{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Symbolic computation\n",
"====================\n",
"\n",
"SymPy\n",
"-----\n",
"\n",
"In this section, we introduce some basic functionality of the SymPy (SYMbolic Python) library. In contrast to numerical computation (involving numbers), in symbolic calculation we are processing and transforming generic variables.\n",
"\n",
"The SymPy home page is , and provides the full (and up-to-date) documentation for this library.\n",
"\n",
"Symbolic calculation is very slow compared to floating point operation (see for example [symbolic calculation for decimals](13-numeric-computation.ipynb#Symbolic-calculation)), and thus generally not for direct simulation. However, it is a powerful tool to support the preparation of code and symbolic work. Occasionally, we use symbolic operations in simulations to work out the most efficient numerical code, before that is executed.\n",
"\n",
"### Output\n",
"\n",
"Before we start using sympy, we'll call `init_printing`. This tells sympy to display expressions in a nicer format."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import sympy\n",
"sympy.init_printing()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Symbols\n",
"\n",
"Before we can carry out any symbolic operations, we need to create symbolic variables using SymPy’s `Symbol` function:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"sympy.core.symbol.Symbol"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sympy import Symbol\n",
"x = Symbol('x')\n",
"type(x)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAA0AAAANCAYAAABy6+R8AAAABHNCSVQICAgIfAhkiAAAAMBJREFU\nKJHF0bFLwkEYxvFPNZVLIE4ShRDo4KKTv9ZAml0cHIOWtmZpcom2wNndqT+gQXARx7ag0am/oCUd\n7hech0K69Cx333vveY/nXvbQQcJN9LDEBW5xh1OU8YjP2HCJl6jRCB/IcIUfPKSvDlGIeIxZvj/D\nM4qp6TzhBQbbcm1STch1vYvpHt84ic4q6aVjPKGe8yvmUf1QyLymjvA7XVTxjmlU76P1C0f5+oWS\nMI+GMKsMN2jjDZO/Jft3rQCgLBpNY0ETtAAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$x$$"
],
"text/plain": [
"x"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y = Symbol('y')\n",
"2 * x - x"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAEwAAAAWCAYAAABqgnq6AAAABHNCSVQICAgIfAhkiAAAAqBJREFU\nWIXt2F2oTWkYwPGfk+8zSpKvc8GcKMIFIiE3yDTlQrlQ5Eq5kgYXSiFCIS4oSVjyfeNOEzdmzCQ1\nNflKUWiUmnymJB8NLp61WZa9z1nn7H3swf7Xaq/3eZ/1vs9+3vd51vMuGlTFFJzGr7iGA2ipq0Xt\n0xdXa6hXmIk4h/5p+wdcwAOMqOVEOXpU8exk/IV3NdLrEGcwMiebkE5yspYT5div47t4jLA3wSWV\nHVFUr1M8xz0Mysmf4lEtJ8qRqG4HJ4o5oqhemzRl7u9iMJpzOq/Qp9qJvhW6Z+6noh/+zciGCSf+\nlntuEhaLFRuBpVgm8l8L1uN2VxjcRbRiJX7EMRzP9K0SOXBhkYG24D9My8hGYTe6pe0Et1Kd6Xib\nTlKURP1Dci96YoXP36RXcKrUaFKZVizHVlzMyH/BmszkzSLPXRQ5cGdq3NfCDPyB1/hJLH6J/hiH\n39sbpJd4q+ws0zc8176PzQUMO4zLZa4nuFGhb1KBcRPV7bAh4v+2iGian+mblz4ztr3Bj2BjASPG\npAPOLqBbiUT9Q5KInGfCeSW24aGP6adsSG4Q23JdRrakwiSzxFbOhmxrG0b9n5mL86IqKDFTFO8f\nHJ132OJUtiknn5H+9hFeH5+254gk+SIz3uoqDa8Xw3Ez024Wp59P8le2rJiJXTiLozmdkod/Fg75\nG2/EbnqW0V0rwvlL0jv97evjwnVG7x8MyLS3iWNbxYT/WDim3FXacQNxENvTq1kk832i1JjThsGV\nSHQ8hw0SC3s9Y+NDEVKLOqEHo/En9mCHeHM+0XYlURcSXXu47wxNooA/VG9DyjFRdV8sasEJnxas\n8/FSFOkNyvBIpBTiOHhHhaNQt3LC75AF4uNpE4YK512qq0UNGjQownuvxJ720vwq9wAAAABJRU5E\nrkJggg==\n",
"text/latex": [
"$$2 x + 11 y$$"
],
"text/plain": [
"2⋅x + 11⋅y"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x + y + x + 10*y"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAADgAAAATCAYAAADF7c7rAAAABHNCSVQICAgIfAhkiAAAAgNJREFU\nWIXt18+LTmEUB/APxq8ZxiTZTIMwMQk1b35kpbDgb7CYomRBKTYsrCSKsiGxeCUrO5rtlNRQEmGl\nLPyIsFA0aoixOPeaZ3TvTO+883ql+dbtdM95nvt8v+eeezqX/xwzmk1gHLTiPjaUxNfgNF5iBEtw\nDO//CjvMrmPvJjwQxIuwCG+wN/EdxzPMqePcmnAFnTXu6UE/quLtlQk8hQ9oSXyL8R0Hazxz0qhi\nRZ37ywQ+x+0C/1MMpI6ZdRBoFhaiG68KYm9RSR0tfyyoiLoeEdnfjwPoEOV2Ei+mlG7tWJ7ZzwWx\nIbRjLoYZK7AbfTgsBFbFd9Anuu1dPMK5KadcG9oz+60gNpTZDlk3TQUeEW02r/s2fMIgunBeiG42\nfmS26PvMO/es3JEKPGM0A7DNqKDXOFpy4DVsLPAvw2bFmd6HhyXPmwgfx4m1ZfbLRA/pERnaOUkS\nNK6LtuEnLhTEBkTV/UZZF90hMj+Y+FbWTLExGBK9oKsgthqPU0cucD7OYn12vwtP8DVZV1aizUA/\nthg7aq4Som+mC3OBe4SAdVgr3tZwsu4ErjeIbBnmZba1IHZJlGo6qh0So9rVdGHeZO6Imq9k11Zc\nxGVRqrdwb2p4j4ulIpGdItnEMJ0Tv5H53mG7GNl6sUCMarsVN7WGoKq+JvPPo1d9fxTTmAZ+AdGc\nXTtwhggcAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$x + 10$$"
],
"text/plain": [
"x + 10"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y + x - y + 10"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can abbreviate the creation of multiple symbolic variables using the `symbols` function. For example, to create the symbolic variables `x`, `y` and `z`, we can use"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAEAAAAAWCAYAAABwvpo0AAAABHNCSVQICAgIfAhkiAAAAvBJREFU\nWIXt2F2IVVUUB/Cf4zeTZglpmRSmNhKFjhARfvQQ9VKgkCEiIShYvYgEYQUqlhkWBSkp+NCtLI16\nUkJMUFKjQSRLIagHxSAINU0lTcH0YZ1Le87c7+No0PzhcO7+r/2x9tpr7bXO5X+Ofrn2w1iGobgb\nB7Acv91gverhESzGRaHrUKzGkSKTduJrjMjat2AvTuDeIhPXwMAWxkzBNgxJuA9wDpOLKPMVxldY\n7Cq2Fpm4BjZhTJNj3hM6zUm4pzLu/WYVaEt+z8Ru3JFwh/AnHm924gYxUPNecEic9tmEG5a9LzSr\nQGqAYxiF9lyfSyLG/iv4GLeKcC2jE1ewpcjE7Rid4+4SrrUn4cZhvQiZebn+L2kuXEqK3y/34SRe\nqCJflMmP4MGMW4MHGpn8TWHZRxNuAwZhCQ7n+v+IzxuZOENJ6waYhXX4Ba/omdFgurjIV+AtfIb9\neLWRBcbhPN5IuGn+PfUd+DKRjRDGerHRHbg+HjBIeOi3GJmTTcSApP2sMEKbOhiMLryb40dnsjFi\ns7MT2dMiXCq51kf4ocJzGj9VkU2tp2SCx7K1v6jRZyE+1d0gVfEJVtWQLxW38OCEWytirZIrVkNJ\n8x7QgYdy3HBhgH9E/ZLHy9iowslXcoWVIq6WJ9xzuT5PCre7lHAzRLxdrap6cQwXafB7cfmVcSV7\n90P/3JhVIms8LwwEt5WFeQPMz7jXc/y0XPse/Jy020Uq+qbeDgrisnDhYziT8JOy90Hd64OVwiiv\nJVxH2k7jYYaosnZic8IP0PNUj+P2pL1WFDS9bYC/8bYoz1MDLMFfuqfCWeKbYbtw/18xFk+IO6MH\n/hAbrfTkPaJDpJP1eAf7xIVW93bNoaS1LLBA1BubsUuk3omJfJhIkeX7aJmoHr/D/S2sVxNt+B0f\ntjC2pPc+tHoNW3QvgGYL15zQwlydWvsivKk4JdyLKJWPYu7NU6cYmsnZZTwj/jhpw53CGF3XU6k+\n9KEPNwzXANPSlluBTFcEAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$2 y + 3 z$$"
],
"text/plain": [
"2⋅y + 3⋅z"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import sympy\n",
"x, y, z = sympy.symbols('x,y,z')\n",
"x + 2*y + 3*z - x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once we have completed our term manipulation, we sometimes like to insert numbers for variables. This can be done using the `subs` method."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAADgAAAAWCAYAAACVIF9YAAAABHNCSVQICAgIfAhkiAAAAmBJREFU\nWIXt11uITlEUB/CfadA01MTkNmmYTJE8MLnE5AUp5WHKgzR5UsqLXN6EieFhEg+KB+STe+RBSXhw\nedB4kUspyrWUXBNpEONhny97TjN835lvRmr+deqstdde+7/O3mvtdRhAv2MWzuEi7uMQav4pox4w\nOMOcGbiMqkQehht4jQmloVU6HFD8l7+ASSnddHTiVClIlRI5xX/1z3iBUSn9B7zNQqIsy6Q+xFOM\nRmVK/xUVWRyWp+QGNAtHYgJWYbWQEzXYisdZFioQczAcryLdOCHoa5GuDusxEcdxIhrbgJlYnnZe\nj70YlMg5PMJczMPPZHKhyClNYdiJHwmPPPZjCNbiXsr+Lk5352ifrkfjDG4l7+OxCyOLIJbT+wDr\n8Amtka4RK5L3izgbjVUJH2NNd85qU/JL7CiAxBHc6eZ5jwc9jDUU4Hco2rE7pR+TjNUIwTRFY0uF\n9Jr6N+dTEsOFBRDpCTm928Gj2PaH8XX4KASbRxve+J1mPVbRBfiGm5GuLhPNbGgR8n9LpFuZslmM\nq0KFzWO+0Bh05hX5ACuE6Kcl8iIheb9Edht7z7sgNCfrbU/pG1NyLR5GcqXQCV2PjfLXxBIhgNv4\nLuzWx8huk3Bk+hrzsQeXcCzSl4t2JcFzjIjkNqE97BJg/qxWJwbvErlFqKodwlE9jytFks0lfp4V\nMeedrqRjtGJzJE/GQaFodWC2UFyqhSutz5HTfw1ymdAcHO6n9RDyIcsfRSE4qesF3yTsYn0frdfv\neCt0XYRW7oluWjOi++I/wzLhx7gMY4Vg2/8powEMIBt+AZzMc4HDNi6AAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$x + 2 y$$"
],
"text/plain": [
"x + 2⋅y"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sympy import symbols\n",
"x, y = symbols('x,y')\n",
"x + 2*y"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAADgAAAAWCAYAAACVIF9YAAAABHNCSVQICAgIfAhkiAAAAmBJREFU\nWIXt11uITlEUB/CfadA01MTkNmmYTJE8MLnE5AUp5WHKgzR5UsqLXN6EieFhEg+KB+STe+RBSXhw\nedB4kUspyrWUXBNpEONhny97TjN835lvRmr+deqstdde+7/O3mvtdRhAv2MWzuEi7uMQav4pox4w\nOMOcGbiMqkQehht4jQmloVU6HFD8l7+ASSnddHTiVClIlRI5xX/1z3iBUSn9B7zNQqIsy6Q+xFOM\nRmVK/xUVWRyWp+QGNAtHYgJWYbWQEzXYisdZFioQczAcryLdOCHoa5GuDusxEcdxIhrbgJlYnnZe\nj70YlMg5PMJczMPPZHKhyClNYdiJHwmPPPZjCNbiXsr+Lk5352ifrkfjDG4l7+OxCyOLIJbT+wDr\n8Amtka4RK5L3izgbjVUJH2NNd85qU/JL7CiAxBHc6eZ5jwc9jDUU4Hco2rE7pR+TjNUIwTRFY0uF\n9Jr6N+dTEsOFBRDpCTm928Gj2PaH8XX4KASbRxve+J1mPVbRBfiGm5GuLhPNbGgR8n9LpFuZslmM\nq0KFzWO+0Bh05hX5ACuE6Kcl8iIheb9Edht7z7sgNCfrbU/pG1NyLR5GcqXQCV2PjfLXxBIhgNv4\nLuzWx8huk3Bk+hrzsQeXcCzSl4t2JcFzjIjkNqE97BJg/qxWJwbvErlFqKodwlE9jytFks0lfp4V\nMeedrqRjtGJzJE/GQaFodWC2UFyqhSutz5HTfw1ymdAcHO6n9RDyIcsfRSE4qesF3yTsYn0frdfv\neCt0XYRW7oluWjOi++I/wzLhx7gMY4Vg2/8powEMIBt+AZzMc4HDNi6AAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$x + 2 y$$"
],
"text/plain": [
"x + 2⋅y"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x + 2*y.subs(x, 10)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAEAAAAAWCAYAAABwvpo0AAAABHNCSVQICAgIfAhkiAAAAr1JREFU\nWIXt10uolVUUB/Cf12deHxcRQ82u+MAC8YnawByW08BBqDhpJGhQIkiFiCKCCCIGDRQ8opgQjsRB\nDYw0QoxI1IkRhVGi+YjSG6n0GKzvg+9u9zl67rkPw/uHwz7rv/be3/rW3uvx8YxjSCIvxRY8hxdw\nHlvxSz/b9aQYjXOYV0c/B7twFf9iIjbjRm7yInyGjkIegzP4FdN7y+IEw1tYuwRfixfLYTx+xtoK\n9x4uY0RuwSnMSriFxQOOt2BoIxzA1CbXvCxsrYnTr+eAneLwhlW4CXiI9bkF9/ATJiX8b7jVpJFP\niprWbldNfQd8h5MZ/hJOl0JbRfEjnkd7suC+yAn/J4zFbHGgKa5hcSlUHfAKOoUjSkwRTjlf4Wbg\nQ3ENVyebb9J34dIMOovxj4yuC+Mwku4O6ML1ZPIG/IP3K9xmvCsS5pZk/jqPVpaBwLhifJDRdRVj\nB90dkGIGNooy8lXBLcfZYuOVIs5KdGAuvuiRyb2Lv4sxlx/KyjOU7hmyipE4JrL0BxX+e1F6puI1\nrKroXhUOzTngMOZn+BdF75E7qbfwTR37HoebDXRljrvbaIMj2N5A/w5+V8RRgd3Fg5sJgZq+qQLt\nInT3ZXSnRWVDPgS2iau9tcKtS+a8js9FhSixQjRO9cpSf6IL32JaRjcLF0ohdcDagtuR8MsTuRNX\nKnK76CSfhvgvcQrLdL+RM4VTPimJag5Ygb34FEcr/DCPnupV0VWV2C2SS387YFQxjsafie4jvC0O\n9UjBbRSt8MHcZrfFi+Z+6Y14CV+KfmCPqAx3NK4qOdQ0nwMmiUO6XLHvpgjJNcncBeIm7BUJ/YT4\nyOtVtIn+4VAP1tb03YdWn+FjXKzIb+Av0Xo2i0Va+yIcENzC/uL/FPyANwfOnNbQk7Z1lWhe2jBZ\nOONcbxo1iEEMot/wH9E8iPFdNTQdAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$2 y + 10$$"
],
"text/plain": [
"2⋅y + 10"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"(x + 2*y).subs(x, 10)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABYAAAASCAYAAABfJS4tAAAABHNCSVQICAgIfAhkiAAAAStJREFU\nOI3l000rxFEUx/HPaJDJQpOnHaXkoexsJNnwEpTsrLwAL2Ds5TXMCmWhZGNlh1jYKJspJbupoSwY\nD7H4XzWm/1z5l5Wzud3fOed7zz33XP7Ici30As4wFckdRQlPqIe1hMdWCdO4wEcEOoFbzIT9IG4C\nGOQbgsexiSreI9A89rGFk6C1oxv3kTxQjlS8ihf0xABtP52QYsuo4CEWlI85UyyHWZxjDouSFgxj\nA5c/AcrSW9Eb9GusNejzkmmYzAoeCPozupp8dzj82vy2x7WwViRz2wxeQGcW8KtkHGspvjo6UMwC\nJvmRfSl6Z4BXs4J3MOR7j3MYwwHeYsm7kkcqpPjacIr1Bm0pVDqcBuvHEa4C9CMEH2OlKbYomZw9\nbIdbjMQq/cf2CS+8PU4OkYAWAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$16$$"
],
"text/plain": [
"16"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"(x + 2*y).subs(x, 10).subs(y, 3)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABYAAAASCAYAAABfJS4tAAAABHNCSVQICAgIfAhkiAAAAStJREFU\nOI3l000rxFEUx/HPaJDJQpOnHaXkoexsJNnwEpTsrLwAL2Ds5TXMCmWhZGNlh1jYKJspJbupoSwY\nD7H4XzWm/1z5l5Wzud3fOed7zz33XP7Ici30As4wFckdRQlPqIe1hMdWCdO4wEcEOoFbzIT9IG4C\nGOQbgsexiSreI9A89rGFk6C1oxv3kTxQjlS8ihf0xABtP52QYsuo4CEWlI85UyyHWZxjDouSFgxj\nA5c/AcrSW9Eb9GusNejzkmmYzAoeCPozupp8dzj82vy2x7WwViRz2wxeQGcW8KtkHGspvjo6UMwC\nJvmRfSl6Z4BXs4J3MOR7j3MYwwHeYsm7kkcqpPjacIr1Bm0pVDqcBuvHEa4C9CMEH2OlKbYomZw9\nbIdbjMQq/cf2CS+8PU4OkYAWAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$16$$"
],
"text/plain": [
"16"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"(x + 2*y).subs({x:10, y:3})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also substitute a symbolic variable for another one such as in this example where `y` is replaced with `x` before we substitute `x` with the number `2`."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAEAAAAAaCAYAAAAHfFpPAAAABHNCSVQICAgIfAhkiAAAAupJREFU\nWIXt2FGIlUUUB/Cfa7qKtYkFaiKGIriIUgpZGiJoGFKQoBE9SS+hLyKKEBEsRESrFVToQ0I3FVSU\nHgQV7CEKEgWxVAhSyHoIokxJUFfL1Yczl539uur9dr33Ju0fPubOOfOd+X9nZs45c/mfY1irCTQJ\n8zAfD2MB3sY3LWXURDyId7P+y7iCSa2h03zMRi+mpX4HbgpHeKAw+Gm8jqsYnZ53cLoZTBuE03gG\nP6X+5NSeLQ58EvsxKpNtwSU80UCCIxpouxZ24P1aig/F1liZyV5Iso8aSOhTzTuPr6FbFvzbMuV3\nYrX/ymQPpfZKA0mN0JxdsCy1G9GOx+nvgO0iTRzOZHNwA7saz6+hWIiJOIgJeD7174hp+AOra+jm\niiPzAb7AOLyB97BTX8StBxVpNUpgKj7BAbxa0K3H7sLYS+Io50/H7Yy/hI9xRnxUsVianvRVeSWN\nnS+KjN5Eol5UlHfAVozEWpwq6E5iT0l7NTESX+FbPJLJt2BM1t+LY+n3ZGwujL8bKso54Fl9q34I\n+zLdWHFk15Swd0csEttlbyabUhjzq6gV7obP8X2N5wJ+uI1ubg07E0QQmyQ+dnmmezHxnVkHn39h\nhqiaclSrpl5RUhbRmfRLBjJhQkX5IwDrRMZqz2TdIm7VfcepZoEOkQZP6B/AbqR2GIbXeH8xruNI\nJpta7+SDxFJxRK9lsoXiknOzXiNVB1wXZfE5XMz0nak9Lrw9Wnh5VpI/J4JQtU5ow4Z6Jx8kpuDH\nrD9GpO2vyxip3gV6sAm/6++AtbisLxUuEx94An+L1c4LpzdFqdkM/CLSbxXdoqAq5YDiWVklioR/\nMF4EqLdEmoNH00R/pn6XyAo9Yhftx5dlCIgY0IWfS743A9tEsOwRd/6ZiWNvSVstRcXAgmCONvyG\nzwZLphWYo/xdYJf+BdBysQum3ytS/3WcF9UoPCbu+q8MxND9+p/gCjwltv5E4YyjLWU0hCEM4b7E\nLY5LkjdEV6RQAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$3 x + y^{2}$$"
],
"text/plain": [
" 2\n",
"3⋅x + y "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"myterm = 3*x + y**2\n",
"myterm"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAEAAAAAaCAYAAAAHfFpPAAAABHNCSVQICAgIfAhkiAAAAodJREFU\nWIXt11uoTlsUB/Cfy3bJsQnllo5IiORSjlvyxOlEUUie5EUetJNSHpSS1JYUch4oHx6QFykevOgc\nHjwot1LI7U2IKNfcHubcNb/Fzlrr+z429r9WszHmGnP9x1hzjDkmvzm6lLT7C7PQD7OxFf/Xi1RH\nxx/YnsjL8QrDfwyd749J+IjRUW7GJyEQPx26l7C5jpm4G+URcbxdF0bfxgyswWv0js+2yOuH4Ah2\nlrBrKmEzBafQK9HtwwtMLrFezViNVuWK6X7F68YuId2WJbqFUbe7BAddyxhF/BPHjeiJkQXtmxTf\nBZeFv/080fWN46uCa6F8AOZiKM5gCP6OcqNxWDh6zya6qfiAo7UuPgp7cRorM3MbcCx574Ww7dKn\nueD3KorvmixG4zHWZvR5fanCv+iBFlzLzF3F8RrJZlFRPgCLsQe3sMmXNSi3L20pMAfn8U7YzrcS\ng/6YiP9Kkm0ETmKdwGs+LmBgnCvlyxChkA0X8mlJMrdI2OITSpI9hCtfeZ7iRjtz0wqsPy/yOxHl\nmnxZL1TYnomuVcizsveG9lBRPAXGCZ1oirZO9KPQprchly/ZTnABzuFtopsrXHQ+FSRbbzQLx2AT\nxuJO1H+IYxd0S97P5Uv2GPwTNxO5j3DMdIT8fyf8sHt4lujHx/GS6v4gly/ZHfAAAxK5VYh4RwjA\nG+zAI9UBaMFLXx6FuXzJ5vU4HBAK0Rvh3j8Bg4Qcqycq2IL7Be1WCdX9PQYLxXSz6mpPHXzpioc4\nWJBgXlTU3gjlRS5fjqpuGpYIkRvTIFJTlbsR5kEpX54I3RUME+77KxrB7jsgty9pDViK6cJ2GRoX\nuNg4jg3Fr+RLJzrRiQbiMyvtmtC3WGnAAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$y^{2} + 3 y$$"
],
"text/plain": [
" 2 \n",
"y + 3⋅y"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"myterm.subs(x, y)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABYAAAASCAYAAABfJS4tAAAABHNCSVQICAgIfAhkiAAAARNJREFU\nOI3l1E8rBWEUx/GP/3Xl+pOUIgskGynJi8EL8AJs7GXJ3sZSyUoWNmyVBcXKjqSuuxHdDelazHNr\n3J6ZyZSVU9Pp+f3mfM95ps7wR9GRoVdwiYUMfw47eEATo9hELa/ZMq5CQSwG8YS1lLaFO/TGCuZx\nioMwbRZ4Gy/oTmkj+MRG3sQCPAt8j5OIfovz1qGzqENbDGAWjxHvGUtlwVMhv0W8BqroKwOuhvyR\nAYahMuCvkGPfvyfkrjLgeo7XH/J7GXBNMu1wBvi1LLiBa0xGvBnctA6/BZMs0Yqfv4Pp0OyoqPhQ\ncuVKxBuXXHk9pe1JFiS60mM4k+x8Mzx1XGC17d3FMPku9nGMiaJp/2l8A5n7NHNNRyX7AAAAAElF\nTkSuQmCC\n",
"text/latex": [
"$$10$$"
],
"text/plain": [
"10"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"myterm.subs(x, y).subs(y, 2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From this point onward, some of the code fragments and examples we present will assume that the required symbols have already been defined. If you try an example and SymPy gives a message like `NameError: name ’x’ is not defined` it is probably because you need to define the symbol using one of the methods above."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### isympy\n",
"\n",
"The `isympy` executable is a wrapper around ipython which creates the symbolic (real) variables `x`, `y` and `z`, the symbolic integer variables `k`, `m` and `n` and the symbolic function variables `f`, `g` and `h`, and imports all objects from the SymPy toplevel.\n",
"\n",
"This is convenient to figure out new features or experimenting interactively\n",
"\n",
" $> isympy\n",
" Python 2.6.5 console for SymPy 0.6.7\n",
"\n",
" These commands were executed:\n",
" >>> from __future__ import division\n",
" >>> from sympy import *\n",
" >>> x, y, z = symbols('xyz')\n",
" >>> k, m, n = symbols('kmn', integer=True)\n",
" >>> f, g, h = map(Function, 'fgh')\n",
"\n",
" Documentation can be found at http://sympy.org/\n",
"\n",
" In [1]: "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Numeric types\n",
"\n",
"SymPy has the numeric types `Rational` and `RealNumber`. The Rational class represents a rational number as a pair of two integers: the numerator and the denominator, so `Rational(1,2)` represents `1/2`, `Rational(5,2)` represents `5/2` and so on."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from sympy import Rational"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABAAAAAeCAYAAAAl+Z4RAAAABHNCSVQICAgIfAhkiAAAAN5JREFU\nOI3t1DFOAkEUxvEfSKiwMFpAQzChpMQDWFh7AAsaG6g4gmeg5QqcRBJDY2JrY6UxJsZQgcW4ATbs\nZsNiSIB/M5l5me+9vHnf8M+cYoT6Jpfv8YA5GnmqSBUo5lE+CgROUmJ36KGNGqp4zJtwHyn8rfOd\nVrFVkvzfxgAdDNFcdznJ/2W8CsMEVxinVREXuMHz0r6Ab1ySzQsNfMQSfKKVVeACP7GzqdCvTAJf\nFvMSUcF7VoEXwYkRJZwJjV1LvIklvFk87TWeouDyf5Dk/xkm6OIct+hbbexB8wuJJSM56b93mAAA\nAABJRU5ErkJggg==\n",
"text/latex": [
"$$\\frac{1}{10}$$"
],
"text/plain": [
"1/10"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a = Rational(1, 10)\n",
"a"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABAAAAAeCAYAAAAl+Z4RAAAABHNCSVQICAgIfAhkiAAAAZpJREFU\nOI3t1E+Iz0EYBvDPIqVdK63/NovlV+ziJktbapOklfMqtqS4OjkoVw726rC13BwdXRxccODgoLTr\nItFuSYlsIv0c3pl+07exHBXvaZ533veZed+Z9+HP7CC2ogubcOh3CTcwWuA7aOMHnmB33lhRSR7F\nJO4XvtfYnNYLZXCToBcH8LJCvFDxWdbAFzBdievGeUzgNoZqZOMYTuuHOFrsjYgGwjHM5sPzDbZg\nLV7UmPFUNBFeoYV9dHpwXDzPlYRb6brd+IAHWIevWJ1ivv/iMETXcwn9uFbsXcSjDJY3EvtxFWPY\niM94Jl7nlHji/aLZX5a6wb9k+XO0l4z6q62rgc9im5i8NbiJt+hpxN3FpSbZJK6n9XZ8Ex/rMgax\nI/lvoa+ZvBLvMVD4dgoRKYMncLhMzNM4IoZlAGcwhV2YF8NEaGILj5unZ+a2jg724GMqIdtMKqNq\nJxPBqsI3LyYPNuBNLTGX8DwRlNPZ1tGLE0UpVYJ3QsaOJLxeiMm9hIexWCMoVfmcEI692IPTiRg+\nYa5G8N/4CfBrQm4Nw8UdAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$\\frac{45}{67}$$"
],
"text/plain": [
"45\n",
"──\n",
"67"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"b = Rational(45, 67)\n",
"b"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABcAAAAeCAYAAADHJYVoAAAABHNCSVQICAgIfAhkiAAAAZxJREFU\nSInt1r9LV2EUBvBPKgZhiRD9xmrQLYII+0XwtcLBCEKQwgKXamisJUSwqCVob6jZ/8GlBJeooSUI\nGvJLgRE1GBJpaDa8R7zcbnqDazX4wOV9z7n3Oee87/tw3ssaorHkd4dwB3txGZ8wVUUBrRHsQNjb\n8BYNVQTvwyKaMr4POLEasUz2mRibM75NOFhF8Kd4ia6wjwWvtYrg8+iWKr2IWXxV0YHChsx8ayTY\ntRqp7Im/x/GYX8NDJSovq/MGSYJn0IIh/CjJXcdfxJLEFv9pFf8d8jrfjFE8w5eM/6TUBY/gBqZR\nz3HvYw7vihJdwW1p//fl3n3GYMz7pd7Skkv+EbUsKdujH8c4UpC4hsmM3WxZDFukpvY6TyrbW15F\ntaTL467lPn8Vj4pITUXO36ALPfiGB+E7hzFpr3/Bn9yDz3Evxgm0o01aVSHKBD8qHdb+sMelv4EL\n2I1b8XRiAGdXCpZXy2E8wcawe/EdHTleXU4tWZ1fwvUIthM7pC2YwgJOxSrO4yZeBG8PhnEa26WD\nfrNS9etYO/wEB65FwbaBib8AAAAASUVORK5CYII=\n",
"text/latex": [
"$$\\frac{9}{134}$$"
],
"text/plain": [
"9/134"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a * b"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAACcAAAAeCAYAAACv1gdQAAAABHNCSVQICAgIfAhkiAAAAjxJREFU\nWIXt111oz1Ecx/HXbM1Dk2Qe1rT9PSS0mgvPUVMeUivSPORp3HFFLimSFIZbuREXzJ2UK4krImMU\nJSmpeQp5aJ6XuTjn3377u9g/nRW1d/0753u+53P6ds75/s73zz9MSaJ1FmI8hqEBp3At+iagEd8x\nFpfQXoQuGW/RHPur8RkV0W7JzCvBuSJ1yhIF14CnGbtcz6mswBk8QHcMoBhdv9CKvRl7B37gCHaj\nvkhdsp2D2ViKrziaGT+POWjCUNwsUtcvbMMd4e4MxwXhwg/BfnxArg9dMubitZCVMFW4W01YhZ0F\n8w9iTR86MChBcF14iBfRnoifuI8nmFEwvxS3+tAhXWZsFL5hv7AAJ3E5+tYK96oDg9GGK0XoBvhr\nssdaj9OKP+p2bE0d0H9DioToTrDGAElJWQFsRg1eYQSOxfEOfz5JrdiOmVF3R/jOHRY+3EnZgkOx\nnxOqkEqMwy5MEp6pHE5glFAePUNV1M3C7dSBleMNajNjE2NbFQPJsx7zY3+J8HzlKUGnnrc2yds6\nT9ilWmzAcUyOvpd4F/vVmIIb0c5lfISsf4+6/ECKeq46s/hZXBTuWV1s8xyIvzyV+FKw1jehzEKa\nnfsY27bYdgqFY2Nmzhgs1rsk/+jPhKwQ/lckC+6esGulmbFuvU9lud5HCI+EhMlThpFCkiTlKpbF\n/mhhV6oz/hZcL9CUCbVcTbQX4W7hhBQ0Yx+mYxpW4nnG/wmPCzRd2IQ9QpI0YF2ieAYY4K/4DZsy\ne1S17qVvAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$- \\frac{383}{670}$$"
],
"text/plain": [
"-383 \n",
"─────\n",
" 670 "
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a - b"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABcAAAAeCAYAAADHJYVoAAAABHNCSVQICAgIfAhkiAAAAftJREFU\nSInt1rtrVEEUBvBfzBIEE0SMIRLR+AQ1YKOSqIWCQQQL7cTgA7SxFbsUCjZK0EpIpzZiY+M/YOWj\n8IGNoiKIEh+gopGgwQdrMXPdyexN3MJXkQ8uM+ex35w95863Sw3r0YUmdKLXb8QFVPEdN7E8i7fh\nMhZm/hF8yJ7hnPy4UHFnycGHYryK7sTfiSNYisUxNoy5ZeS/Qk4+PyPagw2FMSMJzMLBmHAeqxs4\n7BXexX0XVuBGWWKfMEzox6Ps8LLKU5wTWlOKSrLvjkRrGiTvwPPcWVTWK0x5ZrTb4vp1skoybFdr\nTx35CIYwHu2NQu8eNEjeg0+5s2jFCO7iKJqFwexK8gawKe5P4hrOJvGPeNxgIdP4gyguTfWfVvHf\noSmz9wl6/RqzcVq4A61Z3iUcxtr4mTvCPTiFJ2UHHRAuCEE/vmCByfW6Bc8E2YV1uFVG3II3WJT4\nlphar/txP4k1YUyijIW29KE9kg/gDJaZWq+7TRSrKt4LOoOatnQlCRdxReh1T1zhRHwKtKsXq3E1\nRf1Z+Whcb8d1DJ+xI9od2IqnCdGo+heiFW9z8nux6uYksZp8szK9fmjij3kFc4Qh1+EqtsX9vFhZ\n0a4hXM/yK3ip9ldjiyDbExIK7McxrMJK7MSLGCvT62/Yi0FhyJuxu6zqafw9/AAXoGZsQrg4pwAA\nAABJRU5ErkJggg==\n",
"text/latex": [
"$$\\frac{517}{670}$$"
],
"text/plain": [
"517\n",
"───\n",
"670"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a + b"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that the Rational class works with rational expressions *exactly*. This is in contrast to Python’s standard `float` data type which uses floating point representation to *approximate* (rational) numbers.\n",
"\n",
"We can convert the `sympy.Rational` type into a Python floating point variable using `float` or the `evalf` method of the Rational object. The `evalf` method can take an argument that specifies how many digits should be computed for the floating point approximation (not all of those may be used by Python’s floating point type of course)."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAAkAAAAeCAYAAAD+QjQzAAAABHNCSVQICAgIfAhkiAAAAP1JREFU\nOI3F0y1LREEYxfGfuoiIrNGgoLsWQRAsrvjGJoN5NQmCyU9hMQiiH8BiMfgNDBbBbjCYLSIIJkEN\nimu4MzD3htHkHhiYM/Ofec48l8sf1JfMW1jCKJZxgJsUHsFh4rfwjvEUmsM3poOvoxvgUtlWUn42\nQPO5rOc4yQG7OFJ+VEkbAYIhTMFAAqxhEpeK17bDbY8RaOI1hE1HPZerl4q96P5vOVjFBIYVjTzD\ndfXAC3bCfBNvis6rJVAbD4kflPnIcIH9aGqVzQWs4wPHuVtgD7cxU9QintEIfkbR4A70h8Uv3OMp\n+CY+caeSfhtjir9mBae4+i1Xr/QDpwIoMrLEH2wAAAAASUVORK5CYII=\n",
"text/latex": [
"$$\\frac{2}{3}$$"
],
"text/plain": [
"2/3"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"c = Rational(2, 3)\n",
"c"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAAASCAYAAAAdSp//AAAABHNCSVQICAgIfAhkiAAAAg1JREFU\naIHt2r9LVlEcx/GXokmo/RDDCiLpJ9TSFkhIU39CENRSS7S0VEM0aBBt0RK0t0QQDbZE0NBQ0lKQ\nFAQRhQ0i9BMrC7LhXC+369EsuArxfS+X+/28z32W+5zne855CIL/jJba/U5cxGvMoBenMfGPz9+B\nIXzFdHEdwufwwlsCz2qM43CldhZjWFGXF8EuvMFAcb8er4oPDy+8xrzWinxGenmvV2pXpdn7mL+j\nDbdwCQ+KWju68D688Br2Sl5gJFN/inu5AQtwFN+xJrzwlsED3VIPfSWT3cHHxTykwl08Cy+85fDa\niuvm4vop40xhFTqkpvxPtGAfHmEQB6Sfh34M43F44TXolQxIM/VwPcC1IuvLZDl6C/85jlfq+6XV\n6e7wwmvQK9lbDBiqB9LCcQYbM1mOvsL/hpW1bBy3wwuvQa9ki/lf6pEi685kOdoLfyyTjUotTEd4\n4TXklVt6E8WAtZkBnfggs7E9Dz8wiXeZbFraNuwJL7yGvPKlnpIa7U2ZAdvwJFNfiFGsy9RnF5uT\n4YXXoFdyHm/9fnS+VZrBT9Tc7eb2NVUO4UvNaZFm/BvhhdewV7KhCI9Uapelw5fqMfkgfkr71/PR\nioc4VakdlL5J/eGF16RX/0PTHlyQThe7pB7lpLS6nGUn7uOmuTN4lR7pOLNT6odacA4vwwtvCbwg\nCIIgCIKl4hcZmODN5R0YMgAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$0.6666666666666666$$"
],
"text/plain": [
"0.6666666666666666"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"float(c)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAKsAAAASCAYAAAAkLS6kAAAABHNCSVQICAgIfAhkiAAAAohJREFU\naIHt2k9o3EUUwPHP1sYgTayGSrRgDW1soF48SIVYitBS8eapUFCE9qJePNR4KB6SgvRWhNqQkwhe\ngiA9VIRS8NCDhqBoabBQEFFSSkjxL6mNQuphZsPkl8km9Vb6vrD8+L33ndk9zL59v5klCO4RWo37\nIZzCz7iDbRjB3P+cfzdG8TcW83UUf4UXXuG9jAlcLpylYvw0xssJt2IWrxaxE5jBg+6ePfgFw/n+\ncfyUP2R44ZXecak41l5LeAk2FQPelRblZBGbkKrtMXfHZpzDaXyVY13owW/hhdfwBrFDWn8PSL/4\nLezDGVzQ4BrON4O4gi8r8U4cxT94JLzwNuB9WIn14As81Ez0SiX3bGXQBfyxzps1uYgfwgtvg16N\ncTxXBjbn61P5+mdl0AIeRrfU+K5Hu3xPYz8OSd+SAYzhu/DCK7waL0gt6je15LBUWccquU9yrr/D\n5CXbsn8VbxTxF6Wnv2fCC6/wanwrLeoqz+eJRyu5yZzb3mHykv7s37a635jF5+GFV3hNDlinddhp\n7cV6Pud6O01Q0JX9mUpuSmolusMLL3tNPsNHlfjy1tVcnvjRirMFv1u90bsW/2Iev1Zyi9L2RF94\n4WWvpEvaU71RGbO8WBekhvfJijOI72uDOzCFxyrx9kPafHjhFV6bvVJxvFkZs4KTuG7lEewuqeK+\n1XCfVtn/KjiCWw2nJVXoT8MLr+G1eV1ab29Wcit4Ik/yWhH7QDoUKI9b90tHYKtOFQo24Wu8U8QO\nS9+kgfDCU3/aH5EWa/XEtPlHlmfxvnSa1SP1FG9LT29thnBJaoSbFbekTzpm2yL1Ly28hx/DC6/i\nwSv4GAetsccaBEEQBMF9yX+OWajLMlZ+XAAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$0.666666666666667$$"
],
"text/plain": [
"0.666666666666667"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"c.evalf()"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAASCAYAAADR7E2JAAAABHNCSVQICAgIfAhkiAAAAuJJREFU\neJzt3E9oj2EAwPHvb7ZJm7/RUFiMFRcHUaOliNyclCLFBRcH5iCHTclNCmsnKZel5DCppRwc0CJE\nlJKItCZ/G0bh8Ly/9ezds98ah3eH77e0fs/zeZ+57e15398DZmZmZolKuc/NwCngFfAHmAu0Af3/\nuP4KoB34DgxlP9uBrzqdTqfT6Qpz24Au4FFkfkfX9wGd8YIzgTfArmjsGPAEqGXirQReAy3Z5/nA\ny+w/qdPpdDqdrjh3mLAZkPr3G9gKUBVdcJRwM9AdjXURdhf2MbGqgavAaeB2NlYD1AMfdTqdTqfT\nFeqagMWEv/tTCE8WSsAG4CzQS67nQE9+EHgM3EyMV2ov8BOYpdPpdDqdbtK5c4mxeuA6MC0/MZ2w\nxXA+cVEv8HmcX5bvBvBUp9PpdDrdpHSpOoE18UB19nNJ9vNL4qJBYAYwlfBiw3iVtyv6gFZgC+Hu\npBHoAB7odDqdTqcrzKVaT3gF4V5qsoWwk9CRmLuUzTVUWDxubuafAfuj8Y2EtypX6XQ6nU6nK8yl\nuk+4mUi2Llu4PTHXnc0trLB4XEPmfzD6ucYb4JpOp9PpdLrCXL5NjPOIYilj3yT0ZHPTKy0QVZP5\nJ4m5u4RHFlN1Op1Op9MV4vJdAS4kxoe/AtmfLTw7YeqAT4w+qGGsfgEDwIfE3BDh6xZzdDqdTqfT\nFeLiaghnIrxLXDN8kzBIeKFhUcI0AQ9TF1foLjAvMV5++XFAp9PpdDpdYa7cWsJmwPvENSM6Abxl\n5FHNywg7DAdzdjmJ71FG7QS+5UyJsCNxWafT6XQ6XaGu3B7C3/kDibkRLcgW2R2NnSEcplQbjbUS\njmzsrbBWFXAHOBKN7SDcwTTqdDqdTqcr1JVrI9wkJE9WLuU+rwZOEk5frCc8uzhEeCuyXDNwi/Ci\nQ36HIW4O4VjIOsJzkhJwHHih0+l0Op2ucAewHbgIbGaMMxLMzMzMzMzMzMzMzMz+o79JJYrUztlF\nmgAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$0.66666666666666666666666666666666666666666666666667$$"
],
"text/plain": [
"0.66666666666666666666666666666666666666666666666667"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"c.evalf(50)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Differentiation and Integration\n",
"\n",
"SymPy is capable of carrying out differentiation and integration of many functions:"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAC4AAAANCAYAAADWgVyvAAAABHNCSVQICAgIfAhkiAAAAjFJREFU\nSInt1EmIz2EYB/CPJbsYzBQag2xzsE5ZU5amXCQ5GHGwlZCyXS0pakS2Usph4mK5KTWluEjIQbhQ\nimwRjaVkH4f3+eX18x935bm8z/N+3+d9v++z8Y9Kp5I9CTvxFp/QGSdxK/Bp2ISX6Ir+2If72R2L\nMQNt6I5B8c7GwLugEa2ZTwNWoB3DsRbr4v6h2BXvfcPD8idm4j3mZHun8Dj0hUGwOsPr8QiTM/ty\n6d4mtGT2MvTJ7NE45lcQW/Ag+MzCD2wLbFWZdKcgdbG0fwjn4qHX2Fx2xBHcDn0p7qFvhvfGwcze\nWvI/HmcKOY8bodfiAAaGPduvIIHpUpr2VCBWEGrHggrYhsAaMASv8A6npbLKM9QbW0r+dSX7GfZ2\nwKMKa0g1TKoreNqBw8hYv1XAvsY6Cs+lPjgjldxRPJHKg1SzH0r+jzO9Xvr8lQ54fEBNTvx5rFUd\nOLyItaYCVqTxJSbgs9RYtRiGszghNWqb3+u7LPPxBdeyvZGZ3g9vcuLXpGjPq3DZYlzCR4ytgDeE\n71VMkZqxkCdYLTVY/7ijc4b3xH6MD7sRd+JcwW97dn4irpcJNEojcFG2Vy01DywPgoMzfITUtHPD\nXillL6/rOtzM7BXoEfqS+FQTxuGuFIBCdkijtZA1hVKe41OxW5rjL6S0N0vNRurq9YF/Ry8cjgcL\nUnUYIAWhXYp0sxR96CZltlWa8ftF+uPt4+H7BRekbMOYePOPOf5f/stf5CcLWnXpNnC/hgAAAABJ\nRU5ErkJggg==\n",
"text/latex": [
"$$\\cos{\\left (x \\right )}$$"
],
"text/plain": [
"cos(x)"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sympy import Symbol, exp, sin, sqrt, diff\n",
"x = Symbol('x')\n",
"y = Symbol('y')\n",
"diff(sin(x), x)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAAwAAAASCAYAAABvqT8MAAAABHNCSVQICAgIfAhkiAAAANxJREFU\nKJHN0r0uhEEUxvGf9VVgfUSjEAWip9Bq3QMXsBeg0YvWfShF6xZIqHQ2G7I0QrYhsop3XjnenC10\nTvPkPDP/M5OZhz/WWKPfwikeMMQyjtDP4Hn0cBC8Y9xhKgNO8IyJ4C3hE50MuMdF4t/iqm5aReew\niW4CPGKnCawVfUuAAdqYjkC76McIABYi8FV0mACTRccj8JJsrGum6HsE+mX64gjgtQkMcI3VBNjA\nTd20wsIldv2Oy3oZcp7ddaUcfRi8M9XH/UQjxuAJe6qIbGNWFY19+XP/l/oGEdwlpDR2XsIAAAAA\nSUVORK5CYII=\n",
"text/latex": [
"$$0$$"
],
"text/plain": [
