Python 3.5.2 |Anaconda 4.1.1 (x86_64)| (default, Jul 2 2016, 17:52:12)
Type "copyright", "credits" or "license" for more information.
IPython 4.2.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.
%guiref -> A brief reference about the graphical user interface.
In [1]: runfile('/Users/progprim/Desktop/code/fifoqueue-alternative.py', wdir='/Users/progprim/Desktop/code')
In [2]: runfile('/Users/progprim/Desktop/code/fifoqueueOO.py', wdir='/Users/progprim/Desktop/code')
3 customers in queue1:
waiting customer: Takeda
waiting customer: Fangohr
waiting customer: Spearing
2 customers in queue2:
waiting customer: Peter
waiting customer: John
In [3]: q1
Out[3]: <__main__.Fifoqueue at 0x119ff1908>
In [4]: runfile('/Users/progprim/Desktop/code/fifoqueueOO.py', wdir='/Users/progprim/Desktop/code')
3 customers in queue1:
waiting customer: Takeda
waiting customer: Fangohr
waiting customer: Spearing
2 customers in queue2:
waiting customer: Peter
waiting customer: John
In [5]: q1
Out[5]: <__main__.Fifoqueue at 0x118d24a90>
In [6]: str(q1)
Out[6]: 'I am a queue'
In [7]: repr(q1)
Out[7]: '<__main__.Fifoqueue object at 0x118d24a90>'
In [8]: runfile('/Users/progprim/Desktop/code/fifoqueueOO.py', wdir='/Users/progprim/Desktop/code')
3 customers in queue1:
waiting customer: Takeda
waiting customer: Fangohr
waiting customer: Spearing
2 customers in queue2:
waiting customer: Peter
waiting customer: John
In [9]: q1
Out[9]: I am a queue
In [10]: runfile('/Users/progprim/Desktop/code/fifoqueueOO.py', wdir='/Users/progprim/Desktop/code')
3 customers in queue1:
waiting customer: Takeda
waiting customer: Fangohr
waiting customer: Spearing
2 customers in queue2:
waiting customer: Peter
waiting customer: John
In [11]: q1
Out[11]: I am a queue with 3 customers
In [12]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
File "/Users/progprim/Desktop/code/mexhat-numpy.py", line 34
print "error:", deviation
^
SyntaxError: Missing parentheses in call to 'print'
In [13]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
File "/Users/progprim/Desktop/code/mexhat-numpy.py", line 78
print "Numpy version is %.1f times faster" %\
^
SyntaxError: Missing parentheses in call to 'print'
In [14]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 2.223029320536979e-16
Numpy version is 91.5 times faster
In [15]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 2.223029320536979e-16
Numpy version is 112.2 times faster
In [16]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 2.223029320536979e-16
Numpy version is 173.9 times faster
In [17]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 2.223029320536979e-16
Numpy version is 135.0 times faster
In [18]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 2.223029320536979e-16
Numpy version is 113.9 times faster
In [19]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 2.223029320536979e-16
Numpy version is 38.5 times faster
In [20]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 2.223029320536979e-16
Numpy version is 66.3 times faster
In [21]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 2.223029320536979e-16
Numpy version is 158.8 times faster
In [22]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 2.223029320536979e-16
Numpy version is 173.4 times faster
In [23]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 2.223029320536979e-16
Numpy version is 121.8 times faster
In [24]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 2.223029320536979e-16
Numpy version is 115.3 times faster
In [25]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 3.2512825073745733e-15
Traceback (most recent call last):
File "<ipython-input-25-0edb81dc7dd4>", line 1, in <module>
runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
File "/Users/progprim/anaconda/lib/python3.5/site-packages/spyderlib/widgets/externalshell/sitecustomize.py", line 714, in runfile
execfile(filename, namespace)
File "/Users/progprim/anaconda/lib/python3.5/site-packages/spyderlib/widgets/externalshell/sitecustomize.py", line 89, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "/Users/progprim/Desktop/code/mexhat-numpy.py", line 82, in <module>
main()
File "/Users/progprim/Desktop/code/mexhat-numpy.py", line 74, in main
test_is_really_the_same()
File "/Users/progprim/Desktop/code/mexhat-numpy.py", line 35, in test_is_really_the_same
assert deviation < 1e-15
AssertionError
In [26]: %debug
> /Users/progprim/Desktop/code/mexhat-numpy.py(35)test_is_really_the_same()
33 deviation = math.sqrt(sum((ys1 - ys2) ** 2))
34 print("error:", deviation)
---> 35 assert deviation < 1e-15
36
37
ipdb> p deviation
3.2512825073745733e-15
ipdb> exit
In [27]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 3.2512825073745733e-15
Numpy version is 71.7 times faster
In [28]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 3.2512825073745733e-15
Numpy version is 71.5 times faster
In [29]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 0.0
Numpy version is 1.6 times faster
In [30]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 0.0
Numpy version is 1.3 times faster
In [31]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 0.0
Numpy version is 1.3 times faster
In [32]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 0.0
Numpy version is 1.5 times faster
In [33]: %timeit loop1
10000000 loops, best of 3: 22.4 ns per loop
In [34]: %timeit loop2
10000000 loops, best of 3: 24.6 ns per loop
In [35]: runfile('/Users/progprim/Desktop/code/mexhat-numpy.py', wdir='/Users/progprim/Desktop/code')
error: 2.223029320536979e-16
Numpy version is 110.4 times faster
In [36]: %timeit loop1
The slowest run took 69.54 times longer than the fastest. This could mean that an intermediate result is being cached.
10000000 loops, best of 3: 24.4 ns per loop
In [37]: %timeit loop2
10000000 loops, best of 3: 26.2 ns per loop
In [38]: """
...: Demo of image that's been clipped by a circular patch.
...: """
...: import matplotlib.pyplot as plt
...: import matplotlib.patches as patches
...: import matplotlib.cbook as cbook
...:
...:
...: image_file = cbook.get_sample_data('grace_hopper.png')
...: image = plt.imread(image_file)
...:
...: fig, ax = plt.subplots()
...: im = ax.imshow(image)
...: patch = patches.Circle((260, 200), radius=200, transform=ax.transData)
...: im.set_clip_path(patch)
...:
...: plt.axis('off')
...: plt.show()
...:
In [39]: