
IEEE TRANSACTIONS ON EDUCATION, VOL. 43, NO. 4, NOVEMBER 2000 455

A Software System for Laboratory Experiments in
Image Processing

John A. Robinson, Member, IEEE

Abstract—Laboratory experiments for image processing
courses are usually software implementations of processing
algorithms, but students of image processing come from diverse
backgrounds with widely differing software experience. To
avoid learning overhead, the software system should be easy to
learn and use, even for those with no exposure to mathematical
programming languages or object-oriented programming. The
class library for image processing (CLIP) supports users with
knowledge of C, by providing three C++ types with small public
interfaces, including natural and efficient operator overloading.
CLIP programs are compact and fast. Experience in using the
system in undergraduate and graduate teaching indicates that
it supports subject matter learning with little distraction from
language/system learning.

Index Terms—C++ class libraries, image processing education,
image processing software.

I. INTRODUCTION

I MAGE processing and analysis figure in many electrical en-
gineering and computer science curricula, usually in elective

courses at the senior level. Increasingly they are also of interest
to students in mechanical engineering (for their application to
robotics), geography (remote sensing) and physiology (medical
imaging and ophthalmology). Assuming such students fulfill
the mathematical prerequisites for an image processing course
(in multivariate analysis, signal processing, etc.), they will enter
it with diverse software backgrounds. Some students will have
taken only one programming course at the university level. Lab-
oratory experiments are an important pedagogical tool, as well
as preparation for practice in the field, but in image processing
they almost always involve software. The problem is to provide
these experiments within an environment that requires as little
“overhead” learning as possible, even for inexperienced pro-
grammers. At the same time, the environment should provide
a route toward high-quality program production, supporting re-
search and design projects (which may be components of an ad-
vanced course).

The requirements for such a software system can be captured
in four goals:

1) It should beeasy to learnhow to use the system, starting
from the users’ prior knowledge.

2) Simple image processing tasks should be implemented
in small programs. Difficult tasks should be enabled by
compact combination of simple subtasks.

Manuscript received May 29, 1997; revised August 18, 2000.
The author was with the Faculty of Engineering and Applied Science, Memo-

rial University of Newfoundland, St. John’s, NF, , A1B 3X5, Canada. He is now
with the Department of Electronics, University of York, Heslington, York Y010
5DD, U.K. (e-mail: jar11@ohm.york.ac.uk).

Publisher Item Identifier S 0018-9359(00)10081-0.

3) Programs should be asfast as possible.
4) Real-time image outputshould be possible and simple.

That is, it should be possible to see the progress of an
image processing program as it progressively generates
its output. Similarly,real-time image input should be
possible and simple, so that users can apply their pro-
grams to live video.

The first two goals address the diversity of prior programming
experience and the need to gain facility with the environment
with little overhead; the third and fourth reflect the need to use
the system on real projects. The fourth goal also provides for
immediate feedback during the run of an algorithm, speeding
up design and experimentation.

The solution proposed in this paper is a class library for image
processing (CLIP). This software system meets the four goals
and has been used in teaching image processing for several
years. Section II of the paper reviews prior technologies that
meet some of the goals, and examines students’ familiarity with
those technologies. Section III summarizes the major features of
CLIP as seen by the user, giving examples of programs. Some
implementation details are discussed in Section IV. Section V
reports experience in using the system in undergraduate and
graduate image processing courses, and Section VI concludes
with comments on future work.

II. BACKGROUND

CLIP’s development was inspired by four strands of prior art.
Each of these partially fulfills the goals stated in Section I.