"0"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"diff(sin(x), y)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAHcAAAAXCAYAAAAxzdDQAAAABHNCSVQICAgIfAhkiAAABIpJREFU\naIHt2WmolGUUB/Cf5pK5ZtkN09KrUtLqFUwsKko/VEIL+SmpoED6YEULlYJLZUIl7UYUcctIwcKw\nJJKyDDKK0rYPIZW0mGVhabiW3j6c9+0+M87NZu7c8Wbzh+Gd5/9s58w573nOeYY6Dll0qcEewzEZ\nu9GAV7GuBvvWUQPcn3zvghcOliD/N3StwR6X4JTsewu212DPOtCtqN2I2diFveiN2/FjO/Z4HGvx\nEH7DY+1YqxKMwx3ohSH4ALOwsWjciZiPb4QTHo3b8FPNJC0P4zENO4VuvTAPn5UaPBy/4PKEm4pP\n7O8E5aBBhOKvsQnnV7hO9wrmNGElBmTtPngHmzEsGdcf3wt9c8zA5+hRwb7loBK9xmA5Dk+4hdiG\nM0pNeBlbFIbqXuItvqYCAaAvluGITJC54u0dVsFaT+G4MueswMgibox4M5ck3Dxh8NSJB+IPXF/m\nnuWiEr0eFDpMSbjJGfdITuSG7IGL8SX2JRN2ijB1RZmb55iE1dghnGS2CNPjKliru/K9/FyswjEJ\nt0442MSEm4L38WfCbcEXCn/AjkAleq0Tb+nWhOubPXfkRG7cgcJrd5VYaKvKjEE4S3GYOEz8kLXA\nBnEs9C7id4uoRPwoo/Btifk/YGyHSVc5nhNHycqEaxJ50uKcyMPQz8LiaQzPMRiDsrG5Z48V51OL\nCLHXicN9gAgxs/EVPsVrWCDOtJ54Q0SDWmC8MF6aEA4WBn87a5+QPbeVmL8d/YTcuzPu3+peS4wQ\nR+d0kSPth2dEQpVebBwrwnSL1tA2Co8m45qxHhNwVjb+lmpKnuwzrArr3Cs8fELWniD0m1ti7KKs\nryFrd4TuzSrX69JMnvW40z9cSg3KBk3L2t1wjyhjWnBUxi9UGOaWag2zQ/FAMraaaNZ+4zbid6FX\njjOFfnNKjF+S9Q3O2h2he7P269UDb+HddP9iSx+JG0Q83yEyuZdwssh4W0QYS8PqxkzAme0UMMez\nOL0Ef7wIr3tK9F2Ljw6wbk+R3K3BzQnfKMLoXPsb+BWRhfYTTtEe3TtKrxznCQO/qIwk8Du82Ubf\naGHwiW30VxPN2ufhi3BXCb63CKcPl+hbhV/bWK9aujcrX6+TcFoR1y+TZ5+o5w94/ThI3OosbaP/\nAuFxaxKusUxBa4E54siZlXBXZc/torQYWmLeSHzcxpoHS/d+Qt61IpHKsTd7dhEVSYFxbxKF/JCE\nu1pr6CHKh/twataeJDLivLbqiluroEA1MVXIdXcRf3byfYU4e9NjaoQweO7YnUX3PSIf2qAwqozO\nnh/K6t/0RqaPEDQvd8aIu9XLtNa/FwkF1orbm0aFhfRMEf46C84Rtzmv4/mE7yZCWI4nRK4xVav8\n08X149NZu7Povkv807ZZoXFvFFHo7xu11LgLRCI1X9SG/UWq/V4yZrV4i8dmn/Eig3xSeNTyovEH\nG8vEBc2VJfrSjHmTSEjmicuAPtm8C7UmOp1J9xmirl0sXsYGcaPWJI6f/xyaVafO7WxodmjqVRaa\nVPYPSmfHoapXHXXUUUcdhfgLPygJ7YHucZMAAAAASUVORK5CYII=\n",
"text/latex": [
"$$9 x^{8} + 20 x + 3$$"
],
"text/plain": [
" 8 \n",
"9⋅x + 20⋅x + 3"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"diff(10 + 3*x + 4*y + 10*x**2 + x**9, x)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAAwAAAASCAYAAABvqT8MAAAABHNCSVQICAgIfAhkiAAAAKVJREFU\nKJHFzzEOAXEQxeEvQiQiah2lqBxCpRKVC4haotloqFxDVCpxAkqn0DqBQjQUttis/a8tJF4zycz7\nzZvhx5ojSjZKOeYWVqgWBRaopZshYIRj1iALqGOAXVEgwjqQ/AH0cMMlBJRT8AyTkDmdMMUGjyJA\nE12c8szJk/ro4JCYVeI69v5ti33esjaeWGadlKVKqgbV8P7lGifcccbwG/gnvQCC1RSAi+XGQAAA\nAABJRU5ErkJggg==\n",
"text/latex": [
"$$4$$"
],
"text/plain": [
"4"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"diff(10 + 3*x + 4*y + 10*x**2 + x**9, y)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABUAAAASCAYAAAC0EpUuAAAABHNCSVQICAgIfAhkiAAAAWxJREFU\nOI3l079L1lEUBvCPIZaYJggh0WAZUos/GkIkqsGxoaUtok2aXGsootJFUDDoH8hBcRMcLCgQhAih\nwc2lKQgjKqOs0N6Ge8Pb8X3VpakHLpf73HOec873+1z+AerCuR9D2EBjXiNYCXHncCvfH8cr3MXb\nWKAPczhUcI+xjt6CO4unaM3nw1jEGjqi6AQquFpwlzM3WXDzOFWloQqm4UBx8Tp39bngmvP+reAu\n4jmOhtxPGIydVsMYNtFTcCv4gRMh9h2+7iXYife4GfgmtAfumDT+i1piV/AIq7htp0OqYRRbGNgr\nsCFXXkLbLnEn8QUP91EcXJLGmq1xfxAvMV5L4DS6A9eSRX9Jfox4gvu1BFukV7Qp/aA/aMqiFRwJ\nOfdwJ3DX2fbpT9TjDT4WQWfyvuxv/17LuQ+C6HlZCL5LnlwLosOS90pbXZBe3wKmCr4+T7QDN6Sn\nNoVnmEFXiPlg+5PEFTv/H/Eb8ppODjbNSu8AAAAASUVORK5CYII=\n",
"text/latex": [
"$$32$$"
],
"text/plain": [
"32"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"diff(10 + 3*x + 4*y + 10*x**2 + x**9, x).subs(x,1)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAHkAAAASCAYAAAB/yXHQAAAABHNCSVQICAgIfAhkiAAABHdJREFU\naIHt2VuoVkUUB/DfUdPUtDJTu0jmJbOg1LIiSnyI6CEiiALBRHrpAl2IAo2UI6X50oWCHsKHQxYK\nEVTmQz5UFJVUZKFQSSGGRaZlWVZmag9rPs+43d93Zp9eIs4fNvubNWv2f82smVlr5mMA/3t0VcqX\nYTGG42x8iGX4tqbteejGHziQ3t34NdO5ArenuuHpWYEt/bS3hLNUbzoeww4cwVg8iF1tuEdgEy5q\nU78Kr+KLxHkubsAa7OyHfaW+aMJrNjbilFQ+Ce/gB0yq6F6Ab3BlKk/A9mRoC7PwGk7MZM9iH2ZW\nyQtQwlmqd7IYgAWZ7CFsxdAa7jn4SEyGdjhSeQ5haT/70cQXpbxgA6ZWZLNSw3WZbAi+xH2ZbCJ2\n495M9mRqe3Mmuz7Jnm5nRBuUcpbqrRADNiSTjcFB3JnJZohx6RGruJOTd+A5vILHcfG/6EepL0p5\nj+I3McPGVeR7sScr34a/9M6ydliIX3BtJpufDF3VR9sqSjlL9bZhfY18C95s06ZHZye/3Qcn5faV\n+qKId1D2ezvGY2RF54CICy3Mx1f4uY9vPy+2xY2ZbLbYTtb2ZVgFpZwleqMwTQxiFd/hkoa2NUFp\nP0p9UYR8u7pCDMD3mezMRPZ2KnfhKpEEzBWr9CQRJ5ZjcweuKViEu/FZAxtLOUv1zknvfTVc+zEa\nw8SANsFQLBEJ3GHR38Vi12hiH2W+KOXtEyvFymslCWPFlvU57sj05onM8MKab9yIZxLpEsdn9H2h\nlLNU78qkt7yGa02qG19T16Pzdv21iK8tLBCZ+oSG9rVD1RelvB0xOZE/msnGJ0P/dPy2sROvd/je\nULyF93BaiQENOUv1Lk963TVc61LdmTV1PTo7eXBN+Xe9Sea/Gbs6X5TytsUwkU0+UZGfkAzdWtNm\nk9jihnX47rzU/qW+DOgHZ6neZO2dvD7Vjaqp69HZyXXYkR4N7KuinS9KeY9JvHKsFgnT/RX5QZHu\n/1TT5oBYrWNS+XzHXxx8kt43iXhUglLOUr1dYrBPrdEbKZKi6uVKX3gH79bIB+vd+puMXY52vijl\nrXVyt4ifyzLZwuz3Jpxe066VrOwWyctm4dQpmc6h9O5y/DbTCSWcpXr7k20Ta/Sm4tMGdrUwS/3q\nHytbUYX25ejW2RdFvFUnL0iyRyryq7Lfa0WGmseVLrFyX8Pf4iw4RBwF9mZ6M9L7Y3GGbmGazkeD\nEs4mehtEbM6TwCnC8U1CSQtv4JqKbJZw3gv96AdlvijlPYq5Yia9UHnWOfZcOwgf4IFMdktqOymT\nrRQ3O/lArhEH/UsrvIeTwe1Qylmqd4bYlm/NZE+Jy5C6a016k7IRNXVzRN9aMbVL3BO879g4W2pf\nqS+KeHMH/Kg+JhBZXX4fOkYkAiNFrOnCwyKdz7EI14kZOl7Eo6WOPcNNF7HlZdzVhr8JZ6neTHG9\nuU3kB2PE1WJ+qT9ODOJZeo84e0TytBovZrpX4x7xZ8NoMWFWiGy6qX1NfFHKO4ABDGAAA/hv4x+9\nY5raTM2izAAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$263.66015625$$"
],
"text/plain": [
"263.660156250000"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"diff(10 + 3*x + 4*y + 10*x**2 + x**9, x).subs(x,1.5)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABQAAAASCAYAAABb0P4QAAAABHNCSVQICAgIfAhkiAAAAQNJREFU\nOI3t0k8rhFEYBfDfMONvkUhkbY00SvMB1JRsfACyo5SSfAQs7WYpGytlYWFrZzFrSWxkoZSibFAW\n9069M71TM2+TlbO55z7d5zznnnvpMHIZekqYxgyqGMQSdvHYrtgQNiJfwU3kJ5jIYE4feiI/wH4W\nkWaoohj5cK2YluEsNvGGAsawhQ8sC/md4x4D+MI2jtME17CDMp5jbQ93uMA65uO+Hz/4jANeGp0t\nxmmlRG0BlxhvfvN6JB1eYU54sRy6cYszvLcqWEMB36i029iIrriORkcPnRJ8Fa6VTzkzidUs4ke4\nVp9rEacYaVUk2ZzHIabwhF7he1SEfP/xR/gFfr8o7W8nzkUAAAAASUVORK5CYII=\n",
"text/latex": [
"$$e^{x}$$"
],
"text/plain": [
" x\n",
"ℯ "
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"diff(exp(x), x)"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAE8AAAAbCAYAAAA9K9JnAAAABHNCSVQICAgIfAhkiAAAAtJJREFU\naIHt2V+IVHUUwPGPq8u6VLuJS6yJJCsLhqaFbLEOhKi9BItBmgZB/gkCRR9M6mFbCnpYXA0fRKG3\nxIeSqEAKiZ4KEXyQUB+kwCCielkJFEVLWh/Ob5irzTQ7u3d2dmK+cOH85nd+53fu4f7OOfcOLabM\nnEY7MIO0YQ8603isgb40HUNYkuTPsWa6Btuma6CJWIZXk3xVKZDl6Edv3T1qIjrwSJLP4PH/0D2E\nh6oZnJeDU83CnXQV8B1+r6DXgbm4mcbPYS2609oP8H1dPZ2ldOHdKjpbsS7JD2M0M/cKbmFx7p41\nAW+iPV0bK+gcU+pCVuEfkS+J4E+IIP6vKGA7juA1Eagv0Jfmt+I6xvEnVpaxsQgjmfEccWyLwVwh\ngvdMvq43li7sSvImnE/yCbVVzQNKwS7HSXxYHMz2grFX6ciU4zw+wV/ixmAQXyb59Rr368PPFeZ2\n4g+8U6PNpuICBpLcXcO6AeyoMPeiCB7Mx9IpeTZLGcJ+cVN/i4IA+2qwMabUB2Z5XqSE3nS9JJ7u\nXI/tGpGoJ8RNvCGS9qOitL8nOvsiT2O3SN7t6BHvnjemsHePOHJDGBZBu4VTk1zfkXx4cO8+fOXf\nQa3lia5KP44qVaWP8ZNoLgui3L+V0d+Oi+7vl94Wyb4RbMH6Bu3tuPtfZz5TqnhLcBgL03hQHK1C\nRv9ZfI3H6utmRbK93aTJLlgtnpjJGvlBKcE+gV8yc78lW8Nl1n0j+qQTaa+5uIJPRR8203SJdDFa\nTXEmeFLkvXIdfDvu4qMZ9ahO1OOT1AbRd53L/FZsPBeKJ+3qg4uakTyC1ynK/FNp/AIuiWpX3ONA\nksfF0SxX5Rdhcw7+NBUvi2q6DctxGWcz8yNSX5QYE590srl1QLwhLKirpzmTx38YPSIg19L4fVF9\nb4vjexrfZvTn4aBoU34VPdaPIg/ezcGfFi1atGjRYnZxD5j0bK2ZCv1/AAAAAElFTkSuQmCC\n",
"text/latex": [
"$$- x e^{- \\frac{x^{2}}{2}}$$"
],
"text/plain": [
" 2 \n",
" -x \n",
" ────\n",
" 2 \n",
"-x⋅ℯ "
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"diff(exp(-x ** 2 / 2), x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The SymPy `diff()` function takes a minimum of two arguments: the function to be differentiated and the variable with respect to which the differentiation is performed. Higher derivatives may be calculated by specifying additional variables, or by adding an optional integer argument:"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAACoAAAAWCAYAAAC2ew6NAAAABHNCSVQICAgIfAhkiAAAAgZJREFU\nSInt1kuITnEYx/EPCfPOKEWjDBlvlFlYINPE0BSzkSUrExvFwo4dIbcFYqGUBR1RlLKbxIYsRC7l\ntiFNKXJNcinXsfj/T44zc2beObMYyq9O5zzP//f+n2/nPOc5L/+IRo00QEZLMA0VdOAELo8kUJHe\nYF28Xo1PaEgXx4wEUYE60JOJx6rhiVdwb4D1VpzHBdzHcTSVRuyrM9g+mGkhbqK3YH0+LmFijBtw\nFa/QPEzAVmwT+rNSZGpBNxJcHwC0G7NyuXnRf3aYoKk24rZMjxYpUQz6EU/RmMu/E16IMmrDS8yM\n8ZxYf1VqGF1i0x5MQX0u/wV1JfaD73iI5zGu4hvupoYyb30bJuBFJjdVgL+S8y5Al3B3mrEeG4T+\nbsIOPMEtoS834SfasRKPB4NJFD/6/rQPP7Aok5uNI36PmASPomdxBNo8hBr9KlE7aBUfsCeXP+rP\n9jiHG/F6Og5iUnnEoERtoOOECXGon7UZufgZ9g4Pq68StYGewq4afC1xv+Vlgcq89al2Cj2X/YKs\nLfAuw1dcy+SqQylWFrQr/nZ3Lt8ez3XYj7kx7hQ+yZ8zdbcMpWDReBofz5XM5qmW4jAu4nRur7Rd\nVkSQO8I8rOJ9xrtVaJtSaozFH8SCvXgt/Cdck/G9zaznj/QOTxbm4oF41OMkjgkjq7Ms5H/919+q\nX3qRalZuRKZYAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$12 x^{3}$$"
],
"text/plain": [
" 3\n",
"12⋅x "
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"diff(3*x**4, x)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAACEAAAASCAYAAADVCrdsAAAABHNCSVQICAgIfAhkiAAAAcRJREFU\nSInt1c2LT1EYB/CPaaRpRimiMBkTCwsLL03yk82YxMofMFkpf8BYKDXEmAUaiX7YiFgoWVKsZCGE\nQlkoGzUlETLeZjJmcc7N6br3uvktWHjqds/zfZ5znu99Xs7lH5BZyXobzuAxvuAbphP7fTTjug97\n0YGl0TaM8VYJDeFHyTONrdFvLW5iXtS7cBuv0dMqidPoxmy0JXgDJxL9Glbk9q6JZC+3SuJUAdaF\n60LaM5nASyzM+b7Dm1ZJFEkT63PYU6FflufwV/j0J0HaK2wNoSwPcvgGzI1BM1mMRbiV812HQaFU\nPdiF3UI/LcF+vKgi+FD9RhvFd2xMsJU46ecEnsfz6NMQmn2o6tB+PKtJoBcfMZLDm+hM9Cu4F9fd\nOIb5VQdfxbkaBObgLsYKbMty+jgO1zgTYUQnam64iIM1/FYJfbGlyNhWgPUJafzduB0QajycYDtL\nfPsxiTsJ1ltFIruIvlYQGIx7D+XwTfHdgSNYHfUBPMHnJO6ebFPRiGaX0GQJgc04jhu4lODtQsph\newzyCFPCV39IfPcJpSyVHXjv10sqk7fK/zFZZhYIjX00Pp24gLPC2A5UEfgvf1VmAPacXe8k/uXU\nAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$72 x$$"
],
"text/plain": [
"72⋅x"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"diff(3*x**4, x, x, x)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAACEAAAASCAYAAADVCrdsAAAABHNCSVQICAgIfAhkiAAAAcRJREFU\nSInt1c2LT1EYB/CPaaRpRimiMBkTCwsLL03yk82YxMofMFkpf8BYKDXEmAUaiX7YiFgoWVKsZCGE\nQlkoGzUlETLeZjJmcc7N6br3uvktWHjqds/zfZ5znu99Xs7lH5BZyXobzuAxvuAbphP7fTTjug97\n0YGl0TaM8VYJDeFHyTONrdFvLW5iXtS7cBuv0dMqidPoxmy0JXgDJxL9Glbk9q6JZC+3SuJUAdaF\n60LaM5nASyzM+b7Dm1ZJFEkT63PYU6FflufwV/j0J0HaK2wNoSwPcvgGzI1BM1mMRbiV812HQaFU\nPdiF3UI/LcF+vKgi+FD9RhvFd2xMsJU46ecEnsfz6NMQmn2o6tB+PKtJoBcfMZLDm+hM9Cu4F9fd\nOIb5VQdfxbkaBObgLsYKbMty+jgO1zgTYUQnam64iIM1/FYJfbGlyNhWgPUJafzduB0QajycYDtL\nfPsxiTsJ1ltFIruIvlYQGIx7D+XwTfHdgSNYHfUBPMHnJO6ebFPRiGaX0GQJgc04jhu4lODtQsph\newzyCFPCV39IfPcJpSyVHXjv10sqk7fK/zFZZhYIjX00Pp24gLPC2A5UEfgvf1VmAPacXe8k/uXU\nAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$72 x$$"
],
"text/plain": [
"72⋅x"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"diff(3*x**4, x, 3)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAFEAAAAaCAYAAADPELCZAAAABHNCSVQICAgIfAhkiAAAA8ZJREFU\naIHt2F2MXVMUB/CfmaJfKJoaRtMaKkpKhqhptfPChDTx0EQmgnhAIvEiLQ9EMEl9Tn0kKoSg1zch\n4kEr5UG14iOSJlSaIK2MVFIUETIxpK2HdcY9c+be23vOkbYj95/c3LPW3vmftddee621Dy00i4Xo\nxGHoQM/BNefA4AKswADeQ29Jvgr2YQ8+xrySfIc8puO+lNyPYRFJRTEgIrCjBMeEwtnYi1MT+WgR\nRf0lOAfqDbTV0U/FFw0I78ciHJvMPQu34eSCfAvxJt7BVjyjXNRsTezbkcizk/9vSnBOw3W4EmvF\nmuvifHwmdq4e9mV+e3BHQb5z8S5mJPJ0bMKPmNvI0Bx4AQ+V5Fgkigr04Ss1gnA+1okE+onGThzC\nU3grMe6cGnOa5VuH0zK67mT+qw1saBbXYlDVAUUxKfU8V9hXa93/oqKxEzfmNKAR3x/4DrMy+l+x\nO+d7slgmnAiTFY/sHmHn5EReINZzJvVz4oHEtzhB5Jw0RjClBG8vTsR6UVEvTeQi2InV+DORL8RH\n2MbYEM2DI0QhmalaBW/F1wW4enAUdqV0JwnHbszMPQ9XiyiYi+txg8innbgL29GFtxPeNI5JPXdh\nJU7BS3g5NXazyOVXJPJObMEtaMfpWL6/hVU0Ps7bVSueZGE/qN9D7Y8vi3tFsVqc0s3DGtXcVhGb\ntlhExl6x+GbxhAiGm4zvHD7Hazm4aqKi8aLba8jDeLQgXxpd+B13Z/SPG3vkX8enyfNsPIjjm3zH\nEtGqEG3VG6mxGWIDb2ySqy4q8kUOUbGHSvIdKSr5wzXG5mTk73FPs8Zl0JG8q1M4LH00LxO2NuwD\n0yhSWDZhcw19u8hjZfC06BlX1hhLb9B8kTffL/ieXaJw9Yuquz41tlR0BduaJSvixG7jEzZRZOpF\nYjMYEDnuzpTumjpzL8JfokKOoqvAOy8RGzGS0vWKQGn6JBZx4gZcnNF1i+PxYgE+ojC1YVVGvyT5\nnyIa5gWJ3CeKwXAit4nKmRdzxM1jFNPEDeqDPCT1WpzRpnKqqqGjeACPiPZiRFTLFeLz0GABvt6E\nb4OxmzBJNRqWCSdtwd8i6n5Lzb1dXO3yYgjHpeRBHC6nE9OYJRbypeqd+CcR7ldl5i4V1fF5cfVb\npeqovHw/G38XH/2NRuZMPCsa3tUiYp7Dk6Lt6Su45jPwIR4T1X0zfnFoXEImJNpEwVl7sA2ZSHjF\n2CZ7ubjW/e+/WP+X2C1SAdEu7VC95uVC2c9DExmXi4/BbeLDxBrR6LfQQgsttFAC/wBGBdD90KBL\nLwAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$1512 x^{2} y^{5}$$"
],
"text/plain": [
" 2 5\n",
"1512⋅x ⋅y "
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"diff(3*x**4*y**7, x, 2, y, 2)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAFEAAAAaCAYAAADPELCZAAAABHNCSVQICAgIfAhkiAAAA8ZJREFU\naIHt2F2MXVMUB/CfmaJfKJoaRtMaKkpKhqhptfPChDTx0EQmgnhAIvEiLQ9EMEl9Tn0kKoSg1zch\n4kEr5UG14iOSJlSaIK2MVFIUETIxpK2HdcY9c+be23vOkbYj95/c3LPW3vmftddee621Dy00i4Xo\nxGHoQM/BNefA4AKswADeQ29Jvgr2YQ8+xrySfIc8puO+lNyPYRFJRTEgIrCjBMeEwtnYi1MT+WgR\nRf0lOAfqDbTV0U/FFw0I78ciHJvMPQu34eSCfAvxJt7BVjyjXNRsTezbkcizk/9vSnBOw3W4EmvF\nmuvifHwmdq4e9mV+e3BHQb5z8S5mJPJ0bMKPmNvI0Bx4AQ+V5Fgkigr04Ss1gnA+1okE+onGThzC\nU3grMe6cGnOa5VuH0zK67mT+qw1saBbXYlDVAUUxKfU8V9hXa93/oqKxEzfmNKAR3x/4DrMy+l+x\nO+d7slgmnAiTFY/sHmHn5EReINZzJvVz4oHEtzhB5Jw0RjClBG8vTsR6UVEvTeQi2InV+DORL8RH\n2MbYEM2DI0QhmalaBW/F1wW4enAUdqV0JwnHbszMPQ9XiyiYi+txg8innbgL29GFtxPeNI5JPXdh\nJU7BS3g5NXazyOVXJPJObMEtaMfpWL6/hVU0Ps7bVSueZGE/qN9D7Y8vi3tFsVqc0s3DGtXcVhGb\ntlhExl6x+GbxhAiGm4zvHD7Hazm4aqKi8aLba8jDeLQgXxpd+B13Z/SPG3vkX8enyfNsPIjjm3zH\nEtGqEG3VG6mxGWIDb2ySqy4q8kUOUbGHSvIdKSr5wzXG5mTk73FPs8Zl0JG8q1M4LH00LxO2NuwD\n0yhSWDZhcw19u8hjZfC06BlX1hhLb9B8kTffL/ieXaJw9Yuquz41tlR0BduaJSvixG7jEzZRZOpF\nYjMYEDnuzpTumjpzL8JfokKOoqvAOy8RGzGS0vWKQGn6JBZx4gZcnNF1i+PxYgE+ojC1YVVGvyT5\nnyIa5gWJ3CeKwXAit4nKmRdzxM1jFNPEDeqDPCT1WpzRpnKqqqGjeACPiPZiRFTLFeLz0GABvt6E\nb4OxmzBJNRqWCSdtwd8i6n5Lzb1dXO3yYgjHpeRBHC6nE9OYJRbypeqd+CcR7ldl5i4V1fF5cfVb\npeqovHw/G38XH/2NRuZMPCsa3tUiYp7Dk6Lt6Su45jPwIR4T1X0zfnFoXEImJNpEwVl7sA2ZSHjF\n2CZ7ubjW/e+/WP+X2C1SAdEu7VC95uVC2c9DExmXi4/BbeLDxBrR6LfQQgsttFAC/wBGBdD90KBL\nLwAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$1512 x^{2} y^{5}$$"
],
"text/plain": [
" 2 5\n",
"1512⋅x ⋅y "
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"diff(diff(3*x**4*y**7, x, x), y, y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"At times, SymPy may return a result in an unfamiliar form. If, for example, you wish to use SymPy to check that you differentiated something correctly, a technique that might be of use is to subtract the SymPy result from your result, and check that the answer is zero.\n",
"\n",
"Taking the simple example of a multiquadric radial basis function, $\\phi(r)=\\sqrt{r^2+\\sigma^2}$ with $r=\\sqrt{x^2+y^2}$ and *σ* a constant, we can verify that the first derivative in *x* is $\\partial\\phi/\\partial x=x/\\sqrt{r^2+\\sigma^2}$.\n",
"\n",
"In this example, we first ask SymPy to print the derivative. See that it is printed in a different form to our trial derivative, but the subtraction verifies that they are identical:"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"x/sqrt(x**2 + y**2 + σ**2)\n"
]
}
],
"source": [
"r = sqrt(x**2 + y**2)\n",
"sigma = Symbol('σ')\n",
"def phi(x,y,sigma):\n",
" return sqrt(x**2 + y**2 + sigma**2)\n",
"\n",
"mydfdx= x / sqrt(r**2 + sigma**2)\n",
"print(diff(phi(x, y, sigma), x))"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n"
]
}
],
"source": [
"print(mydfdx - diff(phi(x, y, sigma), x))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here it is trivial to tell that the expressions are identical without SymPy’s help, but in more complicated examples there may be many more terms and it would become increasingly difficult, time consuming and error-prone to attempt to rearrange our trial derivative and SymPy’s answer into the same form. It is in such cases that this subtraction technique is of most use.\n",
"\n",
"Integration uses a similar syntax. For the indefinite case, specify the function and the variable with respect to which the integration is performed:"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAACsAAAAbCAYAAADlJ3ZtAAAABHNCSVQICAgIfAhkiAAAAmBJREFU\nWIXt11uITVEcx/GPS+63oijkXpQ7yTUSJXnQSAnFgyJRU7woooRCKWoeUYpEEm8Uinmgcfc0kicP\nyv1uTDMe1jpmz5mZc/bsOSPkW6ez1n///2f9zl7/9f/vzV9EhzbEzsMQ9MACHMf1EmhqF15hXRyv\nxGf0Shlb1i6KCjAePeN4JX6gd4q4sbiYZcHOWYIiTxLjMuzFxxRxq3EmzzYTG/EV3eNnHx63QV8T\nZmCnkK89Usbci2JyTMEldEvYKvABk0ugsQmbcFfxnJ2BU3m2I6gXUinHsmg7mnTsmFHcTLzEiDi/\ngalYUiRuDU7n2e4Ld/F9wpbL/S8Z9TViOq6ha5wvRQ3GFIjphEfSnZNDqMWkpDE/cBrWClswHBuE\nxO+HwdiNZ6gS8nQL6jBX2LqnBQQsxM0oohCjsB5b8bAlpzE4pqFRnEQ1ZmNOFLWtyEKFOBF/pyWW\nx/WrsUORhlWhoW7COdyO46E4jP4ZhXbDg2ICIl2ETlhZaL1hefMXQq0rBStwoBX+C4RUPJfGeVx0\nXtRqWc1zXuh4zTEWE/NsfeL6dVK08C34rnGhH9l6jaAv7rRwrY/QtWqFg5WjpyC2Psajoc52x0FM\niPPFQpn5kvDbnlHsClxo4VqNUJGe423CPi5+V2lcf3/9YB1WCdvyGLcS13dhVkaxVzQ9D0n2o1zj\nw3cKn4R6/oucwwDhzr6O8z1Cdfgm/PtLuJpB6CCcxfwifuuF7leLgXgj3KDqDGtmphybf+eCbaFS\n2LWSkPVBJg2j8U54oygJ7Sm2uYfsP5bL0r+T/ec//yQ/AXNhbhBcvhefAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$\\frac{x^{3}}{3}$$"
],
"text/plain": [
" 3\n",
"x \n",
"──\n",
"3 "
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sympy import integrate\n",
"integrate(x**2, x)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAACEAAAAaCAYAAAA5WTUBAAAABHNCSVQICAgIfAhkiAAAAeBJREFU\nSInt1U+ITlEYx/HPjP+NhpiFP+nVqymaKJQpo0khNWUxJcnS0kYaG9koSd78WRAbRVGILBQWFmIh\nNsKOhVKUwmIsJn8aY3HO23vcXnnnXnNJfnW797nnOc/zPfc5z7n8BWorMLcXazELfTiI+78DqlXN\nxOHE3oYRLCwTYgW+YUm0OzEWYUpTm1COejl7IsTKMiGyuoBjfxJgJ2qKbfJCGogQMB2L8wSZVACg\nHxXcErplvfA1XheICVbjBI7jOuZgH47gokY3VPFR2Izp1ZnEquIUbmJHJs8QLjcD6MZJjdqexwvh\nQOoTWnJoHAs6g6nYjWeZsae40mzSaXQk9lU8is+LcBRzWwRYp7H627iWjM3GKHY1m1jJ2G9wqMWk\nWc3DNOEEHcVgMrZFKF3Pr4Isi44bc0LUtQfDEaiuGt5JWrr9J5M34AseJO+qOSA24y4+J+/6hR/d\nWBZiRiRcHu1NwmYaSfz25oCo4Hlid2AV7qVOk+N9ICZ5jK/CqocTv/3C0TxevRLavK4apmQh6nXp\nig4fon1A6JZPQllu4E4OiKU4iycxVq+wIbuEli9d7XiLc2UmveTHQ2pQ+BrdZUK8F05gWICX2N7M\ncSJ/v1uxRijD/Aj0cALz/dc/pO9QXFV2AjmeogAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$x^{2} y$$"
],
"text/plain": [
" 2 \n",
"x ⋅y"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"integrate(x**2, y)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAADYAAAAWCAYAAACL6W/rAAAABHNCSVQICAgIfAhkiAAAAt5JREFU\nWIXt1luIVlUUB/BfTmOKSaOpOKlNDk4qJuIlpTS7qBWCD4KGSg+mgg8houODEKQIPTSokEERRCpi\n1muRBEHaBZOQKAmhSFGHQMVhCCW8ZPqw9mH2d77BC3wwOviHj2+ftfZeZ+211n+tQy9FXY3tvYBf\ncBU/1dj2HaFPje01YhDG1tjuXYExeLCnnei1eKCGth7CExiKi/i1hrbvGHnJNGM9RmMvPs10rXga\nn+MZdIqLDBHBeRMt2IaXsRvL09mF2CL49x4O40UMSDZbVTaaOszD1+l5Kl7HdRG4VViNBozAJhwX\nvP4vrSvwIfpiLY6WdL+lS31bki/BrpLsSDeyR3EBX2FlJt+Bk6W9S/FwWrfgfV2VtQt/4lnMxP8i\nMAXeKBZFV5yFH3AFr6bDBRrwFI5hGAZmui/RUXLsomp0pF8zPsnkv6NJlG+BxszGOmwU2SKy3IlD\nOI3tKoP4FybnLx4uSmsEronyKbAgGZ6Jc/gHe7Cm5FCBg6ozRmRmX0m2XFeJFY6vy/RNpf1/451u\nbBcYJFVEkbEzuIzXRLT2Z5ufw3kRpRn4TAziHWgXpXO7uHwLfYMo2QKnsvV4PIYDNzl/QVRV1YB+\nJR3MHZiN7zExyVdjFB4XvPtIZLsW6NTFrzLmCKocymTNpT2PSNQoX6wJf2TPAzAF36X/JZmuHSsE\ngRtu3/eb4t/Mp/5oEwElOuXRtKfwfUPp/CTRdasudgqDs+c21IuLSYZyXo0UjeZsJqvX/ZdHd/L6\n0j/B436Yn943AeNEdvJKektwPcdoqaOXB/Q4fCyG6yXBqQliXi0TGR2cdNdFpt4V2XseWzFNfAT/\nKBrPXLwtMn4VP2OxmGlzBeFPYqeYd33xkhgbbbq67mZ8kN59BV/gm8z3J0Xjq5pjZfQRTWXnrTbe\n7dincjAvFNFp6Rl3aofzYsoTbfWEymZxTyHn2CJMFyXYKC55uCecuo/76EW4AVVqk5MPRcu1AAAA\nAElFTkSuQmCC\n",
"text/latex": [
"$$y \\sin{\\left (x \\right )}$$"
],
"text/plain": [
"y⋅sin(x)"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"integrate(sin(x), y)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAD4AAAANCAYAAADxL91HAAAABHNCSVQICAgIfAhkiAAAAmFJREFU\nSInt1Vuoz1kUB/DPYXKXuwwdB7k+YDjFIOXSKSlJHhAPOEpMUxgP8zJIUcelMSmlFPGg4Y2UUrxI\niNzmhVLk1hEZlFzneFj7N2f379/pX/4Pim/92uu292+ttddam28UNVU86ydswr94i3Y4gCuZzWT8\nimb8gJ7YjtuZzQJMwQt0RN/k5y9J3x4NOJ34eixDC4ZgFVanswdhM+5iFD4mumqYileYkckO437G\nzxMB9stkY3APEzL+bMnZi3Eo45egW6JHYK/WCzyEO8mfafgPv2V7V1QSTKWoEQGdKpH/iWOJ7oZn\nWFdm/1+4nuhF+AfdM31X7M74DRm9L+kLHMelRNdiF/pk+ulak/w/xuNacqKS72Da97Mos61lgiqw\nKNnMKaNbm3T1GIineIkjoi3yCumK9RlfV3LWI2xrw49eaCT6rMANZbJRAYak9WEbNsPS+rGM7kNa\nh+OqmAO/Y67o3Z2iRI+Kvn2d7c1baYxI3Lk2/HiN/sQA+lI8TmuvNmyepLV/GV1Ris0Yh3diONVi\nMP7GfjHoXmjt71LMxntcyGTDSmx64DnVCfyCuO1ZZXQLMAAn8UZM1lLUp/3nMVEMswIPsFIMqZ7p\njMLnztiBsYlvwM1kI9ltLPnXeFysLKzK0CCesPmZrJ8YPgWWigB/zGRDxdCbmfjlooLyvq7D5Yxf\nhk5YKBKyGKNxSySvwB/iWczRWBDVfMcnYYt4x5+Ikm0Sg6rAdKxJNp/QBXuS00RQdegtEtkibrpJ\n3D50ENV1Rdz48yTfIhL9VpT8CZzJ/j0y/bOq7/h3fMdXjs/pp4GcT53tkgAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$- \\cos{\\left (x \\right )}$$"
],
"text/plain": [
"-cos(x)"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"integrate(sin(x), x)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAADQAAAAbCAYAAAAzgqwIAAAABHNCSVQICAgIfAhkiAAAAiRJREFU\nWIXt10+IjVEYx/HPjLkN4U4izZDSlRWJNDSmJFmpyShMShksFLGQWKCUhYxkZWEpC1lgQ9bsZmFh\nJYuxITZTamQKExbn3O7LvNfMe9935pbut049555znvN73vOcP5f/jLYmz9+O01gU6yNN1FIIA1gT\n7UfYmtdhe14HOVmHw9EeUwsujfXonnNFOenE0mg/x6p/9L2JxTM57ChAVB6+xdKPF/hYp18nFuBr\nrG/HDnTFsdfwck6VZqCMyzP0GcKuaC/B9UTbIUxideHKGuQkSrHsqdPnjtqJvAk/hf1H+CC/hMDm\nnH4M4zaOCOIfoxLbhzCBcXzGxhQfPbiSqLcJKVcNcIMQ0JZipU+njBPR3ofRaN+T7bQ6r/YB0riP\nW9VKI4fCGbXlTmMUD/A9TgZ9eBLtoxnnq+Bdnbbj+ISLGX3m5hV6o92VYVwvjtVp2ysEBAuxtiFl\nGRjAuTjRD2HTw9kMPkbU7qkkO4V07o5lUMiC1JTbjFPCJi1hhfDe+pJBiDiuIgR2SQhkEg9nOb4z\nzv/3vBU8NT3Q1JUfxmt/nukXhE093xzE7jwO+oTU6E/8tg3PsDKP4wZJ3j2zJplyV4U0G8R+4anx\nRng8TuTXl4kyPgj3S0OUMIW7RSlqFtW/D8uFFRlropZCqAY0LqRV2qnXgwPzpqhARoQneHIj9gq3\n/bKmKGqApPgO3BCO7PfCPfBW2FdT8y+tRYsWLQrgN3iVTPr4uikaAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$e^{- \\frac{x^{2}}{2}}$$"
],
"text/plain": [
" 2 \n",
" -x \n",
" ────\n",
" 2 \n",
"ℯ "
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"integrate(-x*exp(-x**2/2), x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can calculate definite integrals by providing `integrate()` with a tuple containing the variable of interest, the lower and the upper bounds. If several variables are specified, multiple integration is performed. When SymPy returns a result in the `Rational` class, it is possible to evaluate it to a floating-point representation at any desired precision (see [numeric types](#Numeric-types))."
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAAsAAAASCAYAAACNdSR1AAAABHNCSVQICAgIfAhkiAAAAF5JREFU\nKJFjYKAC4GJgYLhEjEJTBgaG0wwMDP/RJViQ2JoMDAw9DAwMrxkYGP6S4owF2ExmIsWEUcVUV8wB\npblwaRRjYGDYycDAcIUBEnv/GSBRv5+BgSGaFBfQGAAA/84M5lOscPUAAAAASUVORK5CYII=\n",
"text/latex": [
"$$1$$"
],
"text/plain": [
"1"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"integrate(x*2, (x, 0, 1))"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAACsAAAAbCAYAAADlJ3ZtAAAABHNCSVQICAgIfAhkiAAAAmBJREFU\nWIXt11uITVEcx/GPS+63oijkXpQ7yTUSJXnQSAnFgyJRU7woooRCKWoeUYpEEm8Uinmgcfc0kicP\nyv1uTDMe1jpmz5mZc/bsOSPkW6ez1n///2f9zl7/9f/vzV9EhzbEzsMQ9MACHMf1EmhqF15hXRyv\nxGf0Shlb1i6KCjAePeN4JX6gd4q4sbiYZcHOWYIiTxLjMuzFxxRxq3EmzzYTG/EV3eNnHx63QV8T\nZmCnkK89Usbci2JyTMEldEvYKvABk0ugsQmbcFfxnJ2BU3m2I6gXUinHsmg7mnTsmFHcTLzEiDi/\ngalYUiRuDU7n2e4Ld/F9wpbL/S8Z9TViOq6ha5wvRQ3GFIjphEfSnZNDqMWkpDE/cBrWClswHBuE\nxO+HwdiNZ6gS8nQL6jBX2LqnBQQsxM0oohCjsB5b8bAlpzE4pqFRnEQ1ZmNOFLWtyEKFOBF/pyWW\nx/WrsUORhlWhoW7COdyO46E4jP4ZhXbDg2ICIl2ETlhZaL1hefMXQq0rBStwoBX+C4RUPJfGeVx0\nXtRqWc1zXuh4zTEWE/NsfeL6dVK08C34rnGhH9l6jaAv7rRwrY/QtWqFg5WjpyC2Psajoc52x0FM\niPPFQpn5kvDbnlHsClxo4VqNUJGe423CPi5+V2lcf3/9YB1WCdvyGLcS13dhVkaxVzQ9D0n2o1zj\nw3cKn4R6/oucwwDhzr6O8z1Cdfgm/PtLuJpB6CCcxfwifuuF7leLgXgj3KDqDGtmphybf+eCbaFS\n2LWSkPVBJg2j8U54oygJ7Sm2uYfsP5bL0r+T/ec//yQ/AXNhbhBcvhefAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$\\frac{x^{3}}{3}$$"
],
"text/plain": [
" 3\n",
"x \n",
"──\n",
"3 "
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"integrate(x**2, x)"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAADQAAAAbCAYAAAAzgqwIAAAABHNCSVQICAgIfAhkiAAAAotJREFU\nWIXt11uoT1kcwPHPcMr9UnToHPeoUSOhkcaQXB6QF16ElDJNeZgUD6QQM+TSaJpSZsJfFEXzMiRe\n3CJSEkpNTU1TI4zJTIMaZvCw1t/Zs89/7//+n5vofGu39/qt33Wvtddam/eMrm3kZwf+wa9t5O+t\nMg0PMKMGm4XtkwpdWmnfF+NxtwabD7G8lXEzaW1Bn+H7Gm2W4GhGX0/cyrGdjB9wGrexH401xs9k\nAT6Kz+cVn3I30KOC/GNcx6sMu4k4i/6x3RsX8RAjCsbOpMH/p815xQqajMMp2VicQglXZRd0CqNT\nsglR/1iB2LmswHqsi9c9fIf5Vey+wdyc/pLsgp4Iq2h9Sv4Yj6rErZlfVB+hrsL3UZejU5Jd0G1h\naxiZkt/H03Ij7XwSlkWnI7ASnwvzthGb8HNCfwi+wGCsEeb1yYyEZuIS/s0sJ58p6BMLKNOAQcKU\nb8YYfIsPYruEn/AJpuJlTLqlHIx+8ijJHqFKbMN/Qo7N2IteifZxXIvPQ7EbA2oIlqQ7bmp6WVmU\nFC9oFP7Gl1kKw1Pt3/BVQefVWITtBfRKihXUTVgRvy6awNjoeHZRgyqc0LRn5VFSrKDD2FKpI+uk\nMAvPcSUhG1UgUCX6YRjutNA+zWbh296YkL3ZE8sF9cBOjIvtOcIS+yyht7aFCSwSjittwbKYy9aU\n/NPyQ3nZnickfAMvhNH4K2GwQfMdviiLhTNfEbrHe09NL7PMdOzBGRxJyOtUmKYDcQC74tULh7BP\nWMrnFEwozWBcqKJTH5O8ExN7hd9xDksTen8k+tNXesTajdVY1VHBOoLLwuh3GK39H8pjNP7UDgfH\nPNqzoLwfuXeSH4XDaieddPIO8RopXHumE7HpygAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$\\frac{x^{4}}{12}$$"
],
"text/plain": [
" 4\n",
"x \n",
"──\n",
"12"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"integrate(x**2, x, x)"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAD4AAAAbCAYAAAAkoDzBAAAABHNCSVQICAgIfAhkiAAAAy9JREFU\nWIXt12/IX2MYwPGPZ2N/Hn8WmseGzdPUhGSyxCxhCe3FzIvFUoqUF/7NC1qN/M2IRITYTxsjyxuW\neLMxNKmFrUQRivwZWv60YR4vrvvnOTu/+/x22u88q83zrdM593Vf93Vf17nPfV/X4X/KmIbs3I8d\n+Lohe/sE5+B7nDsCti8dAZugr8fxh+JUfNKAL2Vm4soRsIveA78GTzfhSIbLsbqibyI+7jJ2Nl7B\n69iMZzC1Kcfm4+T0vF7zn/omTMjIz8AHGKoYNwtvYlJqH4y38QOm9+rUFLt+hus1G/hsrCzJTsRa\ntLBRdeBrMaMkOy3pv9irY1fhNtyarm/xFC7p1XDiEVzUpb+lOvDfRHaZXJL/gq09e1biS82t+Bix\nf8d20WmpDnyzSK3Hl+Tf4fd2o2z8dCxORqfjalwr9stU3I7PC/rH4HoMYInYT6+lvkHcnBx4Hi8U\nxi0Re3VRxvHzsAF/VwS2O87EISLQNlNwlNiSHZyAR3FAarfwGc7C2fgnOVyXJ3AQbtB5An+ElyrG\nrUjzdaOlesVz3IudIpYOHkd/of0y3k/Px+JBHFFzojkiHREpZU2hb1Jy4rrMuPH40PDLr6KlfuCD\n+BV3VylMK7W/wT01jZcZwDixPXZiQaFvvnD6pMy4hbivhv2WeoGPExngoRq6iNQxhAvqDqjgJmxL\nDrRZjh/lV3WN4dqgGy31Al+JO3MdVZXb+fgT7xVkgzUmKnMh1olTts1cUVCUHT8Mx2HLHsyT4w5x\nRi0ryP6rPdqBTxArcUpqzxMH0h8FvVv2YPJp+LTQ7heV1VsZ3YWizGyCxcLnu0ryOe2Hdjq7WAS2\nCX+J1d1WGLBUZyVVh69weKG9HAfKB75I1P51GJ/uEw0vTpu5eBhvYFVBPlZmexyJZ/FAuvrxHJ4U\nKW5eTYfKzMQ7eExkhQ34WecWG5B/GUUmi2C2pACGxFmxDlcU9H4q9Jev8hewV+gTRcWKTN+N8ult\nn2S1XQuXBdguCqUy74qvbr9gq9gmRMn4hXyJOkP8Ue1Vdlch9cJl4veyD0eLl7Axo7dMvJRVmb79\nmlfFz80oo4wySmP8C/46oFYfHj1+AAAAAElFTkSuQmCC\n",
"text/latex": [
"$$\\frac{x^{4} y}{12}$$"
],
"text/plain": [
" 4 \n",
"x ⋅y\n",
"────\n",
" 12 "
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"integrate(x**2, x, x, y)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAAkAAAAeCAYAAAD+QjQzAAAABHNCSVQICAgIfAhkiAAAAQlJREFU\nOI3N07EuhEEUBeDP7gYRW2+jsCqFQmOjINkoVJtoiEai9RQSNS+g0aESjUokJCoJEcV2shohEoVG\nRGys4p+JPyNZKpzqnrlz7zkzc4cfoCcXV9HAKyo4wGVasJ4U70RSyCXmMBbiDp5jopjbVMAeypjA\nNh5SuUqQaOEeM+mGMvYxgH6s4QnDeblGWDxFGyehsIRmNH6N8aR7EWfxqBGLqOEWfTjHUerrvyAa\n7/yuHExjSPY0dWzhOC14xHKIF2SjMkj2NhF13OR4b6L0BbtYjaSUJGuYxQs2unWBFVxETxGTslGt\nBj4qu+B5Pj9CG03cBT6CN1xJ3C/J5vwdU9jE4Xe+/gofYvUtY+Wotg4AAAAASUVORK5CYII=\n",
"text/latex": [
"$$\\frac{8}{3}$$"
],
"text/plain": [
"8/3"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"integrate(x**2, (x, 0, 2))"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABAAAAAeCAYAAAAl+Z4RAAAABHNCSVQICAgIfAhkiAAAAThJREFU\nOI3t1D0vRFEQBuDHRxRCRxSIj0L0EiGxyWpo6GgQFAqFxh8QpUIvRJT4CaKgpCCh0NJJhIKESBCr\nuEdy3ezeXbZQ8DZn5sy573nvnJmhTFQl/Hps4xgPidg0RtGFQRwlyeawjBzaE7FZrAS7HS9oKKQq\nSVCDW7TF9jo/jepCLDH0h9vaMIAe7OGyVAUTYS8T/DrcowUqS1DwmcyTsD7iGSOlEpwFBfEXy0n5\n/XyvcIDhYDcGVc3JDyexFgh2sRCLtWITi9gQ1cE/AirCmvtVFWWhIiWWEdV7LbLYwuF3yO8wE+xx\nPIka6QvS2jmLq5hfI11xKnawlC9QbKD0YkjUvqs/vR3mcSpPDgqhDzfoCH63qNjGkgcLDZQ3XOA6\n+J14xXnyYFpWp9CEd9EwXcd+Ue1/EB+awTWrPnDugwAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$\\frac{16}{3}$$"
],
"text/plain": [
