
CSeq: A Concurrency Pre-processor
for Sequential C Verification Tools

Bernd Fischer
Division of Computer Science

Stellenbosch University, South Africa
bfischer@cs.sun.ac.za

Omar Inverso
Electronics and Computer Science

University of Southampton, UK
oi2c11@ecs.soton.ac.uk

Gennaro Parlato
Electronics and Computer Science

University of Southampton, UK
gennaro@ecs.soton.ac.uk

Abstract—Sequentialization translates concurrent programs
into equivalent nondeterministic sequential programs so that the
different concurrent schedules no longer need to be handled
explicitly. It can thus be used as a concurrency preprocessing
technique for automated sequential program verification tools.
Our CSeq tool implements a novel sequentialization for C
programs using pthreads, which extends the Lal/Reps sequential-
ization to support dynamic thread creation. CSeq now works with
three different backend tools, CBMC, ESBMC, and LLBMC,
and is competitive with state-of-the-art verification tools for
concurrent programs.

I. INTRODUCTION

Concurrency makes program verification substantially
harder, and many verification tools (e.g., LLBMC [16]) restrict
themselves to sequential programs. An alternative to extending
such tools one-by-one is to build a generic concurrency pre-
processor, which reduces concurrent program verification to
its sequential counterpart so that the existing sequential tools
can be used unchanged. Here, we describe such a tool for
the C programming language, CSeq. It is based on sequen-
tialization [15] which translates a concurrent program into
a non-deterministic sequential program that (under certain
assumptions) behaves equivalently, so that the different con-
current schedules do not need to be explicitly handled during
verification.

CSeq supports the verification of sequential consistent C
programs that use POSIX threads [12]. It is implemented as
a source-to-source program transformation and can thus in
principle be used with different sequential program verification
tools.

Our first prototype [10] had several restrictions on the
input code and only worked with the ESBMC bounded model
checker [8], however the initial experiments already indicated
that the approach is feasible. In particular, the combination of
CSeq and ESBMC performed better in the Concurrency
category of the TACAS Software Verification Competition
than ESBMC’s native concurrency handling [4]. Here, we
extend CSeq to work with different backend tools, including
CBMC [7] and LLBMC. We also remove many limitations; in
particular we add support for type declarations and structures
as well as dynamic thread creation. The tool can now indeed be
used as a generic concurrency pre-processor, possibly match-
ing the performance of state-of-the art concurrent verifiers.

II. VERIFICATION APPROACH

CSeq generally follows the Lal/Reps sequentialization
schema [15], which replaces the control non-determinism in-
herent to concurrent programs by data non-determinism. More
specifically, thread creations are replaced by calls to functions
that simulate the corresponding threads to completion. The
simulation creates K copies of the shared global memory to
consider K context switches for each thread. The simulation
of the first thread starts with first copy of the memory, which
it keeps updating until it reaches the non-deterministically
choosen context switch point. It then continues with the next
copy until it reaches the next context switch point, and repeats
this up to the bound K. The next thread then starts its
simulation in each round with the copy of the memory left
by its predecessor. Each copy of the memory thus represents
the snapshot seen by the thread simulations executing during
the corresponding round of a round-robin schedule. In order
to ensure that the thread simulations work on consistent
snapshots, the simulation stores the initial global memory
guesses in a second copy, and checks at the end (i.e., after
all simulation functions have terminated) that the last thread
has ended its simulaton in each round with initial guesses for
the next round.
A. Supported Program Structure

CSeq assumes that the input program can be divided into
four blocks of code: #include statements, declarations
of global variables, function definitions, and main function
definition. Fig. 1 sketches this structure. Both global and local
variables can be scalar, arrays or structs; typedefs are
supported too. We assume that the above blocks do not mix
and that their order is as shown. The use of non-standard
include files and of parameters for the main function is not
supported yet, but these assumptions can be lifted relatively
easily.
B. Supported Pthread Features

CSeq covers all the basic pthread functionalities: thread cre-
ation and join, locks and conditional waiting. In particular, we
extended the Lal/Reps scheme so that dynamic thread creation
is now supported as well, and thread creation statements can be
at any point in the input code. However, passing return values
from pthread_join and pthread_exit or arguments to
pthread_create is not supported yet.



