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Abstract 
libvips is a portable, horizontally-threaded, demand-driven, 

2D image processing library with its origins in imaging research 

projects. Compared to similar libraries, libvips runs quickly and 

uses little memory. It supports numeric formats from 8-bit integer 

to 128-bit complex, any number of color separation bands, most 

popular image formats, and many specialized scientific image 

formats. Its performance and LGPL license has led it to become 

popular in applications such as virtual microscopy and art 

imaging, and in widespread use for image processing on the web.  

This paper outlines the history of the library, explains how 

libvips achieves its good performance, presents benchmarks, and 

gives an overview of the implementation and of the wider libvips 

ecosystem. 

Introduction  
In 1989, as part of the VASARI project [1,2], we set out to 

make high-resolution, multispectral images of paintings. At 10 

pixels per millimeter and with seven color separation bands, a scan 

of a 1m2 painting would be 700 MiB; a huge challenge in an era 

when an expensive workstation might only have 32 MiB of RAM. 

There was no suitable existing open source package so we made 

our own: VIPS (VASARI Image Processing System) [3,4,5]. We 

designed it to cope with high resolution images (up to 2G x 2G) 

and with pixels of numeric types varying from 8 bit integers to 128 

bit complex floating point numbers. Images could have any 

number of bands and could represent colors in one of many 

supported CIE color spaces. 

Many image processing systems operate on whole images at a 

time, as represented conceptually in figure 1. 

 

Figure 1. Evaluation in a typical image processing library   

Reading from the left, first the data is read from storage and 

decompressed to a large memory area, then processed, perhaps in 

several stages, then finally recompressed and written back to 

storage again. The sequence of operations is strictly serial, that is, 

each operation must complete before the next can start. 

Intermediate images are memory arrays, so each operation needs at 

least two large areas of memory to function. And because the 

images will generally be larger than the processor caches, every 

pixel in every operation must be expensively fetched from main 

memory and written back again. 

A design like this would not have worked for us. Our need to 

process images much larger than available memory forced us to 

adopt a stream processing model. We process images in small 

pieces, loading them one at a time from the source image, passing 

them through a chain of operations, and finally writing each piece 

to the output. Moreover, we needed to be able to perform 

coordinate transformations as part of the pipeline, so this 

processing had to be demand-driven. As the output file was 

written, each small area of the output image had to pull the 

required pixels through the system. Performing a series of 

operations on a small tile has the extra benefit that each operation 

will often find its input data already in the CPU cache, avoiding 

slow round trips to main memory. 

Figure 2 shows libvips evaluation conceptually: all operations 

overlap, and whole images are never kept in memory. It shows a 

hard drive as the storage medium, but libvips has a generic IO 

layer, so the source and destination can be anything: a display, an 

area of memory, a pipe, even an https connection to a cloud 

service. 

  

Figure 2. libvips evaluation, with overlapping and no large intermediates 

When the first multi-CPU workstations arrived in the early 

90s, we took advantage of this extra power by giving each CPU a 

lightweight copy of the whole pipeline, allowing each thread to 

generate an independent section of the output image. CPUs 

synchronized during the initial read from storage, and coordinated 

again during write, but otherwise ran largely independently, with 

only one lock operation for each section read and written, no 

matter how long the pipeline of processing operations. 

By contrast, systems which operated on whole images at a 

time were forced to add threading in an ad hoc way in the 

implementation of each operation. As an operation executes, the 

set of available threads work cooperatively down the image, 

computing pixels. This arrangement forces threads to constantly 

synchronize, making them markedly less efficient than libvips. 

By 2010, although the overall design seemed sound, the 

libvips implementation had become dated and hard to work with. 

We did a complete rewrite in the modern GObject C framework 

[6], adding introspection and a new, cleaner API. SIMD support 

was improved by adopting Google’s Highway library [7]. We 

implemented support for a wide variety of useful image formats: 

JPG, PNG, TIFF, PPM/PGM/PBM/PFM, Radiance (HDR), JXL, 

FITS, NIfTI, SVG, GIF, Matlab, Analyze, OpenSlide, OpenEXR, 

WEBP, HEIC, AVIF, CSV, RAW and PDF. We also support load 

and save via the ImageMagick [8] (or optionally GraphicsMagick 

[9]) library, so libvips can read and write any image format that 

these libraries can handle, such as DICOM. 
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This new foundation has let us greatly expand the range of 

language bindings we can support, making libvips available in 

most programming systems. Since this rewrite, libvips has quickly 

become one of the more popular image processing libraries.  

libvips has a large test suite and is tested continuously with a 

range of static and dynamic sanitizers. OSS Fuzz [10], Google’s 

fuzzing program which carries out continuous fuzzing of open 

source projects deemed to be vital infrastructure, has been testing 

libvips since 2019. It has found only one serious CVE in that time. 

