

The libvips image processing library

John Cupitt; libvips.org; London, UK

Kirk Martinez University of Southampton; Southampton, UK

Lovell Fuller; Styling Ltd; London, UK

Kleis Auke Wolthuizen; wsrv.nl; Sneek, NL

Abstract
libvips is a portable, horizontally-threaded, demand-driven,

2D image processing library with its origins in imaging research

projects. Compared to similar libraries, libvips runs quickly and

uses little memory. It supports numeric formats from 8-bit integer

to 128-bit complex, any number of color separation bands, most

popular image formats, and many specialized scientific image

formats. Its performance and LGPL license has led it to become

popular in applications such as virtual microscopy and art

imaging, and in widespread use for image processing on the web.

This paper outlines the history of the library, explains how

libvips achieves its good performance, presents benchmarks, and

gives an overview of the implementation and of the wider libvips

ecosystem.

Introduction
In 1989, as part of the VASARI project [1,2], we set out to

make high-resolution, multispectral images of paintings. At 10

pixels per millimeter and with seven color separation bands, a scan

of a 1m2 painting would be 700 MiB; a huge challenge in an era

when an expensive workstation might only have 32 MiB of RAM.

There was no suitable existing open source package so we made

our own: VIPS (VASARI Image Processing System) [3,4,5]. We

designed it to cope with high resolution images (up to 2G x 2G)

and with pixels of numeric types varying from 8 bit integers to 128

bit complex floating point numbers. Images could have any

number of bands and could represent colors in one of many

supported CIE color spaces.

Many image processing systems operate on whole images at a

time, as represented conceptually in figure 1.

Figure 1. Evaluation in a typical image processing library

Reading from the left, first the data is read from storage and

decompressed to a large memory area, then processed, perhaps in

several stages, then finally recompressed and written back to

storage again. The sequence of operations is strictly serial, that is,

each operation must complete before the next can start.

Intermediate images are memory arrays, so each operation needs at

least two large areas of memory to function. And because the

images will generally be larger than the processor caches, every

pixel in every operation must be expensively fetched from main

memory and written back again.

A design like this would not have worked for us. Our need to

process images much larger than available memory forced us to

adopt a stream processing model. We process images in small

pieces, loading them one at a time from the source image, passing

them through a chain of operations, and finally writing each piece

to the output. Moreover, we needed to be able to perform

coordinate transformations as part of the pipeline, so this

processing had to be demand-driven. As the output file was

written, each small area of the output image had to pull the

required pixels through the system. Performing a series of

operations on a small tile has the extra benefit that each operation

will often find its input data already in the CPU cache, avoiding

slow round trips to main memory.

Figure 2 shows libvips evaluation conceptually: all operations

overlap, and whole images are never kept in memory. It shows a

hard drive as the storage medium, but libvips has a generic IO

layer, so the source and destination can be anything: a display, an

area of memory, a pipe, even an https connection to a cloud

service.

Figure 2. libvips evaluation, with overlapping and no large intermediates

When the first multi-CPU workstations arrived in the early

90s, we took advantage of this extra power by giving each CPU a

lightweight copy of the whole pipeline, allowing each thread to

generate an independent section of the output image. CPUs

synchronized during the initial read from storage, and coordinated

again during write, but otherwise ran largely independently, with

only one lock operation for each section read and written, no

matter how long the pipeline of processing operations.

By contrast, systems which operated on whole images at a

time were forced to add threading in an ad hoc way in the

implementation of each operation. As an operation executes, the

set of available threads work cooperatively down the image,

computing pixels. This arrangement forces threads to constantly

synchronize, making them markedly less efficient than libvips.

By 2010, although the overall design seemed sound, the

libvips implementation had become dated and hard to work with.

We did a complete rewrite in the modern GObject C framework

[6], adding introspection and a new, cleaner API. SIMD support

was improved by adopting Google’s Highway library [7]. We

implemented support for a wide variety of useful image formats:

JPG, PNG, TIFF, PPM/PGM/PBM/PFM, Radiance (HDR), JXL,

FITS, NIfTI, SVG, GIF, Matlab, Analyze, OpenSlide, OpenEXR,

WEBP, HEIC, AVIF, CSV, RAW and PDF. We also support load

and save via the ImageMagick [8] (or optionally GraphicsMagick

[9]) library, so libvips can read and write any image format that

these libraries can handle, such as DICOM.