"16/3"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"integrate(x**2, (x, 0, 2), (x, 0, 2), (y, 0, 1))"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAALUAAAASCAYAAAAdSp//AAAABHNCSVQICAgIfAhkiAAAAoBJREFU\naIHt2k2oVVUUwPHf9aOHaBHy/EAKnooJOVIoRFQaOXQYBuKgUTQoEAcGKU99iiMHDaWRCoooIjgx\nJ6KgDweKKBWBRKGQqRlk5QeZg3Wub3s813ffQRBk/eFw71r3fzZ7sPe5a+99SJLXjE4t/hCbMQ3v\n4AK24kbL9t/DMP7Fg+pzGH+ll15LbzeO48fKmY+12I/rtfYsw3d4u4pn4Ax+x1Bd7oP38StWVPFc\n/Fx1Mr302nr/167/sKUUphTfd+Bz/FnF9/AlLorZsU7/TMEx7MG5KjdVTJS76aXX0iMG/knMxjXs\nw2U9uFfdMLuWv4vbvW7qwad4aOypn156L8OD0304T7lirEYp+Q1/T6QhnML36aX3kj36GNRl+bEc\nb4pB3GUe5vTTUEEHK8UiczXWiL+RIWzDpfTSa+F1eQNfYRCPsVBsbvykT3aJQnzFeGLBoCjgf8Bn\nRf4jsYpdkl56Lbwu1/BuEa/HTbGwHJcFVaMj/cgFc6pO3hdbgyXXcSK99Fp4XSY3xP/gG+MwgFGx\nGp0oU6tOXm34bVTU7QPppTdB70X8Ul1gUg/pW7FnvXGcxpp4hFv4o+G3B6ImmpleehP0iHOTsw3e\nZPHER/OgHhZF99Yit6HBexGjmNWQH6g6eiu99Fp4S8VmRp1BxZO6znpsb8jvrcWLPF//lHwi6pzS\n6YiDncPppdfSOyIGcMlSUb5s0cBqMSMO1K5DOFjzHotTnV5MwnlsKnIfV+0PpZdeS+8D8Y5Ht8bu\niBPFc0XumRea7hirXeqMGJsJi0Vtc1Qcq/diplhoThd1Uwdfiy2Z9NJr663CF+Jlp7fEoeFOsXuS\nJEmSJEnyKngC4sDTbyU9knoAAAAASUVORK5CYII=\n",
"text/latex": [
"$$2.6666666666666665$$"
],
"text/plain": [
"2.6666666666666665"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"float(integrate(x**2, (x, 0, 2)))"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"sympy.core.numbers.Rational"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(integrate(x**2, (x, 0, 2)))"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAKEAAAASCAYAAAAzD75tAAAABHNCSVQICAgIfAhkiAAAAlZJREFU\naIHt2k2ITlEYwPHfjBmTZpQmX0ka8lHspEloUkR2VkqJYoON8lEWaDDJyoYmSbJQpCYbKWxkwTSR\nRJSSEpHBKONjyIzFuW9z5859Z+a1oNzzr9t7z3P+59y7ON1zznNeIpF/TFWm3Iz9mICZ6MIhvP7D\n/uejFd/Ql/y24nP0CuGtw2k8TDn9qfZdaE93uBg3MCkpN+A23qFJ5SzESyxLytPxInnJ6BXD24OB\nMlc/1kJ1qsFR7MSnpNyLXZiC4yqjBldwAneSWK0wsHuiVxhvLmZhPMYJM28VVuAkrsvQK4zsqZl4\nD95n5VHYih8Gv6rRK6Z3KifWgGvCkm8Yj4Q5e3Ym/hZfRnlYlpt4Er3Ce3m0Y0k6UJO6X4qJwqAr\nMQPTcKuCh5Q+t11owRph9DfhMB5ErxBeHsuFJeC9EZxhHMMvg4vPsTBZWHg+xfZUfKWwa1oUvUJ4\nedxX4SZ3TtJpWyWNhC/nAL4bPu+/wtXoFcLLskqFU3gdOoXdT6XUCi/5OKeuU1h31kXvv/eydOBc\nTnxIiibNWSFnuLtM/Uj8RDc+5tT1Cdv1xuj9916aWiEn+CanTe4gbMUz4aSkxOa8xiPQKeQXs9Ql\nL9odvUJ4JZpRb4ypvk04khM/kynPUybPk7ARXzNOlZAIvxy9wngltghT+I6cuiG0CCP4Qua6hIsZ\nr19OtjtFNe5ibyq2Iem/KXqF8UrsEwbhtpy6IX9g+GD4XF6iDQeT+wXCmXKHcMxXjkZhY1MvrCOq\ncADPo1coD9bjPFarMEcYiUQikUjkr/Ab1mh2KChaNJ0AAAAASUVORK5CYII=\n",
"text/latex": [
"$$2.66666666666667$$"
],
"text/plain": [
"2.66666666666667"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result_rational=integrate(x**2, (x, 0, 2))\n",
"result_rational.evalf()"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAASCAYAAABVXNdWAAAABHNCSVQICAgIfAhkiAAAAtFJREFU\neJzt3E/IFGUAx/HPqq8vooGIlUTIW2SB3SRELERIDG+eAiEM7FJeBDXwkPL6B+nkRZEIEQ9CIYiX\nCLRLeMiXl0KiKAgiiETR1MA/ZdGrh2cWx3nnfXVjN4h+X1h255nPzO5th3lmhpRSSin9r+o0lpdj\nB+bgaYxjFy78w/0/j1H8jjvV+yhuxMXFxcXFxfXdrcMH+LpmJmrbj+NwfYfLcAbzq+V5OIvLGNF7\nS/EzVlbLi/BT9SPj4uLi4uLi+u+24e4Urwm8BjNqG+zFZvxWLd/EFjyO9/XWLJzCAXxRjQ0pBxTX\n4+Li4uLi4gbinsNizMZM5Qx/B6/gIE5rdFM5oniiMX4dvzbxQ9qEP90/ixAXFxcXFxc3eHeoZWwe\nPlWm9Cf1jTI38Exj/BJuPeTLmn2G7+Li4uLi4uL+VdfWYbxUH5hV+7wCjyl/9t2ewpP4vIcv6Z5e\nGMcqrFWOOkawG+fj4uLi4uLi+u7aelmZ4v9yGjOp/fjb/YsLHqWFyoUF3+Pt2vhq5WrEF+Pi4uLi\n4uL67tr6So8X7T9b7XRfLxspZwru4g+T5xd+wSdxcXFxcXFxfXfNXtXjVMEwxpSrCnttSPmR37as\nG1OuKxiOi4uLi4uL66trdhJHW8YfuNWv3hHlnv+tU6yfrr9wBdda1t1Rbj9YEBcXFxcXF9dXV29I\nuaf/Yss2rX/+o/hBebJft41tG0/TmPJ8gGbD1Q+9EhcXFxcXF9d312055nrEW/XfwJ6W8Q8by0tM\ncb9g1QbcbpiO8gChE3FxcXFxcXEDcd3eVKYK3mlZ90CrlCOH443Xx/io4Sa0PCWo1gycw/ba2OvV\n/kfi4uLi4uLiBuK6vav8+b/Vsk6n9vmqyXMG3fZhZ/X5BeWZ/yeVxwFP1QLlgsG5ynxFB+/hx7i4\nuLi4uLiBOViPY1ijx3v8U0oppZRSSimllFJKKaX0n+oe0wRYMRHlN+AAAAAASUVORK5CYII=\n",
"text/latex": [
"$$2.6666666666666666666666666666666666666666666666667$$"
],
"text/plain": [
"2.6666666666666666666666666666666666666666666666667"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result_rational.evalf(50)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Ordinary differential equations\n",
"\n",
"SymPy has inbuilt support for solving several kinds of ordinary differential equation via its `dsolve` command. We need to set up the ODE and pass it as the first argument, `eq`. The second argument is the function `f(x)` to solve for. An optional third argument, `hint`, influences the method that `dsolve` uses: some methods are better-suited to certain classes of ODEs, or will express the solution more simply, than others.\n",
"\n",
"To set up the ODE solver, we need a way to refer to the unknown function for which we are solving, as well as its derivatives. The `Function` and `Derivative` classes facilitate this:"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAG8AAAAaCAYAAAC5KgISAAAABHNCSVQICAgIfAhkiAAABCtJREFU\naIHt2WuIlFUYwPFf21qJ5qW10NYuKpq1mEZorqaEJn6IJSQJS8OipczKMisoCP1S2AX6YBesKCVq\niyIoiIw+RHZTQrCibJPKrlgZFV20st0+PO847w4z48w2O7PZ/GHZc33P877POc/lDHVqzTQ04zCM\nxPTailOnHDagG3/jbYwvdWJjHwlUp3R2YVRS3l3OxLryggax+7trtH5ZSsvwf1FeC5aiFX/gR/yE\nO/A5OrAS39RAtkG4HHsxD/fgg6RvpjCjk7EtGTsfN+LTqktaZYbgYXyBJTgy1XcsnsNGfFx90Q7Q\nKoIVQnmdwhIMEUqF87E1KW8Ugc2BSYciY/CiOGFt+CHPmInYgfVYVsG1r8W4Iv1bxWknrN/+pHwy\nPsMUocQu/Im14j3WVlDGfssx4uV3YvhBxn6EC/tcovxMx684KqlPEn73tJxx2zA1KQ+tjmi1o0N8\nhLkljH1DmNBaMBqrU/VleDMpt+EGcRr/woCkfUVmcNpsjk0Gj8ETeDLVt0pofrGwy5tSfWcKf9Kd\nLNSOKzFMJJ+rZU3DJ714wXI5C1vwOmaXMH6xeN9SmYLlIugZgBG4Gr+UJ+YB2nAKDscE3ILvcJn4\ntp0YKPLA34Wf/jb3IQ/iCFyH93L63sXTuAiDU+3jsU52E2wQzn+GiJS6hOIlwhTiUWwv8++cAs9a\nLzbS0iLr9ZZLxbdoTrXdLAKKmnE2Lk7KL+HZVN8wofXl4mSmeUCErxmekY2KThBhb1NSn4UzKidy\nQXYK5Y2u8HNbhfmamWqbJoKi4yq8VlmMFGF0s1DUglRfm/gYLSIXSnNSTv1r3F5gjeGyoW9fslcE\nAaWQexV1tNi4J+YZ+7IwZ3eLTXkvrhAhfb9gJX7WMx+6C98LxbYXmXuqUPK5BfobhT3va3YrLdlu\nwH2pejvWyPruNAOEz17/78WrHLk3LPPxqriFyDAbm4WDHqwwc0VO8laqbazsTcBQ+XMtIpEu16Su\nwmt52rfgPGHOfysy/yo8lao/kvxfnWdskwgoqhFw9ZoduDNVHyQUkglP0z5voDiVk5L683gn1d8g\nfGKGOTi9ksIWYJYw/SuKjJmHWwv05Tt5jcIi5ZszCgvLE7Fv2CROQYb7xctMTupLZBPKC0Q0uUjc\nVLwvcqYMtwknn6Ea/i7D9cLvXSI2UYamRK6biszNpzxio27WM72aiscd/CKgT8i9HpsozMd27BM5\nU4vIZbpEKjFHKHmEeKGMKVwjTto+cVpfwCtJ3wRxGqppdmYIJY7DHpGHfYWH8GGRed0i192V094o\nrFIzvhRxQafwg/v1MxqE83+s1oJUmUInr1/ToWdyvkCcopJ/2T1E+E8qb4+4LYHjRZS4qHbiVJ3F\n4papW0Sh19RWnIOT9nkLxY1Bg4ig1omwu06dOnXq1KlTp6b8A4tc2L4EpXpSAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$y{\\left (x \\right )} = C_{1} e^{- 5 x}$$"
],
"text/plain": [
" -5⋅x\n",
"y(x) = C₁⋅ℯ "
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sympy import Symbol, dsolve, Function, Derivative, Eq\n",
"y = Function(\"y\")\n",
"x = Symbol('x')\n",
"y_ = Derivative(y(x), x)\n",
"dsolve(y_ + 5*y(x), y(x))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note how `dsolve` has introduced a constant of integration, `C1`. It will introduce as many constants as are required, and they will all be named `Cn`, where `n` is an integer. Note also that the first argument to `dsolve` is taken to be equal to zero unless we use the `Eq()` function to specify otherwise:"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAG8AAAAaCAYAAAC5KgISAAAABHNCSVQICAgIfAhkiAAABCtJREFU\naIHt2WuIlFUYwPFf21qJ5qW10NYuKpq1mEZorqaEJn6IJSQJS8OipczKMisoCP1S2AX6YBesKCVq\niyIoiIw+RHZTQrCibJPKrlgZFV20st0+PO847w4z48w2O7PZ/GHZc33P877POc/lDHVqzTQ04zCM\nxPTailOnHDagG3/jbYwvdWJjHwlUp3R2YVRS3l3OxLryggax+7trtH5ZSsvwf1FeC5aiFX/gR/yE\nO/A5OrAS39RAtkG4HHsxD/fgg6RvpjCjk7EtGTsfN+LTqktaZYbgYXyBJTgy1XcsnsNGfFx90Q7Q\nKoIVQnmdwhIMEUqF87E1KW8Ugc2BSYciY/CiOGFt+CHPmInYgfVYVsG1r8W4Iv1bxWknrN/+pHwy\nPsMUocQu/Im14j3WVlDGfssx4uV3YvhBxn6EC/tcovxMx684KqlPEn73tJxx2zA1KQ+tjmi1o0N8\nhLkljH1DmNBaMBqrU/VleDMpt+EGcRr/woCkfUVmcNpsjk0Gj8ETeDLVt0pofrGwy5tSfWcKf9Kd\nLNSOKzFMJJ+rZU3DJ714wXI5C1vwOmaXMH6xeN9SmYLlIugZgBG4Gr+UJ+YB2nAKDscE3ILvcJn4\ntp0YKPLA34Wf/jb3IQ/iCFyH93L63sXTuAiDU+3jsU52E2wQzn+GiJS6hOIlwhTiUWwv8++cAs9a\nLzbS0iLr9ZZLxbdoTrXdLAKKmnE2Lk7KL+HZVN8wofXl4mSmeUCErxmekY2KThBhb1NSn4UzKidy\nQXYK5Y2u8HNbhfmamWqbJoKi4yq8VlmMFGF0s1DUglRfm/gYLSIXSnNSTv1r3F5gjeGyoW9fslcE\nAaWQexV1tNi4J+YZ+7IwZ3eLTXkvrhAhfb9gJX7WMx+6C98LxbYXmXuqUPK5BfobhT3va3YrLdlu\nwH2pejvWyPruNAOEz17/78WrHLk3LPPxqriFyDAbm4WDHqwwc0VO8laqbazsTcBQ+XMtIpEu16Su\nwmt52rfgPGHOfysy/yo8lao/kvxfnWdskwgoqhFw9ZoduDNVHyQUkglP0z5voDiVk5L683gn1d8g\nfGKGOTi9ksIWYJYw/SuKjJmHWwv05Tt5jcIi5ZszCgvLE7Fv2CROQYb7xctMTupLZBPKC0Q0uUjc\nVLwvcqYMtwknn6Ea/i7D9cLvXSI2UYamRK6biszNpzxio27WM72aiscd/CKgT8i9HpsozMd27BM5\nU4vIZbpEKjFHKHmEeKGMKVwjTto+cVpfwCtJ3wRxGqppdmYIJY7DHpGHfYWH8GGRed0i192V094o\nrFIzvhRxQafwg/v1MxqE83+s1oJUmUInr1/ToWdyvkCcopJ/2T1E+E8qb4+4LYHjRZS4qHbiVJ3F\n4papW0Sh19RWnIOT9nkLxY1Bg4ig1omwu06dOnXq1KlTp6b8A4tc2L4EpXpSAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$y{\\left (x \\right )} = C_{1} e^{- 5 x}$$"
],
"text/plain": [
" -5⋅x\n",
"y(x) = C₁⋅ℯ "
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dsolve(y_ + 5*y(x), y(x))"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAG8AAAAaCAYAAAC5KgISAAAABHNCSVQICAgIfAhkiAAABCtJREFU\naIHt2WuIlFUYwPFf21qJ5qW10NYuKpq1mEZorqaEJn6IJSQJS8OipczKMisoCP1S2AX6YBesKCVq\niyIoiIw+RHZTQrCibJPKrlgZFV20st0+PO847w4z48w2O7PZ/GHZc33P877POc/lDHVqzTQ04zCM\nxPTailOnHDagG3/jbYwvdWJjHwlUp3R2YVRS3l3OxLryggax+7trtH5ZSsvwf1FeC5aiFX/gR/yE\nO/A5OrAS39RAtkG4HHsxD/fgg6RvpjCjk7EtGTsfN+LTqktaZYbgYXyBJTgy1XcsnsNGfFx90Q7Q\nKoIVQnmdwhIMEUqF87E1KW8Ugc2BSYciY/CiOGFt+CHPmInYgfVYVsG1r8W4Iv1bxWknrN/+pHwy\nPsMUocQu/Im14j3WVlDGfssx4uV3YvhBxn6EC/tcovxMx684KqlPEn73tJxx2zA1KQ+tjmi1o0N8\nhLkljH1DmNBaMBqrU/VleDMpt+EGcRr/woCkfUVmcNpsjk0Gj8ETeDLVt0pofrGwy5tSfWcKf9Kd\nLNSOKzFMJJ+rZU3DJ714wXI5C1vwOmaXMH6xeN9SmYLlIugZgBG4Gr+UJ+YB2nAKDscE3ILvcJn4\ntp0YKPLA34Wf/jb3IQ/iCFyH93L63sXTuAiDU+3jsU52E2wQzn+GiJS6hOIlwhTiUWwv8++cAs9a\nLzbS0iLr9ZZLxbdoTrXdLAKKmnE2Lk7KL+HZVN8wofXl4mSmeUCErxmekY2KThBhb1NSn4UzKidy\nQXYK5Y2u8HNbhfmamWqbJoKi4yq8VlmMFGF0s1DUglRfm/gYLSIXSnNSTv1r3F5gjeGyoW9fslcE\nAaWQexV1tNi4J+YZ+7IwZ3eLTXkvrhAhfb9gJX7WMx+6C98LxbYXmXuqUPK5BfobhT3va3YrLdlu\nwH2pejvWyPruNAOEz17/78WrHLk3LPPxqriFyDAbm4WDHqwwc0VO8laqbazsTcBQ+XMtIpEu16Su\nwmt52rfgPGHOfysy/yo8lao/kvxfnWdskwgoqhFw9ZoduDNVHyQUkglP0z5voDiVk5L683gn1d8g\nfGKGOTi9ksIWYJYw/SuKjJmHWwv05Tt5jcIi5ZszCgvLE7Fv2CROQYb7xctMTupLZBPKC0Q0uUjc\nVLwvcqYMtwknn6Ea/i7D9cLvXSI2UYamRK6biszNpzxio27WM72aiscd/CKgT8i9HpsozMd27BM5\nU4vIZbpEKjFHKHmEeKGMKVwjTto+cVpfwCtJ3wRxGqppdmYIJY7DHpGHfYWH8GGRed0i192V094o\nrFIzvhRxQafwg/v1MxqE83+s1oJUmUInr1/ToWdyvkCcopJ/2T1E+E8qb4+4LYHjRZS4qHbiVJ3F\n4papW0Sh19RWnIOT9nkLxY1Bg4ig1omwu06dOnXq1KlTp6b8A4tc2L4EpXpSAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$y{\\left (x \\right )} = C_{1} e^{- 5 x}$$"
],
"text/plain": [
" -5⋅x\n",
"y(x) = C₁⋅ℯ "
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dsolve(Eq(y_ + 5*y(x), 0), y(x))"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAKoAAAAeCAYAAAC8LYXhAAAABHNCSVQICAgIfAhkiAAABmJJREFU\neJzt23+sHFUVwPEPj5YfVltKixYrUlrBYkGthEKBVgMSEk2jUEKqBaGlwYCCQBHUBH3/GKGWmPgL\nkB/darQaGvwFof7+rYDRiDUFbFDQahBRQhRakfb5x5lxZ7cz+3Zn9+2+R+abbHbvzJ07586ce+45\n596loqKiog0WYTb2wSycOFhxxpyXYDNe2XT8BFyBYXwHS/srVsVo1DCC3fgFjuxh22f1sK1esEYo\n4gjmZI6/GB/LlM/Bs2IAV2QYEhZtEAwLSzqrx+3Ox9d63GavaFbU12IP5iXlqUmdc9IKQ/2SbMAs\nwDr8BN/FHbgFR4hnsAmHDkw6Hk8+veSdol9ZrsNiTMeLxHP5IF7R43t3ylYh1x+S8mHJ9/bBiNN/\npgqF/BPOxf6Zc4fgTmzE7/sv2v/5OC4UirVBKE/KybgAnxDyv1vIPLeNdn+NA5uOjTR9duPaknJP\nLnldKsecFue/gBu6aH9CcQS24eeYUVBnvnhoN/VLqBwWq7sdp+NhYeWnCgWGt+G+5PdGo7sJi8TL\nbuYxfE64BDfgdaWlDgNQ1odspairxezX4IpNKnmj8c7B2CJe+FvxVEG9h4RifL/H979U3d/K4z71\nafmX4sURU91RODaRK1W2xfhq8vv8Nu6/El/KOf5HXNTG9e0wWXdWNY+3JN9X4wAxIB/t8T3GFZvE\nyz+tjbo/FW7AIDgR/xYvhVDQEbymqd6vcHzye9oobe6L38o3Qj8sJWU+Na2n71bkWdSlYgZJA8u3\niwGKxs7MxZViyvyixhG5VjyolWJ62pI5d5zwn9KbrxG+1EFiavhIcp/n8UjJjnXCCVghAqfvtVH/\nRvy9g/Zfj0uElZ6MmXgP/tWZmGCH8FF3JeWThauyDctEqupOERX/JqlzPj7Zos1TRd+fzzm3nwie\nZqpH2R/QPx99JU5Jfl8njMSnhe7dJXKsWXIH5Y2iI+8TIzLLA/gK3iFyXilH4lPq/kRNdPok8dD3\nCCWHVS06cLt4EZ183lTQ1s1i0LQzRXbKBeJZZH2zq4UPWZZluArX4Da8NDm+SrzES5N7rMXFeNko\n7W0Qzz6PR9QjasLA/E251FhNeYtamlNE1An3iJWDlINEdHiJsLhZPospmfId6k7/YVivHsgswcLe\niVzIdqGovU65LMZ/NSrBItytrlyD5gAxiItywvvmlJ/V2kIXUTMARZ0lUjezhVKemTm3TLz4BWKJ\nK8vhTeW/4KMF95iuHsWOJTuF39cOnawCfQtPiKl6vUgZXSSi8/HCco0rPO3wWPIpYqP8Ge2fwkXJ\nO3dchzJ0zBV4WmO+cZ3w4WYL/7OIo4VCv7ng/CThH401j+OvbdQbElNrlqJ16MnC57u5a+nGls04\npuDcj4Xv2swOdR+5E2r6aFGbI8Mz8AP8J3NsqejkUxr902ZOw3MiGEiZq77aMA3/KLj2Fp27BWvx\no5zj94qU1BQ80+L6i/HlTHmNcBeWC58xywwxTfYjGCzLNDHAfldwfqF8+WdqbVF7xcjoVdrnQVyf\nKU8RyndZUs76qAcKa3tsUv66yAmmDAkfNuVUEb2ONUuE+3JZizqn40MF5/JSJ5PETJN3zaE4uzMR\nx4TVIoIvYrNQyiwLRX/LrE7VDMBHTdkirFvKZ0RH0hWMc9VzfstFVL9CrPBsFemGlGtl8mD645+m\nXC781PM07meYkcj1/hbXFq2arBMzSzZQOV4k5ad3IWuv+La9Y4YsqaypW7cPPi9mwP2LLmpBTfeK\n2vYWx+bocD5uFQ7xLpGTXKCed9tPWMYtybF16tP5sLCgu4QV/obYV0istuzW36nzJKGw8/CkyHPu\nEEuI21pcNyJyyY82HZ8kZpvZ+LN4uQ8LvzUvZ9lPZon04RtHqbdEzDQ7RRC4VQS/ZX3UYd2tHNVE\nGnEP7se7lNiIMiQCkw1dCDIRGW3DxHjkcpE+7Cc13T+nYSW2OG7SmOg/U4y0Xm7knQhMREX9mb39\nz7HmDbpf6x8uc9GTYpUJXi6i9RVdCjIRmWiK+iqx6DARabXFsZCzhc+5Xqz1v9D/u9PMSrGMPCLS\nVu8drDht82ER5E5EirY4VrwA+abW+e3xTDaPP0djhqmiYlzQ7hZH7L1JoaKin+xU34p5ltjwfn1e\nxUH987Kigtjw9GphMI8Se0GeGKhEFRUVFRUVFRUVFW3yPwA0R4G3bZUcAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$y{\\left (x \\right )} = \\frac{C_{1}}{5} e^{- 5 x} + \\frac{12}{5}$$"
],
"text/plain": [
" -5⋅x \n",
" C₁⋅ℯ 12\n",
"y(x) = ──────── + ──\n",
" 5 5 "
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dsolve(Eq(y_ + 5*y(x), 12), y(x))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The results from `dsolve` are an instance of the `Equality` class. This has consequences when we wish to numerically evaluate the function and use the result elsewhere (*e.g.* if we wanted to plot *y*(*x*) against *x*), because even after using `subs()` and `evalf()`, we still have an `Equality`, not any sort of scalar. The way to evaluate the function to a number is via the `rhs` attribute of the `Equality`.\n",
"\n",
"Note that, here, we use `z` to store the `Equality` returned by `dsolve`, even though it is an expression for a function called `y(x)`, to emphasise the distinction between the `Equality` itself and the data that it contains."