1) The C Programming Language [1].:C is the image pro-
cessing field’s most widely used programming language. It is
small and efficient, and well-matched to the procedural nature
of image manipulation. Many libraries of C functions have been
written to support image processing. More significant pedagog-
ically is that C is closer to being universal than any other com-
puter language. Many computer science and computer engi-
neering programs now favor Java for introductory programming
courses, while other disciplines use C, Fortran, Matlab, or
Visual Basic. Despite this, C’s importance is threefold: it is
a parent of C , Java, and Matlab, and therefore easily un-
derstood from the perspective of these larger languages, it has
even more legacy code than Fortran, and as a subset of C,
it is dominant in many industry applications. Of course, C has
well-known problems, but its prominence means it is a nat-
ural choice for fulfilling the goal of easy learning. Although the
teacher of image processing can mandate use of an object-ori-
ented programming language, the extra learning time involved
is not necessarily well spent. Although CLIP uses C, for

0018–9359/00$10.00 © 2000 IEEE

456 IEEE TRANSACTIONS ON EDUCATION, VOL. 43, NO. 4, NOVEMBER 2000

reasons explained below, it was designed to require minimal
learning by a student already knowledgeable in C, and to en-
courage procedural programming in the C style.

2) Matrix Programming Languages.:Matrix programming
languages (MPLs) such as Matlab [2], provide concise syntax
for matrix operations. By expressing images as matrices, many
fundamental image processing operations can be accomplished
simply,thoughnotnecessarilyefficiently.Thusit ispossibletoop-
erate on subimages (submatrices) with arithmetic operations that
areappliedpointwiseorvectorially.Moreover,Matlab is ideal for
linearalgebraiccalculations,suchas theeigenvalueanalysisused
in feature extraction or Weiner filtering. With its excellent signal
and image processing toolkits, Matlab canbea verypowerful fast
prototyping tool in image processing and analysis.

Although MPLs, and Matlab in particular, meet goal 2) above,
they do not meet the other goals. Many students do not have prior
MPL experience, and while learning Matlab may be a benefit that
transcends a single course, the time involved is significant. MPL
code can be inefficient. It is not uncommon to replace an MPL
prototype with a production version written in a procedural lan-
guage.MatlabincludesatranslatortoC/Cwhichincreasesthe
executionspeed foroperations involvingscalars.However the re-
sultingcode isstill significantlyslower thanwell-writtenC/C
for fixed-size images. Finally, the real-time input–output facili-
ties of MPLs are neither transparent to the coder nor as efficient
as C/C alternatives.

3) The C Programming Language [3]:C is a
portable, efficient, extensible object-oriented programming
language. It allows the creation of data types which can be used
with the same syntactic economy as the matrices of Matlab,
etc. The pel-by-pel and block-by-block iterations required by
many algorithms can be conveniently handled within suitable
objects. Range limiting can be implemented as a modification of
conventional indexing. Errorhandlingcanbedevolved togeneric
types. Furthermore, users of a class can extend it freely, whereas
MPL users have limited ability to extend the matrix type.

Thereareseveralexamplesofclass librarieswhichaimtounite
the programming benefits of C/C and matrix programming
languages. These range from the powerful general-purpose (e.g.,
M [4]), to focused developments for particular applications
(e.g.,embeddedsignalprocessors[5]).Suchsystemsaredesigned
with the expectation that users are already familiar with C.
Unfortunately C is a big language, and to appreciate its full
power requires considerable learning beyond C.

One criticism of both matrix programming languages and
C matrix class libraries is that they are too general for image
processing. The reason is that dynamic (resizable) arrays are the
data type at the heart of such systems, but images are rarely re-
sized, and the overhead of this flexibility is rarely warranted.

CLIP therefore introduces a small set of C data types. Stu-
dents can use these with little learning beyond C; they provide
for very tight coding in the style of Matlab, but without the over-
heads of dynamic resizing; they incorporate interfaces to pic-
tures and input–output that allow the user to access stored and
live images and subimages with simple array-like operations.

4) The Partitioned Image Processing System:The parti-
tioned image processing system (PIPS) was developed by the
author in 1983 for use on custom-designed hardware which

included memory-mapped image frame stores [6]. While the
architecture constrained programs to use limited-precision
integer arithmetic, this disadvantage was offset by the speed
and real-time visual output that the system provided. Perhaps
the main stimulus to the development of CLIP was the (sur-
prising) realization that many learners and researchers in image
processing do not have the benefit of real-time visual feedback
during processing, which is so useful in program development.
Instead they must suffer systems where processing and display
are done in two separate stages. This is true of almost all C
and C image processing libraries, as well as Matlab. Thus,
real-time image output was an important requirement for CLIP.
When there are no constraints on a processed picture’s dynamic
range, the system must monitor that range to adapt the display
level mapping as the processing proceeds.