3

This new foundation has let us greatly expand the range of

language bindings we can support, making libvips available in

most programming systems. Since this rewrite, libvips has quickly

become one of the more popular image processing libraries.

libvips has a large test suite and is tested continuously with a

range of static and dynamic sanitizers. OSS Fuzz [10], Google’s

fuzzing program which carries out continuous fuzzing of open

source projects deemed to be vital infrastructure, has been testing

libvips since 2019. It has found only one serious CVE in that time.

Benchmarks
We made a small benchmark to illustrate the benefits of a

streaming design. It reads a 10,000 x 10,000 pixel uncompressed

tiled RGB TIFF, crops 100 pixels off each edge, shrinks by 10%

with linear interpolation, sharpens with a 3x3 convolution and then

writes the results back to another TIFF. This is a simple test, but it

is easy to implement in almost all image processing systems, and

exercises IO, resampling, filtering and coordinate transformation –

the basic operations any system should be able to do well.

We implemented this test with a range of libraries and timed

them running on an AMD Ryzen Threadripper PRO 3955WX 16-

Cores, with Ubuntu 24.04 in performance mode. The benchmark

runs each test five times and takes the best result. The results are

shown in table 1 and are available in full on the git repository [11].

Table 1. Speed and memory use for a range of image
processing systems

Software
Time
(secs)

Peak mem
(RSS mb)

Times
slower

libvips 8.16, C/C++ 0.46 91 1.0

libvips 8.16 python 0.49 101 1.1

tiffcp 0.59 581 1.3

libvips 8.16, one thr. 0.72 52 1.6

libvips 8.16, JPG 0.80 189 1.7

Pillow-SIMD 9.0. one
thr.

1.49 985 3.2

GraphicsMagick 1.4 1.97 1989 4.3

ImageJ 1.54 2.70 542 5.9

OpenCV 4.6 3.03 791 6.6

ImageMagick 6.9.12 3.57 2002 7.8

libgd 2.3.3, JPG 5.41 4268 6.8

GEGL 0.4.48, JPG 5.74 751 6.1

NetPBM 11.05 6.65 684 14.5

libvips is at least twice as fast as any other system tested and

typically needs five to ten times less memory.

Figure 3 shows the same data as memory use over time.

libvips is the small bump in the bottom left corner. The github

repository for this benchmark has the code to generate this graph.

Figure 3. Memory use over time for a range of image processing libraries

Related software
 A great many image processing frameworks have been

developed over the decades and this paper does not attempt a full

survey or comparison. Systems like OpenCV [12] and

ImageMagick [8] use the whole image at once design. They

represent images as huge memory arrays and have sets of carefully

optimized functions for transforming these arrays in various ways.

Threading is ad hoc and implemented afresh each time in each

processing function. There is little support for tiling or for large

images, and memory use is high. ImageMagick does have some

limited support for image streaming.

Another family of systems rely heavily on C++ for genericity.

Eigen [13], CImg [14] and pylena [15] are all largely compile-time

systems which attempt to generate optimized code for an image

processing pipeline using C++ templates. They do not work well

when called from more dynamic languages, usually need explicit

coding for lazy computation or tiling, are tricky to use on very

large images, and have threading support coded in an ad hoc

manner for each operation.

There are some historical systems which are fairly close to

libvips. SGI had the ImageVision library [16], and Pixar had a 2D

animation image composition system [17]. NASA developed SIPF

[18] (Scalable Image Processing Framework) for processing very

large images from planetary missions. It was demand-driven, but

tile-based and designed for computation to be distributed over a

large cluster of machines, making interactive use cumbersome. To

our knowledge, none are open source, maintained or available.

GEGL [19] is perhaps the project that is closest to libvips, but

it threads vertically and is designed for interactive image editing

with very heavy emphasis on caching. This makes it a poor fit for

batch-style processing, as can be seen in the Benchmarks section

above.

Implementation

libvips has a small, simple and portable implementation with

less than 20,000 lines of C for the core of the system, plus another

160,000 in a mixture of C and C++ for the image processing

operations.

At the lowest level of the system, libvips tracks pixel buffers:

small, rectangular parts of an image. It uses small (only two or

three buffers are kept per image), thread-private (that is,

unsynchronised) caches on images based on hashes of pixel

coordinates to discover sharing and to reuse pixel buffers between

different parts of the image processing pipeline.