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAG8AAAAaCAYAAAC5KgISAAAABHNCSVQICAgIfAhkiAAABCtJREFU\naIHt2WuIlFUYwPFf21qJ5qW10NYuKpq1mEZorqaEJn6IJSQJS8OipczKMisoCP1S2AX6YBesKCVq\niyIoiIw+RHZTQrCibJPKrlgZFV20st0+PO847w4z48w2O7PZ/GHZc33P877POc/lDHVqzTQ04zCM\nxPTailOnHDagG3/jbYwvdWJjHwlUp3R2YVRS3l3OxLryggax+7trtH5ZSsvwf1FeC5aiFX/gR/yE\nO/A5OrAS39RAtkG4HHsxD/fgg6RvpjCjk7EtGTsfN+LTqktaZYbgYXyBJTgy1XcsnsNGfFx90Q7Q\nKoIVQnmdwhIMEUqF87E1KW8Ugc2BSYciY/CiOGFt+CHPmInYgfVYVsG1r8W4Iv1bxWknrN/+pHwy\nPsMUocQu/Im14j3WVlDGfssx4uV3YvhBxn6EC/tcovxMx684KqlPEn73tJxx2zA1KQ+tjmi1o0N8\nhLkljH1DmNBaMBqrU/VleDMpt+EGcRr/woCkfUVmcNpsjk0Gj8ETeDLVt0pofrGwy5tSfWcKf9Kd\nLNSOKzFMJJ+rZU3DJ714wXI5C1vwOmaXMH6xeN9SmYLlIugZgBG4Gr+UJ+YB2nAKDscE3ILvcJn4\ntp0YKPLA34Wf/jb3IQ/iCFyH93L63sXTuAiDU+3jsU52E2wQzn+GiJS6hOIlwhTiUWwv8++cAs9a\nLzbS0iLr9ZZLxbdoTrXdLAKKmnE2Lk7KL+HZVN8wofXl4mSmeUCErxmekY2KThBhb1NSn4UzKidy\nQXYK5Y2u8HNbhfmamWqbJoKi4yq8VlmMFGF0s1DUglRfm/gYLSIXSnNSTv1r3F5gjeGyoW9fslcE\nAaWQexV1tNi4J+YZ+7IwZ3eLTXkvrhAhfb9gJX7WMx+6C98LxbYXmXuqUPK5BfobhT3va3YrLdlu\nwH2pejvWyPruNAOEz17/78WrHLk3LPPxqriFyDAbm4WDHqwwc0VO8laqbazsTcBQ+XMtIpEu16Su\nwmt52rfgPGHOfysy/yo8lao/kvxfnWdskwgoqhFw9ZoduDNVHyQUkglP0z5voDiVk5L683gn1d8g\nfGKGOTi9ksIWYJYw/SuKjJmHWwv05Tt5jcIi5ZszCgvLE7Fv2CROQYb7xctMTupLZBPKC0Q0uUjc\nVLwvcqYMtwknn6Ea/i7D9cLvXSI2UYamRK6biszNpzxio27WM72aiscd/CKgT8i9HpsozMd27BM5\nU4vIZbpEKjFHKHmEeKGMKVwjTto+cVpfwCtJ3wRxGqppdmYIJY7DHpGHfYWH8GGRed0i192V094o\nrFIzvhRxQafwg/v1MxqE83+s1oJUmUInr1/ToWdyvkCcopJ/2T1E+E8qb4+4LYHjRZS4qHbiVJ3F\n4papW0Sh19RWnIOT9nkLxY1Bg4ig1omwu06dOnXq1KlTp6b8A4tc2L4EpXpSAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$y{\\left (x \\right )} = C_{1} e^{- 5 x}$$"
],
"text/plain": [
" -5⋅x\n",
"y(x) = C₁⋅ℯ "
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"z = dsolve(y_ + 5*y(x), y(x))\n",
"z"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"sympy.core.relational.Equality"
]
},
"execution_count": 60,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(z)"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAD0AAAAZCAYAAACCXybJAAAABHNCSVQICAgIfAhkiAAAAo5JREFU\nWIXt1kuojVEUwPGfyw155dkVA5JHJFeeF5lIRjcTmSDEQEQIZSBGQsxMLgMkMZKJgalHHmVg4F3e\nCREh8rwG67t8Tuee8517znHR/Y/23t9aa6+19/rWXvy7TMUQdEIdprevO3+Gw2jGN1zEyKyKXark\n0J/gAQYn42elKJYbdI047eYy7bSVkoJtoVjQ47AUDfiE13iDnXiI49iAp23ZvEx6YAU+Yi724nry\nbaZI9wm4msjOwybca81gbxzEIyxG19S3gTiJI7hTwSBKpUEUMSLo2yLzeovDgPm4nIyPiIL3UynN\ncJwWN9qIV3lkxuAmmrCqbPd/sRYjCny/LLKLyNKvyXgY7qNeBP8dn7FLxLGr0Kb9EqW76FvEwVtY\nWESmWkzHe3RL5uNFXRmbI3cVU5Jxn9aMHU+U52TY+LxI9fZgKLan5qtwIRk3YqO4/S+oTdbXtQin\n03saLuEcZmfYeBGOleBoPVaLYliLAViDdyXYSNOI0eiMUdiKF1iOSSJju4t3/IOoQ89zjTSJW17a\nRicKsQzXRAfVwhZRaNqVuyLooRW22yDSbGZqbaooloMqvFcm0un9UaRCzwx6I8UhtdALh8S/9ChH\n9gwmiiejk0jHmziBt23yuoI8k63JqMH+1HwldogsGZYjWyuelaby3asOp0Qa9igitwaz8qznC7ou\nWd9SrnOVpCY13pfMV7QiS3Q+fcRzlYWXIoXztbuDsSCjnaqyXjz6S/x+IP2xDZsL6Oa7adiDs36v\nH1NwVPEGqCrka0NniOBHiJt6hyc4gBsFbDWLFvZBznoX7BbP1WPRx98W//lX/zit3fRfR01xkf+P\nzhWwsUi0l5NFcarDlQrY7aCDDjrIxA8Wn3tWLsNniAAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$C_{1} e^{- 5 x}$$"
],
"text/plain": [
" -5⋅x\n",
"C₁⋅ℯ "
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"z.rhs"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAEkAAAAhCAYAAACV1IbrAAAABHNCSVQICAgIfAhkiAAAA4JJREFU\naIHt2VloXFUYwPFfYmuNS+IC2to+SOMSKS6RuFWNokhRNLSIigtSl4eqUKtVEXxTiKhVcSuK0D60\nuIsiqBUfjBsoioIPruib4IahRUqrtvHhu5c5c9tOZiYznWk6fxjOnO8s891zz7ecM3SYlK5WK9AC\nTsdC9OEs3I8PW6pRm3EgHkjqV2Az5rZGnfbkRGxHf1bvxYRYrIYzE0cl9TOwFquz8kWckLTPwc3N\nUKRGuoS55W5mgVikwUb/0D64F/tn9UG8if2SPquxCScnsos06Y1NgXV4pBkT3yq2bc5j4m1cnsgu\nyWRPFMa+qnwxW8kNeEgVwau7xol7MIyvE9lXYtdsTGQHZeXmwviPMFLjbzaDi7PybsxS7jqmzAju\nrKLfw/gPJxXkp2BNIxWqg2HciNnZZzHOrHbwfDyFt3B1oW2lcMaP49xJ5unHH3buqA/HZ9Uq1ATm\ni10/Ufj0Vho0I/l+F24TD3cPnk/arsN3mIc/dzHXYlyARXgUz+ykzzgOqaDPGrHbamEFxqrs+7NJ\nFqQSZyvtnneEg805GNtwC97F0ZPMtS/exyc4rNDWhy/qVbLVzBYObK5YkCVJ26ViSy7AepxaxXzn\nZWNeKcj78cYUdd3t5NHtV2wVeczfeDvpc44wsW/wvTC5lAHlKQF8mZWXiaNAzpDYZXsUMwr1ReIh\ntiayYXEAnMAGXIXXs7ZekQLMxHH4KZNvy8oukXzmnI/RCvo8p/bsdyU+KMgmapyjJr7Fg0n9APyD\n5YnsZbEoRGL4L37EoUmfIaHo54nsSE3KbuukWwSYlEGxcYqWUcYG8TZznhYPm+Y7C3FTUh8VESbN\nXNcJsx1KFLrPFCJLg+nDHUpuIWcjfhfZ+C4ZwMciX1olMuS/7JiZjwhHnrNU5FHr8R5ewrFJ+xEq\nh/5WMVaoX1vrBN3Coa9thDZtylihvkqcO5fv2DV4QfmZbAm24JhGa9ZGjBXqeZAZxfG5MDWjC5Wi\nRO5klwqnvDdwvZIv2iK5D0tTgGU4TWy5OSID/3Q3KdgOjCs97zwRxfdqekRE/k1EuR5haivEDcE1\naefp/G9JN24Xed64iLB15Wm1XrrtSTwr3MmTeE15slsT03UnDYjj0jJx+TdL3GxsaqVS7caVGngl\nM13N7QcRxnO6RIivy3Kmq7kRTnu7OFb1iGvpX1qqUYcOHTo0gP8B4bWcSAAGoK0AAAAASUVORK5C\nYII=\n",
"text/latex": [
"$$y{\\left (3 \\right )} = \\frac{2}{e^{15}}$$"
],
"text/plain": [
" -15\n",
"y(3) = 2⋅ℯ "
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"C1=Symbol('C1')\n",
"y3 = z.subs({C1:2, x:3})\n",
"y3"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAM0AAAAaCAYAAAAUh9j+AAAABHNCSVQICAgIfAhkiAAABpBJREFU\neJztmnmMFEUUh79dbpAVAbkNIHIqiorGENgQVPAKoiKyqEiIhABBLomCxuDBlagQURCNuAICguhG\no0FNBI9EEo2oIKLgjaigqOCqQHD941edrent7eljllmT+pJJT79+86r6dVe9V68GHA6Hw+HIAXuB\n332fZXntkcNRi2kDTAe6AJ2BTmjAtMhjnxyOWk1bMgfIKKCfd1I3odF6QHvgG3N+ETAe+BtoZD5z\nge1WJ4aRn/DWDZhj+nbEHOcAhxPaawxsBc5OqdcBmAVUAA2M/gIqfebRHZgPfGt0WwIzgZ+ztH87\nek7zA64l8UmYPYjulyRks53UR9Xxo/W9PfLXmoS2AKgD3IVuBOBc4CWgoaWzFDgE9LFklwMj0jSc\ngF7Ad1TOEm2Ar9ELkoQLgPfRg0mj1wIoQ5OJR2fgc6CrJTsZ5dY3WbLZwA6gfkj7HYFygu8ziU/C\n7EF0vyQhm+2kPorKCvRsUjGJzBG/CN3Q9ZbsKiN7xPfb58kcXDVJXfQSTrVkpwEHgCkxbfUEXgFK\n0YxX3QOMqjcTmBwgnw0stM7nAvvJzAiaA8eACSH9fcK0PccnT+qT6uxFvd8kRLUdx0eTgcUhnxKf\nfis0waSiEfCcTzYa+AMYbMlK0E0u8OlO4cRFm7HAUaBZju2WEu3lCNNbBrwYIJ8OPGydfwG8HKC3\nHXizGtvXAiMJfsmT+CTMnk0pNRNpstlO4qOo3AJs8wsLYxq5FIVKm5UoRL5uyc4DjgNrfbrvAJfF\nbDMpJcAeVCqsbXyE1nhrgFOMrAFKMUrNeVOUqgXNdPuA8wPkJwFXAOuqaTeuT7LZyzdJfBSHs4C/\n/EJ70JwOPIpC4iif3gzkuIupOmj8dAHGoFD4se/aXuDMqD1OQQHQH6UdxcADKPyWoTVYvikFPkAv\n8U40WJ5Ca8VPjE5HczwU8PtyoAgNNJtZVL9QT+KTMHu1gSQ+isMhFMkysPPAmSh9mgDcSWa1YDSw\nC1V8fqmmgWFoUA1BKcbjATq/UTmzBrECRak4TAW2+GQt0NqpFVr43m3kA4G3UbXv05jt5JIjwCBg\nA/LXKjRZfWjpFJnj0YDfl5tjMyorRH2AP4Evq2kzrk+y2asNxPVRXO4PEnqDpj9KnY6i9MkeXc1Q\nmFoOXI0eeBBl5lMfeA0VA4YCv1o6jQmeFTzGht1BDOqYY2fgGUu+Ba2/Fpr+5ZNJwPemH0uAK1Ha\nNhjl48eNXlAuX88cvfssBKYB40Lai+OTKPbS0httWSQt/UM8H+UMLz3bA2xENenBwLOWzgCj9xYK\n7WGRAjTw7kUlTX+0aYlStJrmoDnuQXsQNnvR2ixN2E7LNOTXcSjC9EapUmtgtdE5EPL7JubovXDj\nUcoXNON6xPFJFHtpKEZp6Asp7cTxUc7wBs1PKIKMQCH5VUtnAErJdqJyZQefjR5U3XTy0ozr0GLS\noy+wOXWvs3MMOfRgwLUjKBo2PwH9CKIAuAe4w5KVo4E0EfmyJ0opKgiepJqgxfxhtM/Si+x+jeqT\nqPbSsN/0ZXdKO1F9lFP8/wgYgpxlp2DFKOetADahxatXLi1CJbl6aFfWy3+9sFlAZngcBMwL6c+T\nxF+oz0BR0M9WMjcKPRqg+wubpWqSU1HKG/TCLEdpUkM0kLahfRQ/Z6BUDuASNHGVWde91GQkWpus\nRLN6FJ+MjGEvKbvQ2iotUX1Uo3xG5uZaExSib7Nk66l0YkM0g+0mc+buiwaZXWlrBzyU4/6GUYLK\nhY0sWQGafdb7dLv69MIoJd0+TQGK7P0DrjVFqZKXJt0H/GB+49HF2J0Y0nYngvdV4vgkij2bUvKz\nT5PURzljE5rtPR4zjZ9jyfoBt1rn81AFy+70KpTm9TXnhejmijhxFALvof9MeYxAs2knS1YM/IuK\nF1FYh3zSOIXeDahSZfejCFXThluytuiFvtmSLUaFgrC/iHQ1bc/1yaP6JKo9m6h+SUKY7aQ+yhk9\ngHfRfs2DqKJ2kKqboEPJ3G8Zg25sNfAG+tdAN+t6a7IXEGqC5miW2oBK6GvRLGTTHeXGS0PstEKD\nagd6eBXoRdsM3JhADzRYy5Cv1pk+Dgxouw8qFixCE9pGqq4rPYpMW/tM2/+gQTLM0onik6j24txv\nXOLYjuOjGqUQpRFP56Nxh+P/wFoqd6MBrkEzS9DC0eFwoLLyEvO9HfAVqpY4HA4Le/E+HLgQpWVt\n0QDamo9OORwOh8PhcDgcDofD4agZ/gOoHdM70Si93AAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$y{\\left (3 \\right )} = 6.11804641 \\cdot 10^{-7}$$"
],
"text/plain": [
"y(3) = 6.11804641e-7"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y3.evalf(10)"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABUAAAAhCAYAAAA2/OAtAAAABHNCSVQICAgIfAhkiAAAAWBJREFU\nSInt1T1LHFEUBuBn1wUNhBVsLBQMpjGIwa0EA8HaziZp0pg0KWzWvyAoCKZIqtRptRJtI9YhCWkE\nIV3SpDBqIUHEtbgz7GVAGe9ssPGFgTn34z3n3PPFf0CtxJkZzGIQz7CC/SpKH2Itkl/gDCNVSJ/i\nEo8zuYlORp6MmuB+/kyTGWmrCmkRn7DRS8LXWFcuuKUwn5HCAB7ddLivBOFzjGFXyIY5wdpfqRaO\n41QITvw1UwnvkYY85zp3obyOd4W1FhpCf7g1BrGMr4X1E/zRLYok7BXkV9cdbFRQMo1joUDep5Ls\nFeS8xFfxJN6oJypY1H3Lf5jqBelfbGf/o/gRb5bpUg+whAVhtHzHAd4Ik+AnPscX4oZbRxvnmSXD\nErt87P5HIRs+YAtDKYR0LZ3AN7zFBfqxKfTSZLzElyoEMXL3D4XUyFET0iZpyMWX2kJ0j4SI7+B3\nCuk9eo8rz/M23+UELt4AAAAASUVORK5CYII=\n",
"text/latex": [
"$$\\frac{2}{e^{15}}$$"
],
"text/plain": [
" -15\n",
"2⋅ℯ "
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y3.rhs"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAJkAAAAWCAYAAADTuj63AAAABHNCSVQICAgIfAhkiAAABHxJREFU\naIHt2VuoFVUcx/HPMU1LPZmWKRUeMTMlQ4ggoqSiG9WDRJR2IbAiMHpQumBFWBEVdPEpiyBOF9KS\nSogeeiijh7KCjDToYkhmdhGsNKtjlD38ZzhztrPnzMzeekr2Fw5rnzX/9V8zv1lr/df6Dx06dOjw\nP2Arfmn4WzGkd9ThoGISlmAapqJHDLAJQ3hPHQ4yJhs4oK7CGVmD4TmNTsQy/IG+pFyGXTVv4nCs\nwykt2h2HpdiLkYn9Q9jQYDcDD+KbxPYo3IYfB+n/VoxI2jZSR5Mif5TXpSqD+a2rTzO+z/w+Vmj1\nYlGDWdiifyROwmYhaB1Ow0fiYVqxm4A1YtakTMUXmJ6pO0LsD67J1N2JjTi0oP8p2C3/OetoUuSP\n8rpUZTC/dfUpyzPivQxgeMPv1/AY3kvqRmAMfq7Y2Uw8gu34uw12C/GWgbNmM57FDbgjqbtdiLUq\nY/ck7sX1mm9G7xIrQCN1NWnmr+zzVqWs3yr63CL2Wc34ACsz/0/EeeJdNWUh9mBckVENepWbsUV2\nK8TLbmSJGAApX+L1HLsNeLuJ78swP+l7WcO1OpoU+cvSq/0r2WB+6+hTluuwPu/CsMzvBdgkjp//\nNT7BPBHrj0zqRoplvzf5f6wInVty2m/DqTn1Y3CxgTM7S1VNBvM3lNTRpwon4/e8C2m47MKZ+BBz\ncYEQrEcspbkj9ADSK8LiApwjNqoXibD0aWIzJSl35rTfjW4xMPsy9Us135jX0aTI31BTR58q7BQr\n5T6kg2wCRom4Ogt3J/Vn412cjs9qdt4O+nAuVuNCPI838HHGpjsp9+S0352U4/SfoubgN3zdpM+q\nmgzmb6ipqk9V7m92IQ2XhyTlVLGZTnkHv+Lhmh23k5vxLS4Vm/5LRBidnVxPN7x5+5ERSZk+5zAs\nxqMF/VXRpIy/Vpgtwl0rVNGnraSDbEdSbhI5oCxbcb5YSoeKxTgLN4oVbDaW4xi8kNhsL2g/OinT\nvNZNIgTnzeqUKpqU8VeXuWJL8GqLfqro01bSQfZXchM7cmz6xLF3/P64gRJ04R79aQpieV+MRSLp\nOFMs83v1HwyyjBab910izzULawfpt6wmZf3V5afkPr5q0U9ZfdpONk+2zsDEZkq6GSyaCfuTo8Ve\nIU/kp0TYGiUG3nocn2N3ggitRC7nJJHcTUnDxXyxt3pOrBxlNJlfwV8dPhf7wlYpq89+ZYE4gh6W\nqesSI/zlBtvpDXZF9GotT9aFH8RJr5GxInSlYes+fJe0SZmW+F1U0HeP/LxWFU3K+MvS68Dnyerq\n0zaG4X3xzS3lCjFbezJ1c/EP3izpd5V4iLwMeFm7K8VJLnsf3eK0eXmmbrIYANdm6paLZGPRZ5Pp\nSd8PNNSX1aSsvyxldalKkd+6+rSV8WImrBaJz5X2/bQwQ8T3Jwr8TBSDcKN44L3ixazF1TXsiMG9\nBi8JIVeLdEIjc8Th4HE8jVfEx/U8upO+tiV9/ykG1byMTRlNyvqr8rxVqOK3ij4dOnTo0KFDhw4d\nDhL+BcMTXEfvapXIAAAAAElFTkSuQmCC\n",
"text/latex": [
"$$6.11804641 \\cdot 10^{-7}$$"
],
"text/plain": [