#include <pthread.h>
. . .

typeg1 g1; typeg2 g2; . . .

f() {
typex1 x1; typex2 x2; . . .
stmt1;
stmt2;
. . .

}

. . .

main() {
. . .

}

Fig. 1. Structure of original programs.

C. State Replication and Statement Rewriting

CSeq replaces each global variable g by a k-indexed entry
g[k] in an array of size K where k is an auxiliary variable
called the current round counter and K is the round bound
(see Fig. 2 (i)); we use the notation stmt[k] to denote the
statement resulting from this replacement (e.g., Fig. 2 (ii)). For
each global variable g CSeq also inserts a second copy _g[]
(see Fig. 2 (iii)) that contains the guesses that the first thread
uses in each round; note that only the guesses for the second
and subsequent rounds are copied into the first copy, to prevent
overwriting the initializations done by the original program
(see Fig. 2 (iv)). In addition to the state replication, all pthread-
specific statements and types as well as calls to assert and
assume are mapped into equivalent CSeq-specific code. The
code for all the extra functions and data structures is added
at the top of the sequentialized file, and it is instrumented
according to the verification backend specified at the moment
of the translation.

D. Thread Creation, Synchronization and Execution

CSeq models the status of each thread and each lock
as an integer variable. cseq_create (which replaces
pthread_create) simply inserts a pointer to the thread
function into an array t of size N declared in cseq.h and
records the round in which the thread was created in an
array born; the pointer is then used later on to start the
simulation of the threads in the round stored in born. The
initial main function is handled as a thread created in round 0
(main_thread in Fig. 2) and its pointer is inserted as the
first item in the array of threads, to start the simulation (see
Fig. 2 (v)). cseq_exit simply updates the thread status
while cseq_join uses an assume statement on the thread
status to prune away simulations in which the thread has
yet not terminated. The mutex lock and unlock operations
similarly set and check the lock variable.

E. Context Switches

The sequentialized program simulates the threads in the
order in which they are created via cseq_create. It sim-
ulates a context switch by non-deterministically increasing

#include <cseq.h>
. . .

typeg1 g1[K]; typeg2 g2[K]; . . . (i)

f() {
typex1 x1; typex2 x2; . . .
cs(); if(ret) return; stmt1[k]; (ii)
cs(); if(ret) return; stmt2[k];
. . .

}

. . .

main_thread() {
. . .

}

main() {
typeg1 _g1[K]; typeg2 _g2[K]; . . . (iii)

for(i=1;i++;i<K) { (iv)
_g1[i]=g1[i];
_g2[i]=g2[i];
. . .

}

t[0]=main_thread; (v)
born[0]=0;
for(i=0;i++;i<N) {

if(born[i]>-1) {
ret=0;
k=born[i];
t[i]();

}
}

for(i=0;i++;i<K-1) { (vi)
assume(_g1[i+1]==g1[i]);
assume(_g2[i+1]==g2[i]);
. . .

}

assert(err==0); (vii)
}

Fig. 2. Structure of translated programs.

cs() {
unsigned int j;
assume(k+j < K); // j==0 --> no context switch
k =+ j;
if (k == K-1 && nondet()) ret = 1; // preemption

}

Fig. 3. Context switch simulation.

k up to the round bound K-1. If k reaches K-1, non-
deterministically an early exit can be enforced (i.e., the thread
is pre-empted). CSeq inserts this simulation code (as shown in
Fig. 3) at all sequence points of the original program threads
(see Fig. 2 (ii)).

F. Consistency Check

The first simulated thread, in each round, accesses a fresh
copy of the memory with non-deterministically chosen values,
while the subsequent threads continue with the state left by



their predecessor. The initial guesses are stored in _g[]; at
the end of the simulation (see Fig. 2 (vi)) we check that each
round has ended with the guesses that are used in the next
round; simulations that do not satisfy this condition do not
correspond to feasible runs, and are discarded.