Regions sit at the next level up. Again, these are rectangular

areas of an image, but as well as simple pixel buffers, they can also

be backed by pixels on other regions, or even on other images.

Consider an operation which places a small image on top of a

much larger image at some position. Regions which contain an

overlap area will need to be represented by pixel buffers, but

regions which are entirely within either the large or small image

can simply be references to those images. Regions let operations

implement things like crop, copy and translate with references

rather than real memory. This is important for performance in

systems like libvips where all operations are non-destructive and

repeated copying could become a significant bottleneck.

Stepping up the hierarchy again, a partial image is one where,

instead of storing a value for each pixel, libvips instead stores a

function which can compute any region on demand. When an

operation requests a region on a partial image, libvips will select

and size a pixel buffer to hold the requested pixels and use the

stored function to calculate just those values (or reuse them, if a

valid pixel buffer already exists).

The stored function comes in three parts: a start function, a

generate function and a stop function. The start function creates a

state, the generate function uses the state plus a requested area to

calculate pixel values, and the stop function frees the state again.

Breaking the stored function into three parts is good for thread

scaling: resource allocation and synchronization mostly happens in

start and stop functions, so generate functions can run without

having to synchronize or allocate resources. libvips makes a set of

guarantees about parallelism that make this simple to program.

Start and stop functions are mutually exclusive and a single state is

never used by more than one generate operation. A start / generate

/ generate / stop sequence works like a thread, as illustrated in

figure 4.

Figure 4. Regions and threads

Above images sit operations. These define generate functions

on images which accept requests for regions of pixels, in turn

request regions from their inputs, and then compute results. The

region create / request / free calls used to calculate pixels on an

image are an exact parallel to the start / generate / stop calls that

partial images use to create pixels. In fact, they are the same, and

this is the composition mechanism that libvips uses to join

operations together. A region on a partial image holds the state

created by that image for the generate function that will fill the

region with pixels.

libvips joins image processing operations together by linking

the output of one operation (the start / generate / stop sequence) to

the input of the next (the region it uses to get pixels for

processing). This link is two function calls plus a hash table

lookup, and is very fast. Demand flows from sink to source as a

series of function calls between the generate functions of the

operations, and pixels flow back from source to sink in a chain of

pixel buffers computed as the stack unwinds.

When reading from a large libvips image (or any other format

with the same structure on disc, such as binary PPM), libvips keeps

a set of small rolling windows into the file, some small number of

scanlines in height. As pixels are demanded by different threads,

libvips will scroll these windows up and down the file.

Some operations, such as a 90 degree rotation, need random

access to source pixels. If the image format does not support

random access (PNG, for example), libvips will automatically

unpack the image to a temporary area in memory or storage. If

simple top-to-bottom sequential access is enough, then libvips will

attach a queue and a small scanline cache to the image format read

library. As threads request pixels, libvips will stall and reorder

them to ensure access remains in order.

In a demand-driven system, something has to do the

demanding. libvips has a variety of data sinks that can be used to

pull pixels through a pipeline. There are sinks that will build a

complete image in memory, sinks to draw to a display, sinks to

loop over an image (useful for statistical operations, for example)

and sinks to stream an image to storage.

The storage sink keeps two buffers, each as wide as the

image. It starts threads as rapidly as it can, up to the concurrency

limit, filling each buffer with regions of calculated pixels, each

thread calculating one region at once. Regions can be any shape

and size, libvips has a hint system that operations use to tell sinks

which geometry they prefer. libvips watches the set of worker

threads and automatically sizes thread pools up and down with

load to minimize stalling.

A separate background thread watches the buffers and, when

they fill, writes that set of scanlines to storage using whatever

image write library has been selected. It then resets the buffer and

moves it down the image, ready for the next set of pixels to stream

in.

These features in combination mean that, once a pipeline of

image processing operations has been built, libvips can run almost

lock-free. This is very important for SMP scaling: we did not want

the synchronization overhead to scale with either the number of

threads or the complexity of the pipeline of operations being

performed. As a result, libvips scales almost linearly with

increasing numbers of threads, provided the pipeline has sufficient

parallelism.