Benchmarks 
We made a small benchmark to illustrate the benefits of a 

streaming design. It reads a 10,000 x 10,000 pixel uncompressed 

tiled RGB TIFF, crops 100 pixels off each edge, shrinks by 10% 

with linear interpolation, sharpens with a 3x3 convolution and then 

writes the results back to another TIFF. This is a simple test, but it 

is easy to implement in almost all image processing systems, and 

exercises IO, resampling, filtering and coordinate transformation – 

the basic operations any system should be able to do well. 

We implemented this test with a range of libraries and timed 

them running on an AMD Ryzen Threadripper PRO 3955WX 16-

Cores, with Ubuntu 24.04 in performance mode. The benchmark 

runs each test five times and takes the best result. The results are 

shown in table 1 and are available in full on the git repository [11]. 

Table 1. Speed and memory use for a range of image 
processing systems 

Software 
Time 
(secs) 

Peak mem 
(RSS mb) 

Times 
slower 

libvips 8.16, C/C++ 0.46 91 1.0 

libvips 8.16 python 0.49 101 1.1 

tiffcp 0.59 581 1.3 

libvips 8.16, one thr. 0.72 52 1.6 

libvips 8.16, JPG 0.80 189 1.7 

Pillow-SIMD 9.0. one 
thr. 

1.49 985 3.2 

GraphicsMagick 1.4 1.97 1989 4.3 

ImageJ 1.54 2.70 542 5.9 

OpenCV 4.6 3.03 791 6.6 

ImageMagick 6.9.12 3.57 2002 7.8 

libgd 2.3.3, JPG 5.41 4268 6.8 

GEGL 0.4.48, JPG  5.74 751 6.1 

NetPBM 11.05 6.65 684 14.5 

 

libvips is at least twice as fast as any other system tested and 

typically needs five to ten times less memory.  

Figure 3 shows the same data as memory use over time. 

libvips is the small bump in the bottom left corner. The github 

repository for this benchmark has the code to generate this graph. 

Figure 3. Memory use over time for a range of image processing libraries 

Related software 
 A great many image processing frameworks have been 

developed over the decades and this paper does not attempt a full 

survey or comparison. Systems like OpenCV [12] and 

ImageMagick [8] use the whole image at once design. They 

represent images as huge memory arrays and have sets of carefully 

optimized functions for transforming these arrays in various ways. 

Threading is ad hoc and implemented afresh each time in each 

processing function. There is little support for tiling or for large 

images, and memory use is high. ImageMagick does have some 

limited support for image streaming. 

Another family of systems rely heavily on C++ for genericity. 

Eigen [13], CImg [14] and pylena [15] are all largely compile-time 

systems which attempt to generate optimized code for an image 

processing pipeline using C++ templates. They do not work well 

when called from more dynamic languages, usually need explicit 

coding for lazy computation or tiling, are tricky to use on very 

large images, and have threading support coded in an ad hoc 

manner for each operation. 

There are some historical systems which are fairly close to 

libvips. SGI had the ImageVision library [16], and Pixar had a 2D 

animation image composition system [17]. NASA developed SIPF 

[18] (Scalable Image Processing Framework) for processing very 

large images from planetary missions. It was demand-driven, but 

tile-based and designed for computation to be distributed over a 

large cluster of machines, making interactive use cumbersome. To 

our knowledge, none are open source, maintained or available. 

GEGL [19] is perhaps the project that is closest to libvips, but 

it threads vertically and is designed for interactive image editing 

with very heavy emphasis on caching. This makes it a poor fit for 

batch-style processing, as can be seen in the Benchmarks section 

above. 

Implementation 
 

libvips has a small, simple and portable implementation with 

less than 20,000 lines of C for the core of the system, plus another 

160,000 in a mixture of C and C++ for the image processing 

operations. 