III. CLIP DESIGN

A. Overview

CLIP was designed to unite salient facilities of the four
strands of prior art described in Section II to achieve the four
goals in Section I. It is a class library in C , but its users’
required knowledge of C is elementary, corresponding
roughly to the first quarter of a typical textbook (such as [7]). It
therefore supports fast migration from C. There are only three
new data types, and the class library’s public interface is small.
Learning is fast, and is mainly done through example programs
that illustrate compact programming with CLIP.

Reading and writing of images, error detection, and warnings
are all provided in the class library, keeping user programs short.
The library types provide natural iterations over arithmetic op-
erators and callbacks, but there are no separate iterator types
which could confuse novices.

CLIP allows real-time visual feedback during processing.
In its current Unix/X-Windows version, image viewing can be
turned on or off for any picture object. Iteration operations can
be made to update an onscreen window after each processed
row or column of the image.

B. CLIP Data Types— , , and

CLIP augments the built-in data types with just three addi-
tions: the , the integer range () and the value
range (). Associated with these are overloaded oper-
ators that support arithmetic on and between the types. The

type stores a two-dimensional array of pel values and
provides member functions and overloaded operators for its ma-
nipulation. Picture objects can be added, subtracted, assigned,
etc. using the conventional assignment operators (,
etc.), and can similarly be combined with built-in types such as
int and float. An object of the irange type represents a sequence
of integers such as

0, 1 7 (integers from 0–7), or 0, 3 pic_size (every
third integer up to pic_size), while a object repre-
sents a continuous range of values, such as , or [10,
20]. Arithmetic on and is supported,
yielding combined or shifted ranges.

ROBINSON: A SOFTWARE SYSTEM FOR LABORATORY EXPERIMENTS IN IMAGE PROCESSING 457

Fig. 1. A complete CLIP program for a simple Laplacian approximation, illustrating the use of a callback.

It is appropriate to state now a simple rule about arithmetic
on objects that CLIP imposes: the result of

, or (or —see Section
V), where is any of the binary arithmetic operators (,
etc.), is an integer (or float) which is the sum of the results of
the operation applied pointwise over the picture. So the combi-
nation yields not a , but a number.
To get a as the result of a pointwise arithmetic opera-
tion, the appropriate assignment operator must be used, for ex-
ample, . The reason for this constraint is
given in Section IV below. The rule applies only to ,
not to and .

The subscripting operator [] is overloaded to allow
to be indexed by and . Consequently a picture
block can be defined compactly as in this program fragment

Similarly, a noncontiguous can be used to downsample,
and subscripting used to generate masks. The com-
pact combination of two types and arithmetic operators is il-
lustrated in the following statement, taken from a one-page pro-
gram that does motion-compensated interframe prediction using
full-search block matching.

The object types on the left-hand-side are [][]:
this returns a reference to an integer (or a —see below)

which is the pel value at location (,) in the picture
. The object types on the right-hand side are

The operator performs a pointwise squared difference opera-
tion on the two picture blocks defined by the objects
subscripted by . The result is an , the total squared
difference between the two blocks. Thus the value of matches at
(,) is the difference between the block in the current frame
and an equivalent block in the previous frame displaced by (,

).

C. Callbacks

CLIP supports the use of callbacks for point, neighborhood
and block operations. The program given in Fig. 1 illustrates
this. In this program, the constructor for works by it-
erating a callback function () on . The callback, ,
calculates a simple Laplacian for the current point. In this ex-
ample, as for all neighborhood callbacks, the argumentsand

refer to the destination and source of the neighborhood op-
eration. and are set up on each call so that [][]
has the same (row,col) position in the source picture ashas
in the output. Point, neighborhood and block operations are sup-
ported explicitly on multiple picture objects as well as in con-
structors.