Some image processing operations cannot be implemented

efficiently in this streaming style, for example Hough or Fourier

transforms. Operations like this signal that they need access to all

pixels at once and libvips will arrange for the image to be rendered

into memory or to a temporary image in storage. Operations such

as flood-fill are inefficient without a destructive image write.

These functions signal this requirement to libvips and those

sections of the pipeline are enclosed in a non-destructive wrapper.

By default, libvips does very little pixel caching. This is

usually correct for batch processing on large data sets. However,

interactive applications often reuse the same area of an image,

perhaps as the user moves a slider in an interface, and caching

becomes essential for good performance. A number of operations

implement different types of cache, from sequential line caches to

5

threaded, sparse tile caches, and can be added to pipelines as

required.

Because libvips operations are free of side-effects, results can

be reused, a technique usually called memoization. Every time an

operation is called, libvips searches an operation cache for a

previous call with the same arguments, and if it finds a match,

returns the previous result. By default, libvips caches the last 1,000

operation calls or 100 MiB of memory, whichever is smaller.

libvips has around 300 image processing operations written in

this streaming style. The library supports full run-time

introspection using GObject, so the standard GObject calls can be

used to walk the class hierarchy and discover operations. libvips

adds a small amount of extra introspection metadata to handle

things like optional and deprecated arguments.

The wider libvips ecosystem
A range of downstream projects have appeared around

libvips, from language bindings to frameworks, desktop

applications and web services.

pyvips, ruby-vips, php-vips, lua-vips
These bindings are all fully dynamic, and have no native

component, other than libvips and an FFI module. They define an

image class, then intercept the missing method exception to call

into libvips using a small marshaling class to turn language values

into and from the GValue types needed by libvips. They usually

define a few convenience methods too, for example a set of

operator overloads.

Because the bindings use run-time introspection to present the

operations they discover in the libvips binary, they automatically

update with new versions of libvips, making them small and easy

to maintain. The Python binding, for example, is written in pure

Python and the core is less than 200 lines of code. The

documentation component of these bindings is also generated

largely automatically by introspection.

The Python interface is currently downloaded 50,000 times

per month (2024) and is popular for art and for medical imaging. It

interfaces easily with other popular Python packages, such as PIL

and Numpy. The Ruby binding is now the default image handler

for Rails, the popular web application framework, and is

downloaded almost a million times a month (2024).

cplusplus-vips, NetVips, go-vips, crystal-vips
Bindings for more static languages tend to come in two

halves. They have a class which can dynamically call any libvips

operation by name, and then a set of very thin wrappers over that,

generated at compile-time from introspection, which provide static

type checking. Maintenance is slightly more work than the fully

dynamic bindings, but usually just involves running a small script

before each release. NetVips, the C# binding for libvips, has

become reasonably popular, with over 10,000 downloads per

month.

Wasm
Wasm is a relatively new way of running native code from

JavaScript. C/C++ sources are compiled to an intermediate binary

form (called Wasm, for WebAssembly) with a compiler like

Emscripten, then at runtime the JavaScript implementation

transforms the Wasm code to a fully native binary.

Performance is reasonable, a Wasm build of libvips is faster

than a native build of ImageMagick for example, but between two

and four times slower than a native build of libvips, mostly due to

the use of platform-specific intrinsics in many existing libraries.

The complete libvips binary, including a useful selection of image

format libraries, compiles to under 5 MiB of Wasm.

Sharp
Sharp is a node package using libvips to implement high-

performance image resizing for all Node.js compatible JavaScript

runtimes, including Deno and Bun. There was an early focus on

fluent API design, partly matching the underlying libvips C++

API, with some additional simplification for common tasks. A

couple of features originally added to Sharp have migrated

upstream and are now integrated within libvips itself, namely

image composition and smartcrop.

Sharp started life as a Responsive Web Design experiment.

Previously, when images were uploaded to web sites, they would

be resized to a small number of fixed dimensions and then served

to clients from those static resources. Thanks to libvips, Sharp is

fast enough that it can generate resized images on demand.

Websites not only see a significant saving on storage costs, they

can also serve images exactly tailored to the client device,

something that is becoming increasingly important as the web

becomes slowly more heterogeneous.