At the lowest level of the system, libvips tracks pixel buffers: 

small, rectangular parts of an image. It uses small (only two or 



 

 

three buffers are kept per image), thread-private (that is, 

unsynchronised) caches on images based on hashes of pixel 

coordinates to discover sharing and to reuse pixel buffers between 

different parts of the image processing pipeline.  

Regions sit at the next level up. Again, these are rectangular 

areas of an image, but as well as simple pixel buffers, they can also 

be backed by pixels on other regions, or even on other images. 

Consider an operation which places a small image on top of a 

much larger image at some position. Regions which contain an 

overlap area will need to be represented by pixel buffers, but 

regions which are entirely within either the large or small image 

can simply be references to those images. Regions let operations 

implement things like crop, copy and translate with references 

rather than real memory. This is important for performance in 

systems like libvips where all operations are non-destructive and 

repeated copying could become a significant bottleneck. 

Stepping up the hierarchy again, a partial image is one where, 

instead of storing a value for each pixel, libvips instead stores a 

function which can compute any region on demand. When an 

operation requests a region on a partial image, libvips will select 

and size a pixel buffer to hold the requested pixels and use the 

stored function to calculate just those values (or reuse them, if a 

valid pixel buffer already exists).  

The stored function comes in three parts: a start function, a 

generate function and a stop function. The start function creates a 

state, the generate function uses the state plus a requested area to 

calculate pixel values, and the stop function frees the state again. 

Breaking the stored function into three parts is good for thread 

scaling: resource allocation and synchronization mostly happens in 

start and stop functions, so generate functions can run without 

having to synchronize or allocate resources. libvips makes a set of 

guarantees about parallelism that make this simple to program. 

Start and stop functions are mutually exclusive and a single state is 

never used by more than one generate operation. A start / generate 

/ generate / stop sequence works like a thread, as illustrated in 

figure 4. 

 

Figure 4. Regions and threads 

Above images sit operations. These define generate functions 

on images which accept requests for regions of pixels, in turn 

request regions from their inputs, and then compute results. The 

region create / request / free calls used to calculate pixels on an 

image are an exact parallel to the start / generate / stop calls that 

partial images use to create pixels. In fact, they are the same, and 

this is the composition mechanism that libvips uses to join 

operations together. A region on a partial image holds the state 

created by that image for the generate function that will fill the 

region with pixels. 

libvips joins image processing operations together by linking 

the output of one operation (the start / generate / stop sequence) to 

the input of the next (the region it uses to get pixels for 

processing). This link is two function calls plus a hash table 

lookup, and is very fast. Demand flows from sink to source as a 

series of function calls between the generate functions of the 

operations, and pixels flow back from source to sink in a chain of 

pixel buffers computed as the stack unwinds.  

When reading from a large libvips image (or any other format 

with the same structure on disc, such as binary PPM), libvips keeps 

a set of small rolling windows into the file, some small number of 

scanlines in height. As pixels are demanded by different threads, 

libvips will scroll these windows up and down the file. 

Some operations, such as a 90 degree rotation, need random 

access to source pixels. If the image format does not support 

random access (PNG, for example), libvips will automatically 

unpack the image to a temporary area in memory or storage. If 

simple top-to-bottom sequential access is enough, then libvips will 

attach a queue and a small scanline cache to the image format read 

library. As threads request pixels, libvips will stall and reorder 

them to ensure access remains in order.  

In a demand-driven system, something has to do the 

demanding. libvips has a variety of data sinks that can be used to 

pull pixels through a pipeline. There are sinks that will build a 

complete image in memory, sinks to draw to a display, sinks to 

loop over an image (useful for statistical operations, for example) 

and sinks to stream an image to storage. 

The storage sink keeps two buffers, each as wide as the 

image. It starts threads as rapidly as it can, up to the concurrency 

limit, filling each buffer with regions of calculated pixels, each 

thread calculating one region at once. Regions can be any shape 

and size, libvips has a hint system that operations use to tell sinks 

which geometry they prefer. libvips watches the set of worker 

threads and automatically sizes thread pools up and down with 

load to minimize stalling. 

A separate background thread watches the buffers and, when 

they fill, writes that set of scanlines to storage using whatever 

image write library has been selected. It then resets the buffer and 

moves it down the image, ready for the next set of pixels to stream 

in. 

These features in combination mean that, once a pipeline of 

image processing operations has been built, libvips can run almost 

lock-free. This is very important for SMP scaling: we did not want 

the synchronization overhead to scale with either the number of 

threads or the complexity of the pipeline of operations being 

performed. As a result, libvips scales almost linearly with 

increasing numbers of threads, provided the pipeline has sufficient 

parallelism. 

Some image processing operations cannot be implemented 

efficiently in this streaming style, for example Hough or Fourier 

transforms. Operations like this signal that they need access to all 

pixels at once and libvips will arrange for the image to be rendered 

into memory or to a temporary image in storage. Operations such 

as flood-fill are inefficient without a destructive image write. 

These functions signal this requirement to libvips and those 

sections of the pipeline are enclosed in a non-destructive wrapper. 

By default, libvips does very little pixel caching. This is 

usually correct for batch processing on large data sets. However, 

interactive applications often reuse the same area of an image, 

perhaps as the user moves a slider in an interface, and caching 

becomes essential for good performance. A number of operations 

implement different types of cache, from sequential line caches to 
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threaded, sparse tile caches, and can be added to pipelines as 

required. 

Because libvips operations are free of side-effects, results can 

be reused, a technique usually called memoization. Every time an 

operation is called, libvips searches an operation cache for a 

previous call with the same arguments, and if it finds a match, 

returns the previous result. By default, libvips caches the last 1,000 

operation calls or 100 MiB of memory, whichever is smaller.  

libvips has around 300 image processing operations written in 

this streaming style. The library supports full run-time 

introspection using GObject, so the standard GObject calls can be 

used to walk the class hierarchy and discover operations. libvips 

adds a small amount of extra introspection metadata to handle 

things like optional and deprecated arguments. 

The wider libvips ecosystem 
A range of downstream projects have appeared around 

libvips, from language bindings to frameworks, desktop 

applications and web services. 

pyvips, ruby-vips, php-vips, lua-vips 
These bindings are all fully dynamic, and have no native 

component, other than libvips and an FFI module. They define an 

image class, then intercept the missing method exception to call 

into libvips using a small marshaling class to turn language values 

into and from the GValue types needed by libvips. They usually 

define a few convenience methods too, for example a set of 

operator overloads. 

Because the bindings use run-time introspection to present the 

operations they discover in the libvips binary, they automatically 

update with new versions of libvips, making them small and easy 

to maintain. The Python binding, for example, is written in pure 

Python and the core is less than 200 lines of code. The 

documentation component of these bindings is also generated 

largely automatically by introspection. 

The Python interface is currently downloaded 50,000 times 

per month (2024) and is popular for art and for medical imaging. It 

interfaces easily with other popular Python packages, such as PIL 

and Numpy. The Ruby binding is now the default image handler 

for Rails, the popular web application framework, and is 

downloaded almost a million times a month (2024).  

cplusplus-vips, NetVips, go-vips, crystal-vips 
Bindings for more static languages tend to come in two 

halves. They have a class which can dynamically call any libvips 

operation by name, and then a set of very thin wrappers over that, 

generated at compile-time from introspection, which provide static 

type checking. Maintenance is slightly more work than the fully 

dynamic bindings, but usually just involves running a small script 

before each release. NetVips, the C# binding for libvips, has 

become reasonably popular, with over 10,000 downloads per 

month. 

Wasm 
Wasm is a relatively new way of running native code from 

JavaScript. C/C++ sources are compiled to an intermediate binary 

form (called Wasm, for WebAssembly) with a compiler like 

Emscripten, then at runtime the JavaScript implementation 

transforms the Wasm code to a fully native binary.  

Performance is reasonable, a Wasm build of libvips is faster 

than a native build of ImageMagick for example, but between two 

and four times slower than a native build of libvips, mostly due to 

the use of platform-specific intrinsics in many existing libraries. 

The complete libvips binary, including a useful selection of image 

format libraries, compiles to under 5 MiB of Wasm. 

Sharp 
Sharp is a node package using libvips to implement high-

performance image resizing for all Node.js compatible JavaScript 

runtimes, including Deno and Bun. There was an early focus on 

fluent API design, partly matching the underlying libvips C++ 

API, with some additional simplification for common tasks. A 

couple of features originally added to Sharp have migrated 

upstream and are now integrated within libvips itself, namely 

image composition and smartcrop. 

Sharp started life as a Responsive Web Design experiment. 

Previously, when images were uploaded to web sites, they would 

be resized to a small number of fixed dimensions and then served 

to clients from those static resources. Thanks to libvips, Sharp is 

fast enough that it can generate resized images on demand. 

Websites not only see a significant saving on storage costs, they 

can also serve images exactly tailored to the client device, 

something that is becoming increasingly important as the web 

becomes slowly more heterogeneous. 

The rise in popularity of Node.js as a server-side JavaScript 

runtime led to a rise in the popularity of Sharp. Gatsby, the 

progenitor of the “Jamstack” web architecture, selected Sharp for 

all of its image processing needs. In the subsequent years, almost 

all other JavaScript-based web frameworks and Content 

Management Systems have followed in adopting Sharp. Both 

Amazon Web Services (AWS) and Google Cloud recommend 

Sharp for image resizing as part of Lambda and Cloud Functions, 

their respective JavaScript function-as-a-service offerings. 

In 2023, Sharp was downloaded from the npm JavaScript 

registry over 150 million times. In 2024, it is predicted that Sharp 

will be downloaded at least 250 million times. It is currently the 

most popular downstream consumer of libvips by some margin. 

To make installation easier, prebuilt binaries are provided by 

Sharp for itself, libvips and around 25 other upstream 

dependencies, primarily those that allow it to support encoding and 

decoding of image formats popular on the web. This lets Sharp 

install painlessly on a wide range of platforms, from a Raspberry 

Pi Zero to an IBM s390x mainframe. Sharp can also be used with a 

Wasm build of libvips, enabling complete portability. Its uptake 

has been shown to reduce the CPU load on provider’s cloud 

machines. 

nip2 and desktop applications 
Several desktop applications use libvips as the image 

processing engine. The official libvips GUI is nip2, a spreadsheet-

like image processing application. 



 

 

Figure 5. Dynamic modeling of FDG uptake in a pulmonary PET-CT scan 
using nip2 

The user can develop an image processing application by 

loading images into cells and entering formulas or selecting a 

formula from menus. Thanks to libvips, memory use is low and 

recomputation is very fast and completely on-demand. Formulas 

can be adjusted interactively and the pixels change in all the 

derived images. Once a prototype is working, it can be executed in 

batch mode over a large set of inputs and without a graphical 

interface.  

The workspace shown in figure 5 computes per-voxel rate 

constants for FDG uptake in a pulmonary PET-CT scan. It contains 

around 9,000 cells, and over 20,000 images, totalling over 150 

GiB. It takes 30s to fully recalculate on a desktop PC (though 

small changes are much faster) and runs in 2.5 GiB of memory. 

Art imaging 
After the VASARI project, a number of art imaging projects 

have used libvips as their processing engine.  

Operation Night Watch [20], a project at the Rijkmuseum in 

The Netherlands, has used libvips to assemble and process their 

717 gigapixel image of Rembrandt’s The Night Watch, at the time 

the largest digital image of a work of art ever assembled. 

This colossal image was shortly superseded by a 1.6 terapixel 

scan of The Panorama of the Battle of Murten [21], a panoramic 

scroll by Louis Braun, held in Geneva. Once This holds the record 

for the largest digital image of a work of art at 3,828,940 by 

440,000 pixels. 

Conclusions 
libvips achieves high performance and efficiency thanks to 

careful design, driven by the early days of high resolution imaging. 

The LGPL license (open source with free commercial use) has 

encouraged participation and continuous development. It has been 

especially helpful in finding volunteers to package libvips for most 

popular operating systems, making libvips widely available.  

Since its development in the 1990s, libvips has been used as 

the image processing package in five European projects, 

completely rewritten and modernized, and is now widely used in 

research and on the web. It is used in large applications where 

pipelines contain well over 10,000 nodes. It is the most popular 

image processing library for node.js with almost 200,000 

downloads per day, it is the default image processing library in 

Rails, and companies from Amazon and Shopify to Wikipedia use 

it for image handling.  

In the beginning, libvips was designed for single, multi-

gigabyte images. Today, it is more likely to be used for processing 

millions of mobile phone photographs or images too large for other 

packages. Its original virtues of low memory footprint and efficient 

processing have remained relevant. The continuous growth in core-

count in CPUs automatically leads to speed increases due to our 

early developments in the 1990s. 
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