"6.118046410e-7"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y3.rhs.evalf(10)"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAKIAAAAWCAYAAABDqUd4AAAABHNCSVQICAgIfAhkiAAABWRJREFU\naIHt2n3oltUZwPGPmWZmWpvUkImWldugpfaySiZCsShGSTIokuqPSBaabBXkekFrUe1Ni7Bo/fHr\nheVYG27DoIKKYhQ6rFaMSLbhVma5UWkue98f13nweHvfz3Pf9/MzBz5feLh/93Wu+5zrXOftOuf8\nGDDg/4CR+9qAAfsVs7AcU7AAW7F5n1o0YL9jguh4x6f3I/B3HLDPLBqwX3I+PseBmexNzFYQlnE1\nRuHWPgwYi+fxzYr0U3AtDsZXsQ434o2WeqdiIT5IugfjFrxc0Jsu6rVJOGgirsFbmc7ZuAcvpfw+\nxGdZ+jqsamhfkSof34bf49VU7lE4Fw/i9R551qFXu9TxTxO2p+dofJLZcAL+1O3DKdiBZS0LhpOx\nXlSkjFl4HIel93F4Bm9jagu9mfgDxmSyVdiGGZlsgmjMBZnsR3hFOKrDVcn2st9nOKuhfUW6+bhY\n3qe4oUteTejVLnX904QDsQFz0/tponMu7fXhvcnQZS0K/TrWYkiMuqoKr8UxBdnMpL+6hd6KJPte\nJvtukt2ZyW4RnSRfEb6Ej/H9THY3JosZK49lZuOOFvYV6ebjTSl9DX4uZo5+qdsudf0Di7Gyy+/C\nTHcCluAC4Z8tuKSbwecn5bYdMWdIdYXfxz9F4JrzDv7dQu9ivIfvZLILU/m3ZbLX8McSe17Gk9n7\nXSU64/CoWIKb2pfTy8dPV3w3XAypbpe6/mnKiOzvidiJSZTvWMbhHN1H8nDxDxyJQwryD+3e0HX1\nHhCj7vFMNkssaw+n90NxrOg4RTbjxOx9UYnOT0Ts90EL+zp8kT5uShP/NOVfOD39fblYcTZTvllZ\nqr/NSRNOFRXfkskmiUZ9uoVekWm4VCwfLyXZlPTcVqK/A+NxkOhERWaLwfvnlvXoUMfHo5PeRBGP\nThObodd6fNcv/finFytFR54rBuM1nYRiR5whlpm/tSikDTvSL2eRcPx1LfQ6zMMZYjPxC7Hz7TA+\nPT+qsIfYdJTtDu/E/Irv6tpX18dH4iExixAbh2dFrLil6qNhoB//9OJndZQOwP123xXt7RixyNFi\nJ/XjYdIbjafE8cCXk+xbquu1OqVNKkk7A3/tUV4v+5r4uHjrNRL/tfumq8jxYmauw5Dydmnrn77I\nY8SFwriykfBFcBB+hV/i+mHQI+qyXMQlnVlxaxf9Toy3vSTtCrHT7EU3+5r4+NOS9604r0J/Dv6C\n39XIuxtt/dMXnY74FXxDzB77ivvEJuOHfeh9zZ4HtBvSc76IS94So/rwku8Pwbv2dPQoscy/2cO2\nbvY18fEzYhkuMlIs2WW8LTrRxhr5d6ONf/qmEyOeKRpxTZY2Kj0vEHHNA/ofbVUsE0H4zZns4lRm\nXb3xeEHYPd2uGKwzs4wQDfle0ptcYscxeLFEfopohKqjmDr2NfHxTOUx5ERxvljGq/Y8PmrDDs39\ns1eZqjpWOFb5sUQZQ7rHiAtwU4n83oZ6Y8SB60Zx+NrhpFT++kx2k7h6y8+1piW9K0rKuCSlFQ9z\nm9hXxlTlPn5EdLqczgH5cN2uDKlul6b+6Ztud82jCs8Oc8SRxBN2XXF1o3PdNlYE28W8VuAxsUPM\n7fq8od5O/FQsUe9kOkvEKC/emFwpOs+DSbZYXGHdV1KHzkxTFdvVrUeRKh/fnvK7TByTjMAP8Jw4\nxxwOurVLU//sFcaLOGazcOJO4YB5KX26iCNWlX4dHCEa5RW77kq3pnwvyvT+k6UXfze30CPODVeL\nDvEEfo3jSmycIa67VoiNxW/FPyuUMU/ERidVpDexj94+hm/jN2K5XpPyGaM/6rYLzfwzYMCAAQMG\nDBgwYMCw8z+KvbXPXuvphgAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$4.122307245 \\cdot 10^{-9}$$"
],
"text/plain": [
"4.122307245e-9"
]
},
"execution_count": 66,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"z.rhs.subs({C1:2, x:4}).evalf(10)"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAKkAAAAWCAYAAAC7SbyPAAAABHNCSVQICAgIfAhkiAAABRFJREFU\naIHt2meIHVUUB/BfbNFkE3vsookVa8SGShAURRTxix8kQfwgNgw2BA0oscSKXRMbspCoETWxYxQ0\nKBbsEhELKhElRkWxxxb9cObxZt/etzszO28FmT8Mu3PO/9577sy5d84599GgQYMGDQZgAh7CtiV1\nDRqMCk7GbPyD7UroGjQYdQzliIN0a3UQ9scFWA9b4zVcjC9LGnEUbse7+A2/Y3VO/xrm9oAHV+FR\nfJDxtsexmI8vcm22xoXioYzFuKztso65FOH1Yh4H4tSMt152zUnYVxXj8Cr27KLfGVdiuZj7Jjgf\nK2savxL2wTPYILvvwwv4Wvnt9zwxsdS1Gkf2iCeh/xsXddi3MR7BFjnZ9vgQO1bg1T2PqXgM6+bG\nmIsfsbeRYz+8no2bwvpiQc/IyWbhPaxTw/ildtI8nsQOHbKpWaOFJY2Yh22wNtbIyQ/GTT3kESv/\nTuFc12GvhH3nY2ZCPgtXV+DVPY8bxHM/Pic7JpPdnLCnKHYV77lf7KLdnHSO2JzyX9qN8CdO7+DO\nxI1DXCck+q/spD/jc0zqkH+Pb7s16oJbE7I+PCU+W73iwdIC9s3D4oT8XFxfgVf3PE7EDzgiJztB\nvMCrEn1UQb/uTvoRHk/Il+G5Gsau7KTLtGO4PL7CLzUYNhf7jgJvaYG2p4qHcR82zGRj8ZaBMVpR\nXhn7qvKuxV/SX4Yq6Jd20gmZ/LaEbolYPCNFZScdj807ZFtmjZ4foVEHi4RhNHgvi0TnOvFiF2Gn\nDs5Y7ZhshYi9FojEpgqvF/PIYwq+MfhTOxL0Szvp7pn8yoRukXYCWQXTxdepFUKeWVA3JK4QicdB\nFY1q4U3Fkq86eJ+IuK+FGSIj7VyAE/C0duLyBDZL9FeUV9S+MrzjcIv4/F6IMQX6LIp+aSc9KJNf\nktDNz3TDzX/UMBk/4fIR9nMY3h9F3pqJ+18NTjguwF04Gp9q75Z7VOQVta8sj8ion8dLouLQDXuI\nRVUE/dJOekAmn53QLcx0WxYco6cYK7K/64cjFsDDuOc/4OWxPLtaOEdkuS2MFxn1alHDLMurYl/Z\neRwqHOTBLvppmf7Zgv31SzvpZN2d9PFMV3Qh9BTzcWkN/awtqgZzRon3Al5MyL/Aquz/MaJisXuC\nd5p4CbuW4JWxryhvF4MTs4na9dS+Lm2+1j4MGA790k46Phujs7RHZPbfF+y/NqyRkM0WMdDFOdmJ\nFfvfX0x6uBJWXbyp0qt8E+2ddFNxYPFxgneHKJivW4JXxr4ivIl4W1QQpuTkf2d/xxgc0hAnbJNw\nxjBjD4dfsvG3Seh2wDsj7L80Op10Ria7rEN+SMf9jgbXJ1NoHQ6sGpJVH28JDu+QTRXhy4Ls/huR\nSO2XaN8n4vD3S/DK2FeE94coon9m4K7V2rXfUE8ZaCg8KWLTfKI2RThut3CjZ8g76TQRb00WL7R1\nLTRwd5omjgUfKdB/62Dgj1HiXS3m0CqRjBFx5Su4JpP9g7PEbrhdru1EESOeLerFRXl1z2OVKJ3d\nZqCTniV2ubrKUK2vwLiEbp7Y6fPHojPFsejdNY1fGPljr8Xi6Gt6gpfP8FeKXeaTAv1/LFZ9tySj\nbt7r4kh0gfhhxkRxSHGKgQ71gMjQb9R2yDWFYyytwKt7HrNwEu4XBfzN8J34fcVHw/Q9FCaJfGMr\n7JbJlms7372ZbIVI1OZkY/YJ3zjK8AuwQYMGDRo0aNCgQYP/Hf4FKCnEjt0qoXsAAAAASUVORK5C\nYII=\n",
"text/latex": [
"$$2.777588773 \\cdot 10^{-11}$$"
],
"text/plain": [
"2.777588773e-11"
]
},
"execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"z.rhs.subs({C1:2, x:5}).evalf(10)"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"sympy.core.numbers.Float"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(z.rhs.subs({C1:2, x:5}).evalf(10))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"At times, `dsolve` may return too general a solution. One example is when there is a possibility that some coefficients may be complex. If we know that, for example, they are always real and positive, we can provide `dsolve` this information to avoid the solution becoming unnecessarily complicated:"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAM8AAAAfCAYAAABAv5lwAAAABHNCSVQICAgIfAhkiAAABddJREFU\neJzt23usZeMZx/GPM2eYydwwqu7loFHSKjImTEbEmJLKpCnqEhrMiLpfRpnWPSRuIS1a6tp9KjK0\nJUjKNP6qNhO0EnfGhLqUEGTaujOMP5617HV2zt5nr3Vm385Z32TnrMv7rvWs3zrv+zzP+76LkpKS\nQqzTaQNKctOHkzA52b+yg7aMBUo9xxELsGWyfTd266AtY4HCeva1xJySVrItDk+2X1J98SXFKPUc\nR6yHacn2g9isg7aMBQrrWXqe7uB7eL7Jsp/ifczB3/Bmq4zqYUo9xxHrYZsc5afjvBbZMhYo9Wwj\nfXpr5PFnmJj89u2wLaOlG7QvpGczRm+Ha/CsaKEn4ssCBnaSnXAU9hBuehX+i0vxKpbiDO132X04\nHrviJjyWHO/HBXhdDKH+AKeJhPZQ3IzPMAFz8UxSbw62x854HFOwH36Ol1v+NMPTTu27Ss91kxss\nxB+wGhuM7vnaynQhzGs4UrjzlG/gHgzixfabBn6MjXE7fpI5fot4ufBNfIxJI1xrOhYl2z/Co8n2\nIDYpYNvEAnVq7Wm39l2l5wKsEcN5u2N+M5W6hG3wHJZjZp0yO4jn+91avvcp+HWDXzo0Ok28pLRH\nJJLdDzL78/FQE/ecJDo7uBy/GNUTxD/+5gXrdkr7rtLzaryTt1IXsCFWYKWRPeULOKTlFtXnBBEW\nTxG9/WIsy5y/HGfL5/Efx6xke0ZBuyrYukC9TmvfNXr+HQ/kuEm3sFT0avOaKPsPEUZ0iuXYRYQV\nE0WI/Pvk3DQR1szGySNcZ4H4R9kan6uGXacWtKuiWOPptPZt07PegMGgiA33E73Dq/h3csP5hrbk\n3URMuya50bFi9GJ94fYvFAnbapE/tZrZeEQ0/L2aKH8E7shx/e+LQZNVQtCNxNqo9/OZ+TXX4ymh\nzUMivPhtZnsrfIF/iUm8ehwj3sWKpN4X+EjkFm8XsKuCi/BKjjrdoH1X6DkgGsSBmWOHY2pmf3tc\np9oIK6Jl7ylGKr7EmRlj6nEbnsj527vOtW5M7D6q4dMV42g8aWgucLZIKMcaFfk9T6l9woFCiIHM\nscU1Za4XsWXKn1RHJbbEVaoJ41zhTlvNSmH3Fmv5unsI9z0nc2x3/EWM8Iw1KvI3nnGlfaN5notF\n3Li+EGQKjsOvMmW+JUK6lDeE6OcOc70NRIO8tbi5TfGxcLFTRyooPOfKzP40ER8vFkOsWf4qGv+g\n0G2CWAJyJ/4/OpM7yqCYx6hlK7wl5j9qWSSS6FqKaj9bRCszRAO5BA9nyvac9veLtT4pm4t8ph7f\nEY2s3gxtP365dkxryFuam3Drw28y+8eKGD/N3bJMFDnbjaM3r2eoyO95img/FZdlzh0icos0POta\n7fsbnNsZ92b2V2nco8wTvdTyzLEB1ZnYGXivTt2b5Q/pzjS0cac8ggOEp/ywQf0TRM+Vckvy98Jh\nys4UvV07Bjx6mSLaD2CJ0P8lMRg1WXigP+pB7TcUPfDCmuPZnGey+Oruu8n+ffhn5nyfyIlS9hET\nVq1mrggdGg3Rzsc5dc4N53n68b86dTbFwflM7Akq8nueItqvI8K2NIXYSbyDtDPtOe3niQeo/aru\nSNVlDQeJ0bTDxGzx02LcPuV8keilLNI+Thezyj819LOLmYldZzWoO1zjITqKhw3NE2eJpSC9tGSp\nWSqKzfOMRntCz6trjnWl9vUGDM4SSf9GIt5MWVd4kGXJuStVQ7GLhKf5RIRv96sug/i26JHa6Xr3\nFC9yW7wr5gL+IxYMPteg3hqxvOSVmuP9uELE4q+LtVorRCy+2tijIv88T0pR7ReKjniJeA8pPaX9\nUvE993iknucZb1S0V4cfqqYJk9p870Jk3eoSVU8xC39uvzklXcS1YuqhHewl8pcHxIrl/ZP9nuEZ\nMemUfsI62iXpvcYRuEF4njuNvPapZO0wIOZq1tT8pnfSqLwcLWLSu7BjZ00pKSkpKSkpKSkpKSkp\nKSkpKSnpQb4COquH2AjZwNwAAAAASUVORK5CYII=\n",
"text/latex": [
"$$f{\\left (x \\right )} = C_{1} e^{- i a^{2} x} + C_{2} e^{i a^{2} x}$$"
],
"text/plain": [
" 2 2 \n",
" -ⅈ⋅a ⋅x ⅈ⋅a ⋅x\n",
"f(x) = C₁⋅ℯ + C₂⋅ℯ "
]
},
"execution_count": 69,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sympy import *\n",
"a, x = symbols('a,x')\n",
"f = Function('f')\n",
"dsolve(Derivative(f(x), x, 2) + a**4*f(x), f(x))"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQMAAAAaCAYAAACzfzksAAAABHNCSVQICAgIfAhkiAAACCZJREFU\neJzt3H2wVVUZx/GPvKr4ykuWaMqbQU4YoWAUQQqNQ2ONNgWOlgRmk2lvWmRNpcxESVlpZSqOXWga\nQ6qZHCuarGhs1MwZrSy1V6ysMALMXqCo2x/P3p19zj373nPO3udeiP2duXPvXmvvtdZev7XXep5n\nLaCioqKiYp9mAeYPdSMwGh/BiKFuyH5OpWdFRzwH1xR4fi7ejqvwTbykYHtOxYcLlnEgU1RPytW0\n0nM/4os4osNnD8OHMtevwd8xsWCbbsDsgmUcqBTRk+5oWumZwzAcNNSNSHixEKpTZuI/mJJcH4Fe\nMYCKMB2bCpbRbfYlHVOK6kl3NO1Iz6n4KtbiRtHh+xsni/bfjbtEJ6zDJPE+G3FswToWYgfeUbCc\nz+OFBZ4/SJiU6Udxshg4swq2Cx7C0SWU0ymDoWPZFNWT7mnalp6j8EuswAbsbefhfYAjxGD5DS4Q\nwZOUCfgy1uNnJdR1nhDopoLlbBX9Xhafw7UllXWzzlajkQXrHUwdy2arcvWkPE3b0vNsMcCnYA4W\nl9CAwWISfop7MC7nnuni/W4sqc6pikVpp+GBktpCTOJrlWc6X6Led22VdTr3b4dCx7IoW0/K1bRO\nz4FM/oXYLqyD+0UUc39gLDaLFenl+HPOfY/iMXy7pHp/IaynTpmIJ0tqy5Lk97vESnpiCWXuUPNb\n22GkzqyDodKxLMrUk/I1rdNzoFVsDn5QsMKh4NM4CYuwc4B7t+M7BetLhZmAvwpfrBMm4KmCbSG2\nnZ4lYj3PxOnYJkzWIuzEkQXLaIfB1rFsytKT7mhap2feZLAex4hI6KNidv41LhWuwubMvbOFH9cr\nPoiL8EYcJWbGDyT17BUWRreZi2UiyPStFu7/DP7Uwn3niEDQTvHxjxem2puFOXgtXib6bnnmmdVC\nxOtwH16KMTgNl+PeTB0DWWpnCNPuVyJ2813R19nDLJNxJw5veLbZR9yKdlnNhuOfA7SxLLqlY8rz\n8X7swm7R97eomfVzcZn44EaIPlkjLJCU/sYErQXby9S0a3pOTgo9N5N2ntjzTJmGT6r5Lz0iiDMP\nLxLbIZcnea/vp65bxWrazs/CnLJuStp9Yb9v1x4z9DVBl4n3zfJAk7RxeFrM6Csz6dfrO6ufia/n\ntGGlWP1OTK4n4m94sJ9290c72qWcj892UFeP9k3abuiYMg9/UT+GNuDx5O+zxUc/IZM/Q+g1K3M9\n0JjoT0/K1bSrep4rxJicSWvcNrtBrHIpm/D95O/j8VG1oM985WxvDcTPRbuPK7HMpXhY/cw8Rt+I\n7hZ9JwNiED2iPuhzsWhndsA9V8RmGjkF/xKzfpbf4WP9Nbwf2tEu5a34YAd19Wh/MuiGjoQGj4nJ\nOcvHcbtY7LbjbU2evU7NBWxlTOTpSfmadlXP1cLfSQfwGHEcMssJDddP9FP40epXxm7xD+G3t8K0\nhuvDxWmxZzekHysCQU+JbZ3L1H/EKVvkTwa3NaQtVzPnUoaJ1anRfbtTmKLZINwJyfOvaFJfK7Sj\nXcoGYRrnsV5zK26H2BFolpd3Cq5THQc6tnu66LfVOWUtTfLPapJ3SZI3W2tjIk9Pyte0G3r+jzuE\n/5IyUfggecwQL7IoJ38Ermyl4oL8Eb9v4b5h+FTm+iIxgBo/0JRJwnT9bXLPbuE2ZdkifzJoTF+e\nU9ft6j+Qo0S8ZWPDfRfi30l+UQbSLuUn+vqtrdCjfcugEx1bOba7TLzrxTnlXSm/L96Q5C1NrlsZ\nE4160n1NO9KzvwDHKeqj4jvVxwsaOVMEI+7JpGVdjCPlbw2tE/52Oz8Lcsq6T8zQY3LyU96EL2Su\nbxGTQTNmYo8IxhwvLIeNYiCMznmmU27FqzLXU0Wg596G+xYIfXaJQVmEgbQjAp4PivjHYNCJjpOx\nSm27bDMOET5zSjrB5B2e+0Py+xlN8lIze5vWx0SjnnRf01L1HCtmlhUN6dmYwSHi8MPzkuuvqN+G\nHKb+TPYZogO7zXwxu76ln3sW4z05ec1W6+X6xkuGC9GOyaRtUdwyIPzZQ5O/p+kbyB0tzM/Ut8xa\nOK3QrnaESTmjzXpSerRvGXSiYyvHdkeIlfwbTco7Ry2Id3WT/E3JsyO0Piao15PyNS1FzzzLIO28\nHzakP4mDk7+X4ArR4dPFzLMnc+97hS+VMgk/yqmvTO4WUdM1eK36dxyH94ltpTVtlnuFep/wOBGt\n3ZZJG6m5f9gsfWTD7yxXi20v4iDTQ2oz+3AxUA4T20TjhU/eDu1qt1gEQB9ps54idKJjrwia9SbX\n7xYfVzY6v1cscgvwykz6BPGeTwgXYqXYEk6ZJLaFX6d2sKyVMUG9npSvaSl65h1pfGdSwHj1J+pG\niRV+c5K3Vs30v0rMPruFiXKH2onFk8QsPxjnDFLmiYjwFBEdflpEam8Wwaw8eoXwWzNpF4gAzVjx\nfr3Cr7tGrBQLRLT2VBEh/p7YnlokBsELkvT78WoRlV4kTNWtYnunMaC1VPTtXcKs/ISIsI8Q/TxL\nDNjHhZ/bOAD7ox3tRonxsEbtI2uXnqSOrR0826mOK8SHsUrzds9J2rRLuAZ7hJ7pIaH5wgXZJcbu\noUKDHyf5A42JRrJ6Uq6mXdXzNnypxYb8v5Fnuld0To/B7dMlai7uwYNc935L1vRapTZ7nCa22Coq\nyuB6YX4PBumx3a+JY7tnqTf3K1rgYRHomCl8iaL/7HR/43xxpLVXRKcvHdrmVHTAZHGysLfhp8j/\nMnRAslz4YRvFyamKioqKioqKioqKioqKiooDl/8CTaxadSR9zgMAAAAASUVORK5CYII=\n",
"text/latex": [
"$$f{\\left (x \\right )} = C_{1} \\sin{\\left (a^{2} x \\right )} + C_{2} \\cos{\\left (a^{2} x \\right )}$$"
],
"text/plain": [
" ⎛ 2 ⎞ ⎛ 2 ⎞\n",
"f(x) = C₁⋅sin⎝a ⋅x⎠ + C₂⋅cos⎝a ⋅x⎠"
]
},
"execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a=Symbol('a',real=True,positive=True)\n",
"dsolve(Derivative(f(x), x, 2)+a**4*f(x), f(x))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Series expansions and plotting\n",
"\n",
"It is possible to expand many SymPy expressions as Taylor series. The `series` method makes this straightforward. At minimum, we must specify the expression and the variable in which to expand it. Optionally, we can also specify the point around which to expand, the maximum term number, and the direction of the expansion (try `help(Basic.series)` for more information)."