G. Error Detection

Since infeasible runs are only discarded at the end, assertion
checking must be integrated with the sequentialization; in
particular, in order to prevent false results, errors can only
be reported after the checker has run. CSeq thus replaces all
assert statements by conditionals that set an error variable err
and exit from the thread. The error variable is checked at the
end of the simulation (see Fig. 2 (vii)).

III. ARCHITECTURE, IMPLEMENTATION, AND
AVAILABILITY

A. Architecture

CSeq is implemented as a source-to-source transformation
tool in Python (V2.7.1). It uses the pycparser (v2.08) [3] to
parse a C program into an abstract syntax tree (AST), and then
traverses the AST to construct the sequentialized version, as
outlined above. The result can then be processed independently
by any of the supported verification tools for C.

B. Availability and Installation

Our prototype can be downloaded from http://users.ecs.
soton.ac.uk/gp4/cseq/cseq-0.5.zip. It requires installation of
the pycparser. More information is available in the
README file in the installation package at the URL above.
The project’s homepage is http://users.ecs.soton.ac.uk/gp4/
cseq.html.

C. Call

CSeq is a simple command line tool (cseq.py) that reads
the specified input file and writes the translated file to the
standard output. The translation process can be controlled
using the following command line parameters:

-t<n> sets maximum number of threads
-r<n> sets maximum number of rounds
-f<fmt> sets output format (default cbmc).

In addition, we provide a wrapper script
(cseq-feeder.py) which invokes the verification
backend specified by the -f option on the sequentialized file.
An additional option is used to set the unwinding limit for
the back-end:

-u<n> sets unwinding limit for model-checking.

D. Limitations

Since heap-allocated memory is accessible to all threads, it
needs to be treated similarly to global variables; however, this
is an unsolved problem and CSeq does not support this yet.
Implicit safety properties such as array bounds violations or nil
pointer dereferences that are handled by the applied backend
verification tool must be translated into explicit assertions, and
their detection by the backend must be explicitly suppressed,
in order to prevent false results; again, CSeq does not support

this yet. The counterexample provided by the backend to the
wrapper script refers to the sequentialized code and is not
translated back to the original input code. However, this can
be done easily by mapping back line numbers, reverting the
state replication, and rearranging the order of the statuses in
the counterexample, shuffled by non-determinism.

IV. EXPERIMENTAL EVALUATION
A. Setup

We evaluated CSeq over 24 benchmarks taken from
the pthread_atomic and pthread sections of the
Concurrency category of the TACAS Software Verification
Competition [4], with a total of approximately 2200 lines
of code. The 10 benchmarks that end on “ unsafe” contain
an error that we encoded as assert(0). We used CSeq
to translate the benchmarks into all supported formats and
then used CBMC (v4.5),1 ESBMC (v1.22),2 and LLBMC
(v2012.2a)3 to verify the translated programs. Note that we
used the original C files, not the CIL-preprocessed versions.

We also evaluated the native concurrency handling of
CBMC4 [1] and of Threader (c0.92) [11], the fastest verifier in
the Concurrency category at the Software Verification compe-
tition [4].5 Here we ran CBMC with the same setting for the
context switch bound and Threader on the CIL-preprocessed
versions. All tools were run on an otherwise idle Gentoo Linux
standard PC with 12GB of memory and an Intel Xeon CPU
with 2.67GHz. The timeout was set to 400s. For a comparison
between CSeq and ESBMC’s native concurrency handling, see
[10].

B. Results

Table I summarizes the results. Here N and K denote
the number of threads and rounds, respectively, used for
the sequentialization translation. U denotes the unwinding
bound for bounded model-checking (not used by Threader).
Times are given in seconds; for the sequentialized versions
they also include CSeq’s runtime, which is generally neglible
(approx. 0.1secs). TO denotes timeout. The time of the fastest
tool for each benchmark is shown in bold; the time of the
fastes CSeq backend is shown in cursive.

CSeq fails to translate five benchmarks due to the restric-
tions already mentioned: on the first file due to non-standard
include files, on the last file because of dynamic memory
allocation (the tool finds a call to malloc and rejects the
file) and on the other files because the passing of parameters
to main is not handled correctly at the moment. Threader fails
on both the original CIL-preprocessed versions for the queue
test cases.

1cbmc --unwind 〈U〉 --no-unwinding-assertions 〈file〉.c
2esbmc --unwind 〈U〉 -–64 --no-slice --no-bounds-check --no-div-by-zero-

check --no-pointer-check --no-unwinding-assertions --z3-ir 〈file〉.c
3clang -c -g -I. -emit-llvm 〈file〉.c -o 〈file〉.bc;

llbmc --max-loop-iterations=〈U〉 --ignore-missing-function-bodies -no-
overflow-checks -no-div-by-zero-checks --no-max-loop-iterations-checks
〈file〉.bc

4cbmc --unwind 〈U〉 --error-label ERROR --no-unwinding-assertions
〈file〉.c

5threader.sh 〈file〉.cil.c



TABLE I
COMPARISON OF SEQUENTIALIZATION AND NATIVE CONCURRENCY

HANDLING. ∗ - PROGRAM REJECTED. † - INTERNAL ERROR.

Sequentialized version Concurrent version
N K U CBMC ESBMC CBMC Threader

dekker safe 2 3 5 4.7 4.2 0.5 0.5
lamport safe 2 3 5 52.0 23.0 7.1 63.8
peterson safe 2 3 5 0.6 0.8 0.3 7.4
rw lock safe 4 2 5 1.6 2.8 0.6 1.8
rw lock unsafe 4 2 5 -† 4.5 0.4 2.6
scull safe - - 5 -† -† 1.5 171.2
szymanski safe 2 3 5 0.9 1.1 0.6 21.3
time var mutex safe 2 3 5 1.0 2.1 0.7 7.2
fib longer safe 2 7 7 23.4 TO 18.1 11.2
fib longer unsafe 2 7 7 7.2 TO 3.0 10.1
fib safe 2 6 6 6.6 65.2 6.8 7.7
fib unsafe 2 6 6 6.3 45.8 0.5 6.8
indexer safe - - 130 -† -† TO 0.7
lazy unsafe 3 2 7 0.9 1.8 0.5 0.7
queue safe 2 2 5 144.5 10.1 71.6 -†

queue unsafe 2 2 5 249.2 TO 86.0 -†

reorder 2 unsafe - - 8 -† -† 6.2 2.4
reorder 5 unsafe - - 8 -† -† 6.5 3.5
stack safe 2 2 5 8.7 TO 64.7 TO
stack unsafe 2 2 5 9.2 TO 3.7 144.4
stateful safe 2 2 5 0.8 0.7 0.9 3.9
stateful unsafe 2 2 5 0.7 1.1 0.7 0.8
sync safe 2 2 5 4.5 1.4 4.9 2.5
twostage 3 unsafe - - 5 -* -* 28.6 24.1

Overall, the native concurrency handling is faster than se-
quentialization, but the time difference is generally reasonably
small; moreover, for some benchmarks CSeq even outperforms
the native concurrency handling. Within CSeq, CBMC slightly
outperforms ESBMC as backend, but again the differences are
small, and may be caused by the fact that we have mainly
used CBMC for testing during development, and as a result
the code generated from CSeq is now somewhat optimized for
that specific backend.

V. RELATED WORK

Sequentialization was originally developed for two threads
and two context switches by Qadeer and Wu [18], but was
subsequently generalized by Lal and Reps to a fixed num-
ber of threads and a parameterized number of round-robin
scheduling [15]. Later, LaTorre/Madhusadan/Parlato extended
this work to track only reachable configurations [13]. Further
extensions allowed modelling of unbounded, dynamic thread
creation [9], [5], [14], and dynamically linked data structures
allocated on the heap [2]. Poirot [17] also verifies concur-
rent C programs via sequentialization, but it first translates
them into Boogie and then implements the sequentialization
transformation at the Boogie level, and can thus not be used
as a generic concurrency preprocessor. Moreover Poirot uses
a different, Windows-based concurrency library, not immedi-
ately comparable to the POSIX thread api. Rek [6] implements
sequentialization for C via code-to-code transformation, but
it is targeted at real-time systems and hard-codes a specific
scheduling policy.

VI. CONCLUSIONS

Sequentialization is based on a relatively straightforward
idea, but due to different backend tool idiosyncrasies and
corner cases, a generic sequentialization tool is not easy to
build. Nevertheless, the current results are encouraging. In
addition to lifting the mentioned restrictions and limitations,
we plan to integrate further backends, in particular CEGAR-
based tools, into CSeq, to provide support for heap-allocated
memory, and to automatically map the counterexample back to
the original program. Further performance improvement of our
prototype is certainly possible. The key is to reduce the non-
determinism to speed-up the verification. This can be achieved
(a) by optimising the static code and in particular the cs()
function, which being duplicated at each program statement is
extremely critical, (b) by reducing the context switch attempts:
for example, when a statement does not access global memory,
there is no need to wrap that statement between two context
switch attempts.

REFERENCES

[1] J. Alglave, D. Kroening, and M. Tautschnig. Partial Orders for Efficient
Bounded Model Checking of Concurrent Software. CAV, LNCS 8044,
pp. 141–157, 2013.

[2] M. F. Atig, A. Bouajjani, and S. Qadeer. Context-bounded analysis for
concurrent programs with dynamic creation of threads. Logical Methods
in Computer Science, 7(4), 2011.

[3] E. Bendersky. Pycparser. http://code.google.com/p/pycparser/.
[4] D. Beyer. TACAS 2013 Competition on Software Verification. http:

//sv-comp.sosy-lab.org/2013/
[5] A. Bouajjani, M. Emmi, and G. Parlato. On sequentializing concurrent

programs. SAS, LNCS 6887, pp. 129–145, 2011.
[6] S. Chaki, A. Gurfinkel, and O. Strichman. Time-bounded analysis of

real-time systems. FMCAD, pp. 72–80, 2011.
[7] E. M. Clarke, D. Kroening, F. Lerda. A Tool for Checking ANSI-C

Programs. TACAS, LNCS 2988, pp. 168–176, 2004.
[8] L. Cordeiro and B. Fischer. Verifying multi-threaded software using SMT-

based context-bounded model checking. ICSE, pp. 331–240, 2011.
[9] M. Emmi, S. Qadeer, and Z. Rakamaric. Delay-bounded scheduling.

POPL, pp. 411–422, 2011.
[10] B. Fischer, O. Inverso, and G. Parlato. CSeq: A Sequentialization Tool

for C (Competition Contribution). TACAS, LNCS 7795, pp. 616–618,
2013.

[11] C. Popeea, A. Rybalchenko. Threader: A Verifier for Multi-threaded
Programs (Competition Contribution). TACAS, LNCS 7795, pp. 633-636,
2013.

[12] ISO/IEC: Information technology—Portable Operating System Interface
(POSIX) Base Specifications, Issue 7, ISO/IEC/IEEE 9945:2009. ISO
(2009).

[13] S. La Torre, P. Madhusudan, and G. Parlato. Reducing context-bounded
concurrent reachability to sequential reachability. CAV, LNCS 5643,
pp. 477–492, 2009.

[14] S. La Torre, P. Madhusudan, and G. Parlato. Sequentializing parameter-
ized programs. FIT, EPTCS 87, pp. 34-47, 2012.

[15] A. Lal and T. W. Reps. Reducing concurrent analysis under a con-
text bound to sequential analysis. Formal Methods in System Design,
35(1):73–97, 2009.

[16] F. Merz, S. Falke, and C. Sinz. LLBMC: Bounded Model Checking
of C and C++ Programs Using a Compiler IR. VSTTE, LNCS 7152,
pp. 146–161, 2012.

[17] S. Qadeer. Poirot - a concurrency sleuth. ICFEM, LNCS 6991, pp. 15,
2011.

[18] S. Qadeer and D. Wu. KISS: keep it simple and sequential. PLDI,
pp. 14–24, 2004.


