3: Complete TABS control script which imple-
mentq a form processing system.

Figure 4: The dialog generated by a simple TABS
blackboard browser component.

7 References.

References
[CJC95] Charles Kohl, J. Jeffrey Hunter, and Cyn-

[Hip961

[Jac94]

[JK94]

thia L. Loiselle. Towards a unified iu environ-
ment: Coordination of existing iu tools with
the iue. In Proceedings of the IEEE Interna-
tional conference on computer vision, pages
2-7. IEEE, jun 1995.

D. Richard Hipp. Embedded tk.
http://www.vnet.net/users/drh/ET.html,
1996.

Peter Jackson. Introduction to expert sys-
tems, Addison- Wesley publishing company,
1994.

John R. Rasure and Konstantinos Kon-
stantinides. The khoros software develop-
ment environment for image and signal pro-
cessing. In IEEE fiansactions on image pro-
cessing, volume 3, pages 243-252. IEEE, may
1994.

[Nag821 Makoto Nagao. Control strategies in pattern
analysis. In Proceedings of the IEEE Inter-
national conference on pattern recognition,
volume 2, pages 996-1006. IEEE, 1982.

Tcl and the 2% toolkit.
Addison- Wesley publishing company, 1994.

[Ous94] John Ousterhout.

1005

http://www.vnet.net/users/drh/ET.html