D. CLIP In Use

Fig. 2 shows a complete vector quantization coder imple-
mented in CLIP. This example is typical of the structure and
length of CLIP programs used for standard image processing
tasks. Block subscripting has been used to implement the inner-
most iteration loops, but outer loops are done conventionally.
Multiple levels of iteration were designed in to the first version
of CLIP, to support, for example, convolution of two range-lim-
ited in a single statement. However, users find the in-
terpretation (and writing) of statements with multiple
to be difficult and error-prone. Hence the mixture of loops
and range subscripting is most common.

458 IEEE TRANSACTIONS ON EDUCATION, VOL. 43, NO. 4, NOVEMBER 2000

Fig. 2. A complete CLIP program for vector quantization coding.

Figs. 1 and 2 are examples of a large range of programs
written under CLIP, most for practical experimentation. CLIP
has been used for research as well as teaching. References [8]
and [9], as well as ongoing projects in edge detection, motion
estimation and coding, make use of CLIP.

E. Handling of Picture Element Types

An unresolved design issue in CLIP is how pictures of dif-
ferent element types should be handled. The library at present
exists in two forms. The first has as a template. Pic-
ture elements may be integers, floats, complex numbers, etc. as
specified by the user, via the normal C template mechanism.
The second library contains two data types, _ _
and _ _ , with the obvious meanings. While the
first version is the more flexible, and certainly more in the spirit
of C , the second may be preferable in practice. Intended
users of the class library are new to type abstraction, and may
balk at the kind of second-order abstraction of templates. For

this reason only the second version of the library has been used
in teaching.

IV. I MPLEMENTATION ISSUES

CLIP avoids one major problem of flexible matrix class li-
braries by its implementation of binary arithmetic operations
between s as numerical sums. If
yielded not a number, but a , it would be necessary
to manage the creation and destruction of arbitrary numbers of
temporary s resulting from arithmetic expressions like

But because arithmetic generating pictures from pictures is only
implemented in the assignment operators (, etc.), there
is no need for temporary pictures. This, together with the fact
that pictures are not resizable, means that CLIPs memory man-
agement tasks are well defined and therefore fast.

ROBINSON: A SOFTWARE SYSTEM FOR LABORATORY EXPERIMENTS IN IMAGE PROCESSING 459

Most of the complexity in the class library is to do with
efficient dereferencing of pictures. For example, supporting

[][] necessarily means that
[][] will be slower than normal indexing, but the
overhead must be very small. Otherwise C programmers, who
are likely to use [][] heavily, will see the class
library as ponderous. Furthermore, the use of callbacks, as
encouraged by programs such as the example Laplacian given
in Fig. 1, must be efficiently supported by ordering iterations
to minimize the number of counter and pointer increments. As
an example of the strategies taken to optimize efficiency, the
implementation of callbacks is discussed now.

CLIP uses a fairly standard implementation of a two-dimen-
sional matrix as a contiguous one-dimensional (1-D) array plus
an array of “row pointers” into the start points of each matrix
row . The main 1-D array includes padding pseudopels around
the image data, but this is hidden from the user who accesses the
data only via the row pointers. Callbacks are implemented to
process the picture columnwise. For each pel in the first column
a pointer to the row pointer to the pel in question is passed to the
callback function. Once the entire column has been processed
(from top to bottom), all the row pointers are incremented
and the next column is handled in a similar way. When all the
columns have been done, the row pointers are all reset to point
to the beginning of their respective rows. The advantage of this
approach is that the callback can use pels at any offset from (what
it sees as) [][].

The callback strategy in CLIP means that very simple
programs, like the Laplacian in Fig. 1, take up to three times
longer to run than well-written conventional (single function) C
versions. For more complicated programs this difference goes
down rapidly; the per-pel processing common to both cases
takes longer, but the callback overhead is fixed.

On the other hand, programs involving range-indexed pic-
ture blocks are sometimes faster in the CLIP version than in
a C equivalent. This is because the iterative loops within the

data type have been highly tuned. As an example, the
vector quantizer shown in Fig. 2 is slightly faster than its C
equivalent for at least one optimizing compiler.