The rise in popularity of Node.js as a server-side JavaScript

runtime led to a rise in the popularity of Sharp. Gatsby, the

progenitor of the “Jamstack” web architecture, selected Sharp for

all of its image processing needs. In the subsequent years, almost

all other JavaScript-based web frameworks and Content

Management Systems have followed in adopting Sharp. Both

Amazon Web Services (AWS) and Google Cloud recommend

Sharp for image resizing as part of Lambda and Cloud Functions,

their respective JavaScript function-as-a-service offerings.

In 2023, Sharp was downloaded from the npm JavaScript

registry over 150 million times. In 2024, it is predicted that Sharp

will be downloaded at least 250 million times. It is currently the

most popular downstream consumer of libvips by some margin.

To make installation easier, prebuilt binaries are provided by

Sharp for itself, libvips and around 25 other upstream

dependencies, primarily those that allow it to support encoding and

decoding of image formats popular on the web. This lets Sharp

install painlessly on a wide range of platforms, from a Raspberry

Pi Zero to an IBM s390x mainframe. Sharp can also be used with a

Wasm build of libvips, enabling complete portability. Its uptake

has been shown to reduce the CPU load on provider’s cloud

machines.

nip2 and desktop applications
Several desktop applications use libvips as the image

processing engine. The official libvips GUI is nip2, a spreadsheet-

like image processing application.

Figure 5. Dynamic modeling of FDG uptake in a pulmonary PET-CT scan
using nip2

The user can develop an image processing application by

loading images into cells and entering formulas or selecting a

formula from menus. Thanks to libvips, memory use is low and

recomputation is very fast and completely on-demand. Formulas

can be adjusted interactively and the pixels change in all the

derived images. Once a prototype is working, it can be executed in

batch mode over a large set of inputs and without a graphical

interface.

The workspace shown in figure 5 computes per-voxel rate

constants for FDG uptake in a pulmonary PET-CT scan. It contains

around 9,000 cells, and over 20,000 images, totalling over 150

GiB. It takes 30s to fully recalculate on a desktop PC (though

small changes are much faster) and runs in 2.5 GiB of memory.

Art imaging
After the VASARI project, a number of art imaging projects

have used libvips as their processing engine.

Operation Night Watch [20], a project at the Rijkmuseum in

The Netherlands, has used libvips to assemble and process their

717 gigapixel image of Rembrandt’s The Night Watch, at the time

the largest digital image of a work of art ever assembled.

This colossal image was shortly superseded by a 1.6 terapixel

scan of The Panorama of the Battle of Murten [21], a panoramic

scroll by Louis Braun, held in Geneva. Once This holds the record

for the largest digital image of a work of art at 3,828,940 by

440,000 pixels.

Conclusions
libvips achieves high performance and efficiency thanks to

careful design, driven by the early days of high resolution imaging.

The LGPL license (open source with free commercial use) has

encouraged participation and continuous development. It has been

especially helpful in finding volunteers to package libvips for most

popular operating systems, making libvips widely available.

Since its development in the 1990s, libvips has been used as

the image processing package in five European projects,

completely rewritten and modernized, and is now widely used in

research and on the web. It is used in large applications where

pipelines contain well over 10,000 nodes. It is the most popular

image processing library for node.js with almost 200,000

downloads per day, it is the default image processing library in

Rails, and companies from Amazon and Shopify to Wikipedia use

it for image handling.

In the beginning, libvips was designed for single, multi-

gigabyte images. Today, it is more likely to be used for processing

millions of mobile phone photographs or images too large for other

packages. Its original virtues of low memory footprint and efficient

processing have remained relevant. The continuous growth in core-

count in CPUs automatically leads to speed increases due to our

early developments in the 1990s.

Acknowledgments

We would like to thank the following contributors and funders of

libvips: The European Commission for its financial support in the

projects VASARI, MARC, ACOHIR, Artiste and SCULPTEUR.

Various companies and individuals through open collective. Nikos

Dessipris for early developments and Ruven Pillay for

developments including autoconfiguration. Jean Philipe Laurant

wrote many of the color functions. Thanks also to David Saunders,

the first real user of the system, for his feedback over the years

References
[1] K. Martinez, J. Cupitt, D. Saunders, “High resolution colorimetric

imaging of paintings”, Proc. SPIE, Vol. 1901, pp. 25-36, 1993.

[2] K. Martinez, J. Cupitt, D. Saunders, and R. Pillay, “Ten years of art

imaging research”. Proc. IEEE 90, pp. 28-41, 2002.