V. USAGE EXPERIENCE

CLIPwastrialed inanundergraduate imageprocessingcourse,
then subsequently used in undergraduate and graduate courses in
imagecommunications.Eachclassconsistedof students fromdi-
verse backgrounds. Informal surveys indicated that all had prior
knowledge of the C programming language, most hadpriorC
experience and many were familiar with Java and Matlab. There
was a very strong student preference for C/C.

In the image communications courses, students did four lab
assignments using the software system. The labs were done
singly without instructor or TA assistance. The subjects were:

• two-level image manipulation and lossless compression;
• predictive coding and errors;
• transform, Laplacian pyramid, and wavelet coding;
• motion estimation.

In each case the students were provided with sample programs
to use in experiments, then expected to write their own programs

according to some problem statement. At the end of the course,
students completed feedback forms, including several questions
on the effectiveness of the lab experiments using CLIP.

All students understood and effectively used the CLIP classes
in all four labs. Errors were usually in procedural parts of the
code, unaffected by the object-orientation. There was no misun-
derstanding or misuse of overloaded operators. Overall, students
performed well. Their feedback to the labs was overwhelmingly
positive, and they explicitly confirmed that in the work required
for successful completion, language and class library learning
were insignificant.

There was no measurable difference in student performance
or feedback between former C users and nonusers.

VI. CONCLUSION

CLIP, a class library for image processing in C, has been
designed, and successfully used, to support image processing
education. It incorporates matrix-like operations into Cin a
framework which makes very few learning demands on C pro-
grammers.

For those learning image processing, interactivity and strong
feedback are important cues. It is possible within CLIP to create
picture objects that are shown on-screen during processing. Fur-
ther investigation is required to assess the value of this imme-
diate feedback on learning and algorithm development.

REFERENCES

[1] B. Kernighan and D. Ritchie,The C Programming Language, 2nd
ed. Englewood Cliffs, NJ: Prentice-Hall, 1988.

[2] Matlab Users Guide. Natick, MA: The Mathworks, Inc., Aug. 1992.
[3] B. Stroustrup,The C++ Programming Language, 2nd ed. Reading,

MA: Addison-Wesley, 1991.
[4] M++ Programming Guide. Renton, WA: Dyad Software Corp.,

1991.
[5] J. M. Winograd and S. H. Nawab, “A C++ software environment for

the development of embedded signal processing systems,” inProc.
ICASSP-95. Detroit, MI: IEEE, 1995, vol. 4, pp. 2715–2717.

[6] S. Mizuno, D. E. Pearson, and J. A. Robinson, “Real-time feature-extrac-
tion architecture for moving-picture transmission over telephone lines,”
Electron. Lett., vol. 19, no. 22, pp. 949–950, Oct. 27, 1983.

[7] S. C. Dewbust and K. T. Start,Programming in C++. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

[8] J. A. Robinson, “Singular value decomposition for approximate
block matching in image coding,”Electron. Lett., vol. 31, no. 25, pp.
2164–2165, Dec. 7, 1995.

[9] , “Efficient general-purpose image compression with binary tree
predictive coding,”IEEE Trans. Image Processing, vol. 6, pp. 601–607,
Apr. 1997.

[10] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C, 2nd ed. Cambridge, U.K.: Cambridge Univ.
Press, 1992.

John A. Robinson(M’87) received the B.Sc. degree from Durham University,
U.K., in 1979 and the M.Sc. and Ph.D. degrees from the University of Essex,
U.K., in 1982 and 1985, respectively.

He was a Development Engineer with Standard Telephones and Cables Ltd.,
Basildon, U.K., and a Member of Scientific Staff, then Manager, Multimedia
Conferencing, with Bell-Northern Research Ltd., Verdun, PQ, Canada. He was
with the University of Waterloo, ON, Canada, from 1988 to 1995, including a
sabbatical year spent at the Universities of Essex and Cambridge, U.K. From
1996 to 2000, he was the NSERC/Newtel/Nortel Industrial Research Chair in
Telecommunications Engineering and Information Technology at Memorial
University of Newfoundland. There he established and led the Multimedia
Communications Laboratory. In October 2000, he became Professor of
Electronics at the University of York, UK.