[3] J. Cupitt and K. Martinez, “VIPS: an image processing system for

large images”, Proc. SPIE conference on Imaging Science and

Technology, San Jose, Vol. 2663, pp. 19-28, 1996.

[4] K. Martinez and J. Cupitt, “libvips - a highly tuned image processing

software architecture”, Proc. IEEE International Conference on Image

Processing 2, pp. 574-577, Genova, 2005.

[5] The libvips website, libvips.org, accessed July 2024.

[6] The GObject website, docs.gtk.org/gobject, accessed July 2024.

[7] Highway website, github.com/google/highway, accessed July 2024.

[8] ImageMagick website, imagemagick.org, accessed July 2024.

[9] GraphicsMagick website, graphicsmagick.org, accessed July 2024.

[10] OSS Fuzz website, github.com/google/oss-fuzz, accessed July 2024.

[11] libvips benchmark, github.com/libvips/vips-bench, accessed July

2024.

[12] The OpenCV website, opencv.org, accessed July 2024.

[13] The Eigen website, eigen.tuxfamily.org, accessed July 2024.

[14] D. Tschumperle, C. Tilmant, V. Barr, “Digital Image Processing with

C++, Implementing Reference Algorithms with the CImg Library”,

CRC Press, 2023.

[15] M. Roynard, E. Carlinet, T. Géraud, “An Image Processing Library in

Modern C++: Getting Simplicity and Efficiency with Generic

Programming”, Reproducible Research in Pattern Recognition:

Second International Workshop, RRPR, 2018.

[16] A description of the SGI ImageVision library,

wiki.preterhuman.net/ImageVision_Library, accessed July 2024.

https://www.libvips.org/
http://docs.gtk.org/gobject
http://github.com/google/highway
http://imagemagick.org/
http://www.graphicsmagick.org/
https://github.com/google/oss-fuzz
https://github.com/libvips/vips-bench
https://opencv.org/
https://eigen.tuxfamily.org/index.php?title=Main_Page
https://wiki.preterhuman.net/ImageVision_Library

7

[17] M. Shantzis, “A model for efficient and flexible image computing”,

SIGGRAPH '94: Proceedings of the 21st annual conference on

Computer graphics and interactive techniques, 1994.

[18] M.W. Powell, R.A. Rossi, K. Shams, A scalable image processing

framework for gigapixel mars and other celestial body images", IEEE

Aerospace Conference, 2010.

[19] The GEGL website, gegl.org, accessed July 2024.

[20] Operation Nightwatch, rijksmuseum.nl/en/whats-

on/exhibitions/operation-night-watch, accessed July 2024.

[21] Murten Panorama Digital Twin Scanning Project,

paulbourke.net/panorama/MurtenStory, accessed July 2024.

Author Biography

Dr John Cupitt received his PhD in Theoretical Computer Science from the

University of Kent (1989), then spent 15 years at The National Gallery in

London working on art imaging, and 15 years at Imperial College, London

working on medical imaging. He is currently a freelance developer.

Kirk Martinez has a PhD in parallel image processing architectures from

the University of Essex and is a professor in Electronics and Computer

Science at the University of Southampton. He has designed many imaging

systems for museums through ten EU projects and is currently focusing on

environmental sensor networks.

Lovell Fuller has a BSc in Computer Science from the University of East

Anglia. He has 25 years' commercial experience in developing software for

the web as both a team member and leader. He is responsible for creating

and maintaining popular, open source image processing software used

widely within the JavaScript ecosystem

Kleis Auke Wolthuizen has a Software Engineering degree from NHL

Stenden, University of Applied Sciences in Leeuwarden. He maintains the

Windows binaries and various bindings for libvips. He manages wsrv.nl, a

free and open-source image caching and resizing service, which processes

6 million images per hour on-the-fly using libvips.

This cite this paper :

J. Cupitt, K. Martinez, L. Fuller, K.A. Wolthuizen, “The

libvips image processing library”, Proceedings of Electronic

Imaging 2025, 2025

http://gegl.org/
http://rijksmuseum.nl/en/whats-on/exhibitions/operation-night-watch
http://rijksmuseum.nl/en/whats-on/exhibitions/operation-night-watch
http://paulbourke.net/panorama/MurtenStory