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAOgAAAAbCAYAAAB2r8PPAAAABHNCSVQICAgIfAhkiAAAB6tJREFU\neJzt3HuwVVUdwPEPQqKCikaKEnkzVMAcS5KQEC3Fmcb+yEhQMM3EKRtNe/yTZSE9TcscZ2xK00Nk\nMGIvjTKbMXspEWaF9tR0jCyltFSMpKQ/fnt399l3n3v2Ofc8LpfznbnD3Wuvtdfvt56/32+tCz16\n9OjRo23MwmSMwiTM7q44I5LjcGwbvz8Wl2NMG+voGsfidJyDlXhtd8XpOBVsx39xNw7pqjQjj8Nw\nWYu+dSY+iKV4b+7dq/DJFtUzrPgbzkp+PxVbML5k2Te1RaLOskzsnJOaKDsS9G83N2OvFnznrfon\nYB+ew8RcnmswswV1DStejnHJ76diG/YsUW4avtEuoTrIsibLjRT9G2E03o+rk+fjcRuewhP4EiZk\n8s8Vk2ao7IrNOCiTdnBBvmlY04L6hi2r8KGSeZdjUUH6ofgKvig659PKTfhucbkw7xfjBhxeslwt\n/WEP/GqQsrPwNXwHG0VbTS7Id1iS70p8RkyA/UvK12om4Ha8R/jrn8IKzBcm58PCVbg1U+ZGHNOC\nuo9Lvj0PS0RbnFQj7y+wTwvqHFbMErb99WJwleHn2D2XNgOPYE7yPAkPaW6XekETZZrhGDHgiMH2\nO+xSolyR/nA0fiYGVBFHiYGe7jTj8UM8Lky3lL2xCWdk0i7GfWJHaZShtOc+2KDfpF9moPVwkNhJ\nt2N6kvaw5mTNszj5bhpoGo9/4MUFeb+AhS2oc1jyDtyjvg86SwSUsowRg/uiTNoUYZpc2IQs1yre\nVVpNNvLXJwbCkXXKFOk/HWtF0Gmd2hN0Labm0l6Z5F+dSfuYmLRZ+fYVLsh5deQrotn2HC0WkNSy\nOlH4f0Um5tVCj3NFsG1DE/UVcXLy3eyC+BcxXvO8E59oUb1dZzYew0uT52miId5cp9xVeH0u7W2i\n4yYMzN4UFdU7SjuYjWewW/J8hNB/Rp1yRfpnqag9QZ8RVsZ+ufQnRcAu5feqzcWUjbijjny1ZOpr\noty78Uf9O+E6tf3KRULvi4V/+u0m6itiMp5XvXE8ivML8p6Gm9KHMqbQcOY/uF8oS6yK2/DLQcqM\nFkcx38uln44HhOmxo7BJ+KBbk+fX4C78epAytfQvy0PCjxyXS/+3/h1iT7EDPVJQ/lGdi1TugUvE\nhHxOyL1CtZWU5Ynk32fxIvyzRXL8GXeK/pF8exy+XpD3SeEeYODB6EzhM2wXq9VSvF3sKpPxYTzY\nIqFr0YgMG4Tfeb5YoebiDfjDIN9/HX4kJnfKqKTseuHInyRWuz5cinuHqlQDNKL/JuFLvk9MvENx\nSp3vF+nfCLPFBPxrJu1AMfjvTJ7TaOVTBeW3iGOLsWJSt5OFwv/8ZvL8GD43SP7UenpQ/VhGo3Pl\nrCRthnAn3igmbp7RYjEZwCHCBk8DDhVhpswRM/95Aw9XW00nZLhB/0qWMlE09G9U+wXH42nlI6NZ\nKho3ybqlf56K2iZuER8XFyXS4NqcpPylBXlXJu8ajeZWNN6eNwqTvCzLxcI1ESeIKHUR7eynJaKP\nBnCNarNlDX6a/D4FV+CFTVZalnbLsJsIY4/Kpe8vBs1WAyObm/CtJuqqaHxAdUv/PBXlJ+jBYhH7\naCbt1Un5ZQX5VyfvDiz5/axMfQ2WuUf0X1nu1j8pZwiLqoh29tOFIsCGahP3MmF+pMwRjQJ/EmZU\nEUcm+ep1esq9OLvGu2ZlKMvJogPygy/1PR7Av3LvNonji1om2QrFUdOXiGhpkblyjhg8ebqlf7OM\nFWfG14pjrpTNg5RJB/bTNd63sj33Uj7od7gw3+clz78VC/cYA92BdvbTTMW+aRXTRSeeOISKhko7\nZLhZ3Dwq4nERjs/zg0SOAxqsq2JoUdxO65+lotwkXinMwjzjhJl3VcG7O0QgpFEqGm/P9arPNQfj\nFlyXS7tJ/YBWq/vpfpmLMbWiuCeIlequTFrRuVE7abUMe4tV+L4a79eJ6FqedOccbFdoB53Wv1GW\nCb8re3PrzOTfLcJSmlJQbqowsztBanYurZPvXBFMyh97XI8Fdcq2sp+OFu32f+sinaC7i6tPRyTP\n88VVr2cz+YZqXtWj3TIsENfOarFKRB+zPugocbZ6i+ajnmXptv6NcIaQ5yO59LmZ39cKXzTr+rxM\nTNpO3Te9TuzkF6h97vsuccNnvv7jqpTbhLmdjei2s58ukPE/sywQipwmBuRG/Djz/hKtuZM4GO2W\n4XbVl5Xz7CKCBNnGXSh2zr4m6qs0WK7b+mdJAzlFRw3zRJt8OfezWixyKQeIM+W3ZNI+K/Rq5vpc\nRXP9sFzosk1M2FPEUdN5+L64mzsYs1T/GVi7+mm+uMhfyESxnV+e/IwTzvrnRTh5fhMVNko7ZZgk\nfMl67CsGwhoR/FglVv1mqGhsQHVb//3wXWECb09+NotBvCST7++Z9/mf/I76CrGTXikCSV9VfP+0\nDBXN+/RnC9NxqzAf14uJlL8NVYtF+n3MdvTTrviA8oHWEcdF4o5jJ6lo/1W/snRD/1ZTMXzas0eL\n+YmBfxzbbo7Sub9oqUc39G81w6k9e7SQqcLM2lnZ2fXfodnRL8uXYbHq4MXOxs6uf49hzq3K/x9F\nI5GdXf8ePXr06NGjR48ePXoMH/4HWQLWSpe7eV0AAAAASUVORK5CYII=\n",
"text/latex": [
"$$x - \\frac{x^{3}}{6} + \\frac{x^{5}}{120} + \\mathcal{O}\\left(x^{6}\\right)$$"
],
"text/plain": [
" 3 5 \n",
" x x ⎛ 6⎞\n",
"x - ── + ─── + O⎝x ⎠\n",
" 6 120 "
]
},
"execution_count": 71,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sympy import *\n",
"x = Symbol('x')\n",
"sin(x).series(x, 0)"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAOgAAAAbCAYAAAB2r8PPAAAABHNCSVQICAgIfAhkiAAAB6tJREFU\neJzt3HuwVVUdwPEPQqKCikaKEnkzVMAcS5KQEC3Fmcb+yEhQMM3EKRtNe/yTZSE9TcscZ2xK00Nk\nMGIvjTKbMXspEWaF9tR0jCyltFSMpKQ/fnt399l3n3v2Ofc8LpfznbnD3Wuvtdfvt56/32+tCz16\n9OjRo23MwmSMwiTM7q44I5LjcGwbvz8Wl2NMG+voGsfidJyDlXhtd8XpOBVsx39xNw7pqjQjj8Nw\nWYu+dSY+iKV4b+7dq/DJFtUzrPgbzkp+PxVbML5k2Te1RaLOskzsnJOaKDsS9G83N2OvFnznrfon\nYB+ew8RcnmswswV1DStejnHJ76diG/YsUW4avtEuoTrIsibLjRT9G2E03o+rk+fjcRuewhP4EiZk\n8s8Vk2ao7IrNOCiTdnBBvmlY04L6hi2r8KGSeZdjUUH6ofgKvig659PKTfhucbkw7xfjBhxeslwt\n/WEP/GqQsrPwNXwHG0VbTS7Id1iS70p8RkyA/UvK12om4Ha8R/jrn8IKzBcm58PCVbg1U+ZGHNOC\nuo9Lvj0PS0RbnFQj7y+wTwvqHFbMErb99WJwleHn2D2XNgOPYE7yPAkPaW6XekETZZrhGDHgiMH2\nO+xSolyR/nA0fiYGVBFHiYGe7jTj8UM8Lky3lL2xCWdk0i7GfWJHaZShtOc+2KDfpF9moPVwkNhJ\nt2N6kvaw5mTNszj5bhpoGo9/4MUFeb+AhS2oc1jyDtyjvg86SwSUsowRg/uiTNoUYZpc2IQs1yre\nVVpNNvLXJwbCkXXKFOk/HWtF0Gmd2hN0Labm0l6Z5F+dSfuYmLRZ+fYVLsh5deQrotn2HC0WkNSy\nOlH4f0Um5tVCj3NFsG1DE/UVcXLy3eyC+BcxXvO8E59oUb1dZzYew0uT52miId5cp9xVeH0u7W2i\n4yYMzN4UFdU7SjuYjWewW/J8hNB/Rp1yRfpnqag9QZ8RVsZ+ufQnRcAu5feqzcWUjbijjny1ZOpr\noty78Uf9O+E6tf3KRULvi4V/+u0m6itiMp5XvXE8ivML8p6Gm9KHMqbQcOY/uF8oS6yK2/DLQcqM\nFkcx38uln44HhOmxo7BJ+KBbk+fX4C78epAytfQvy0PCjxyXS/+3/h1iT7EDPVJQ/lGdi1TugUvE\nhHxOyL1CtZWU5Ynk32fxIvyzRXL8GXeK/pF8exy+XpD3SeEeYODB6EzhM2wXq9VSvF3sKpPxYTzY\nIqFr0YgMG4Tfeb5YoebiDfjDIN9/HX4kJnfKqKTseuHInyRWuz5cinuHqlQDNKL/JuFLvk9MvENx\nSp3vF+nfCLPFBPxrJu1AMfjvTJ7TaOVTBeW3iGOLsWJSt5OFwv/8ZvL8GD43SP7UenpQ/VhGo3Pl\nrCRthnAn3igmbp7RYjEZwCHCBk8DDhVhpswRM/95Aw9XW00nZLhB/0qWMlE09G9U+wXH42nlI6NZ\nKho3ybqlf56K2iZuER8XFyXS4NqcpPylBXlXJu8ajeZWNN6eNwqTvCzLxcI1ESeIKHUR7eynJaKP\nBnCNarNlDX6a/D4FV+CFTVZalnbLsJsIY4/Kpe8vBs1WAyObm/CtJuqqaHxAdUv/PBXlJ+jBYhH7\naCbt1Un5ZQX5VyfvDiz5/axMfQ2WuUf0X1nu1j8pZwiLqoh29tOFIsCGahP3MmF+pMwRjQJ/EmZU\nEUcm+ep1esq9OLvGu2ZlKMvJogPygy/1PR7Av3LvNonji1om2QrFUdOXiGhpkblyjhg8ebqlf7OM\nFWfG14pjrpTNg5RJB/bTNd63sj33Uj7od7gw3+clz78VC/cYA92BdvbTTMW+aRXTRSeeOISKhko7\nZLhZ3Dwq4nERjs/zg0SOAxqsq2JoUdxO65+lotwkXinMwjzjhJl3VcG7O0QgpFEqGm/P9arPNQfj\nFlyXS7tJ/YBWq/vpfpmLMbWiuCeIlequTFrRuVE7abUMe4tV+L4a79eJ6FqedOccbFdoB53Wv1GW\nCb8re3PrzOTfLcJSmlJQbqowsztBanYurZPvXBFMyh97XI8Fdcq2sp+OFu32f+sinaC7i6tPRyTP\n88VVr2cz+YZqXtWj3TIsENfOarFKRB+zPugocbZ6i+ajnmXptv6NcIaQ5yO59LmZ39cKXzTr+rxM\nTNpO3Te9TuzkF6h97vsuccNnvv7jqpTbhLmdjei2s58ukPE/sywQipwmBuRG/Djz/hKtuZM4GO2W\n4XbVl5Xz7CKCBNnGXSh2zr4m6qs0WK7b+mdJAzlFRw3zRJt8OfezWixyKQeIM+W3ZNI+K/Rq5vpc\nRXP9sFzosk1M2FPEUdN5+L64mzsYs1T/GVi7+mm+uMhfyESxnV+e/IwTzvrnRTh5fhMVNko7ZZgk\nfMl67CsGwhoR/FglVv1mqGhsQHVb//3wXWECb09+NotBvCST7++Z9/mf/I76CrGTXikCSV9VfP+0\nDBXN+/RnC9NxqzAf14uJlL8NVYtF+n3MdvTTrviA8oHWEcdF4o5jJ6lo/1W/snRD/1ZTMXzas0eL\n+YmBfxzbbo7Sub9oqUc39G81w6k9e7SQqcLM2lnZ2fXfodnRL8uXYbHq4MXOxs6uf49hzq3K/x9F\nI5GdXf8ePXr06NGjR48ePXoMH/4HWQLWSpe7eV0AAAAASUVORK5CYII=\n",
"text/latex": [
"$$x - \\frac{x^{3}}{6} + \\frac{x^{5}}{120} + \\mathcal{O}\\left(x^{6}\\right)$$"
],
"text/plain": [
" 3 5 \n",
" x x ⎛ 6⎞\n",
"x - ── + ─── + O⎝x ⎠\n",
" 6 120 "
]
},
"execution_count": 72,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"series(sin(x), x, 0)"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAC5QAAAAaCAYAAAByp/I4AAAABHNCSVQICAgIfAhkiAAAIABJREFU\neJztnXm8LVV1578PeCDTUxSRSXiCIA6oIBIGeRKVRKOxCe0ARgUjTonz0MkjEq/aRhRREztqJB8s\nxTinG5OYGE3iC7GNGjV2iJ04RiKiBqNGxQHkvf5jVfWtW7eGteusferce3/fz+d93j119tm1p/Wr\ntVftXQVCCCGEEEIIIYQQQoiNzsnAYcAm4GDglGmLI4QQQog1gPwHIcRGQponhBBCCCGEEEIIIcSE\n/AzwHGAJ+BCwbdLSCCHWO2cA5wFPBK4Efnba4gghNgivwPRHCCGmpAB2AbcAfwccM2lphBDCeDzw\nQuBC4HkTl0UIsZoC+Q9RXAd8t/HvDZOWSAjRpECaF8WdgGcATwYuBk6YtjhCiA40H5udE4E3AU8H\nfhc4adriCCHmxDbg+KkLsUbZH3gvcETj+EmYjp4PXA7cec7lWk8cAvwesHnqggghhBCp7Ae8vPb5\nUcAPsSdACCFEDr6FTUIAHgnciGmREELk4gzgm8CZE5dDCCGWsKfsHTxxOYQQouIC4JLy763ATcCB\nUxVGCNHKEvIfIjgYeC5wNLbIciu2mPx2E5ZJCLGaJaR5UVxa+3sT8PapCiKE6OQCNB+blVsDN7C8\nqPQg4MvAbpOVSAgxD7YBr5m6EGuUCzGfexd27anYE7gWWwgNcF/g7+dZsHXIQ7ENT0IIIcSa4p7A\nTiyQDrAFcxweNVmJhBDrnXsA+5Z/PxK4GdsFK4QQOdiCPZlkB1pQLoSYnqWpCyCEEDX2xG68H1k7\ndtREZRFCdLM0dQHWCYewcvH4Y4DTJiqLEKKbpakLsI74PBaLr7h8qoIIIVrRfCyGc7C1DXvUjn0d\nOH2a4gghnOwObAdeV34+E/gA8D3g28Bbgdt0/PYg4OPAPnmLuO5pLig/C/hs7fMm4AfYhmwxnjdj\na2JWsEdLQrBB/TFsId+sePPqS/cQ4I3A/wF+BPwEW2BY8Qng9eXfJwO/AewNHF5+91vA1xp5HgW8\nCPgx9lqqfYFfB77RSHcJ8D7gX8rz3gl4OHAl9vq5ilOAp5Tl27v89zLgmkZ+3nQVEe0H/vp626/J\n87HH4NefJJzSb7m4S1mmazGxORB4AfYEwFlpqzP4+/hw7AK0C9gL68NLGulS2tDbxxVDY8Y7Fjz1\nAH9fpNajoqs/vDZcMdQu3voCHIsFl6q++1H5+fuNdJuxJ25/peOcUxFpP0P9cAhwNqtf4XkNcCq2\nUxfgjuX/XxhRhrFEtoMnrxx27003tq5d9ufVkRQ79dqVp3yp1+Sh/LztF+0zpOjSRtAbGK85AP9U\n+/sc4KX0j69I5q03kGYHHvuLtmdvftH+g7f9onU92j+E2HZO6d9F1RtYDB+n4knA/wAeMeLcszKF\n5kRrU7Qv5B3jqfPmec+9IsuXojmpY8oT7/BoWMo1YFG1aVF0aV/giVg7nwW8ipVB2twssi5VRNmz\nNz+v3eeIVdTp8plS8ou05+j471T9BtKlPl06tTzvkcD9gPtgN+++zPwYO89oIzpGGRnHTzlvarqh\n80bHlqPbZSq/byxD589xvyTFf5DmdWve12t/H4ZdN+f9tN4c4zNqrgHxcak6Q9o4lM47hqLnnN65\nc3T8qslU94gXWfOkd8Mxsd8DPg28FvguFh+bNxFrYrx2GO1TpKTz6GeOmFPK3HPePqgnXbQuzsq8\nNS9lPibN69a8arzvCfy0/Hsf4F7A/x5RjjHMe81UzjVOfeeF+LUJ0esFo+N3U63tyHEPepG4DfBu\nTPOeCbwSuANwGfBe4IXA44ADgF9s+f0lmBb8sOU76eWwj9jFVuA/ap93Ad/BNij+64hyLiLz7IeK\nS4H3A/+L5etUK9Uj4XeNKMzYvIbSPa/8ru3fTuDny3QnAh9keRfIfsDVwL+zctfCnYBvYYuEKh6L\nXdCai+yb57sFuLiR5gTgj4Fb1Y69HtuZcu8R6Sqi2s9bX2/7NTkSuJHVu7K9/ZaLW2NG8NjasYuw\nhWJ7zph3V529fXw74CqWX8UA1k+fA46pHfO2YcqYhuEx4x0L3np4+yK1HhVd/QE+G64YahdvfQHu\nBvwby08RORi7iDXLuDvwmyze7rRo+/H0w0MYfvL4lZijNobNI34T2Q7evKLt3ptubF277C/lmuK1\nU69decqXek0eys/bftE+Q4oubRS9gdk152RsMngF49prrehNih147S/anj35RfsP3vaL1vVo/xDi\n+82bblH1BhbLx/lFlp/EtIP5PqF8Cs2J1qZoXwh8/Zk6b5733Cu6fF7NSR1TnniHR8NS+ndRtWmR\ndOlU7MkeYIsjPsf8XsG7yLpUEWXP3vy8dp8jVlGnL+bizS/SnqPjv1P1G0iX6rTp0mPK9GeUn/fD\nFhsdPqIMY+ZoY+cZXUTGKKPj+N7zpqYbOm90bDm6Xaby+8YydP5c90u8/oM0b5mhOPgVzPaUtTGa\nl2N8Rs01ID6+UWdIG4fSpYyhyDmnd+4cHb9q0tUuue8RL7LmSe+W6dO7O2AbZ76Mbap5wIgyzELE\nmhivHUb7FCnpPPqZI+aUMvectw/qTReti7MwheZ552PSvGXaNG8PbPPMmeXnU7EFwdtHlGEMU6yZ\nyrXGaei8OdYmeNLluKfv0dCp1nbkuAcdzZj5UMUBwCdZHpdLWL/VORKrxy7gro3vDsM2RLT1gfRy\nGc/asF2sHHvbsUX+db6AXa/WA1P0Q8WH6Hnw2V2xFecFtrNtFufZm5c33Ruwp9JuZuWk7HTgd2qf\n3w/cufHbE8p831k7dhX2CoJ6Xntju54uaPz+WuBN5W8uw3aKNXlNeY76I+AfVh773RHpotvPW19v\n+zV5U5lmqXHc22+5eBl2cas7G7cFbgaeNmPeXXX29vELgGe05HsR8IraZ28bevvYO2a8Y8FbD29f\npNhmna7+AJ8Ne9vFW989MMfv2bVjd8ReC/Wsxm9/jZi3QUQTbT+efgDb0Xerju9+Bdv9t6nj+yEu\nxxy4FCLbwZtXtN17042ta5f9pVxTPOMjxa485fPqtTc/b/tF+wxeXYKNozcQozkATwU+hU2aU1gr\neuMdZyn2F23Pnvyi/Qdv+0XrerR/GN3OKekWVW9gcXycQ4HH1z7vYL4LyqfQnGhtivaFwNefXh9n\nqrlXdPm8muPtX+95vRqW0r+Lqk2Loks0yrAV65+u30ezyLoUbc/RMYgcsYo6XT6TN79oe46O/07V\nbyBdatLUpYdi7bx37djXsXlaKmPmaGPnGV1Exiij4/jR9yO8542OLUe3y1R+Xyre86fY9jOwJ8Z2\n/TuvltbrP0jzVtIVkzoIWzwyC2M0L3J8Rs81csQ36vTdX/KkSxlDkXNO79w5On7VZN73iNeC5knv\nVtKmd/tjT0Hcp/zuxdhC1a0jypFK5JoYrx1G+xTRsZXomJP3vFP5oN500bo4hik1zzsfk+atpE3z\nbo2N/XMxm/kGcP6IMoxhijVT0WsdvOeNXpvgTRd9T9+roVOt7Yi+z5ODMfMhsAXfV2NPZQd4EHAT\n9iT9Jq/D6vKkxvGnA3/Ykb/0ciVD6zSaC8p/FfiLRpqvAz83ooyLyFT9AKZD7/ZkWjCb8zwmr750\nba842g/4M1Y6MD/AAi0HNdJ+B9vZBLZq/2bs1QxNPgf8aePYjq4C13g88J+sHKTnYfW5ZES6OgWz\ntV9KfT3t1+QczPFpu+B4+y0Xnwf+pOX4NcBfz5BvX529ffwGbKLc5LnAq2ufPW2YOqYrCrrHlncs\neOvh6Yux9ejrD/DZcJ2C/gCnp76/gjkWt2lJW2dv4F2J5ZsX0fazw5nuWbTvRPsFrF3BnIqtI8pQ\njPhdZDt484q0+xS7GlPXPvtLuabs6Mi/jteuvOUbc03uy8/bftE+g1eXNpLewHjNOQV7ZVD1FKjj\nsDbv3JHZQcHa0BvvOEuxvx2ONJH55fAfvO0XqesQ6x9CfL950y2y3sDi+DhPwHbT/0b573psYv/Q\nEWUYwxSaE6lNOXwh8PXnmHlzwfzmXtHl82rOmDHVd16PhqX07yJr06Lo0inY+KmCuMdj/XO3EWUY\nwyLrUp2C2e3Zm5/X7qNjFXX6fCZvftH2HB3/narfpEuraerSYdjTy+obfK/Hbs6lUpA2Rxs7z+hj\nR2L6gli9GYqhes47Jl3feSNjyxDfLlP5fbPQd/4c8Rev/yDNW01XHPx84B9GnLdOQXpcKtf4LJh9\nrpEjvlHh1caIOJK3fN6+8Mb1ouNXdaa+R1yweJonvVtNm96dw8qFcmCLaIaeVBlNwWxrYrx2GO1T\neNN59TM65jRm7lkwPx/Umy5aF2elYL6a55mPSfNW06Z59YflHYgtmD50RBnGMMWaqZxrnOa5NsGb\nLvqevldDp1rbEX0POgcF49YTPQd7c0r1NOiPYU9Vb+PRWF0uahy/ivYHd0gvV9M1J65oLih/APYG\ng4o9MD29S0LZ5s3hwP90pp2qHwDuj9n5/79ezeu1tbPSFiR+JbYr5Ee1Y/+KvR5p30ban7B8Ybot\ny4OqyX8CJ48o31uxXWUfrB07EXtc/DtGpIskpb6e9quzH7bIs+vpBN5+y8H+2GtB2p7kcD1wn5H5\nDtXZ28efAc7GXuV1QHlsL+zVBUUtnacNc4xp71jw1MPbF2PqMdQf0Xj77Tzgi9hu+j7Owl5PtWjk\nsh8Pfws8uHFsG/bqnz/DXufzYFa+CigXke2Qklek3XvTjanrkP2lXlOG8NqVt3yp1+S+/FLaL9pn\n8OqS9Kadpub8FPhseW6wHcc3s3JykoOp9MY7zlLtb4jI/KL9B2/7Res6xPqHEN9vXhZVb2CxfJw3\nAy/HAmeXYAHCt2NPgcjNFJoTrU3RvlAK0T5O5NwrR/k8mpPDtjwaltK/i6pNi6RL1wGXstyepwMf\nBf5vxjJULLoueYm2P6/dR8cqKobmVN78ou05Ov47Vb9Jl1bT1KWvYTc/Ti8/3x7rp7YbsNHk8CEi\niY7j52LovJGxZYhvl6n8vhzksm2v/yDNW01bHBzgHsAPM563iynG59TxDa82RsWFvXj7wjN3zhG/\nqtiI94g9mie9W02b3n0RuHfj2O7AxzOWIwfe+PpUPoBXP6NjTlPFpSsi9B3idTEXuezbMx+T5q2m\nTfO+CpxW/v1kbGHx9eRnqjVTudY4zXv+5iX6nr5HQ6da25HjHvSisA9wMbaA/CasLd7C6g1wFd8u\n/6/P3TZhbyL+ZEt66eVquubEXVyNXYuOKD+fgfnhnwsuVyTXYW8YaNpVk6nXzPwjcDuWH7q44jHp\na4nTscXwTSM8BWvkb9SOHYoZ+o7y8w2YQbc9Nv9QbPDtgS0oAtt5sh3bKbYTOBp7gtzne8p3NPYK\njmfQvwDJm24WUurrab8627FFEF66+i0HR5b/f6/luxuBLdjF+SeJ+abWuauPC+BCzBn4Wez1Jg8G\nfhMz1C7a2jB1THvwjoWC4Xp4+2JMPTz9McaGuygYru8m4H7Ybspt2I67/bCdUy9m5dNFHkj7bqT7\nYI5jtePqQuAp2C7Ew4AXAV8aUX4vOezH2w/XAXevfT4K24G6fyPdrRPOPZbIdpglr1ns3ptuTPmG\n7C/lmjI0PlLsylu+JkPX5L78ZunfWX2GAt/1ZCPpDYzXnE8CV2DBjp3YuHsY8IXE86eyKHrTNs5S\n7S/anofyi/YfvO0XresQ6x9Gt3NKui69gfWpOWP1puJw4JnYprnnYf005omXKUyhOdHaFO0Lpcz/\nU+fNQ0TOvXKUr0mb5kTbllfDUvp3I/lCY3XpOuDTwPOxG/nHAr+UcN5ZWGu61EW0/RX47N6TLnpO\n5c0vhz1Hx3+n6jfpks9fOh+r892w172fjS1syE2OeGtkjDJ3HD+KofMWxMWWf0J8u0zl9+UgV/zF\n6z9I8/xzxO+1pJ0HU47PinnGN8CvjZFx4Zxzzra5c474VcVGvEfs0TzpnU/v/hH4c+Cy8vu9gL8E\nrk04/yLSdR9nCo1N0c+CuJjTmLlnNBH63ka0LkaRS/NgeD4mzfNp3muxNjkTs4cXJJx3FhZlzVTU\nGqd5rk1ITVdnlnv6Xg2dam1HrjURU2sG2JOyDwDeV37+Jrb5o4vqCfL1ch2ArWO6riW99NI/J/5l\nzA7AHsj1EezNBz8FHofZzEcxTT238dtjsfH6LuyJ813Ms93fDPy3Ms8upuwHsI08O7H1eV/uy7Rg\nttf7jMkr5Zyfwv96gt/GdricVjt2BY1HtWM38HeWZai/wuFL2G6BisdiwnFwy7nOBl6HNf72Rv5j\n0kFM+6XUt0lb+4HtGt5e++x5bU9Kv83KaViZXtzy3ZXld3dIzDOlzp4+3h/4QJnPLmzhyFCZutpw\nTB8XpNl511gYqkdKX6TUw9sfKTYMw+0yVN8Dy+P/DDy1dvxM4PusvCD+EasvkMdgY6dqgwIbR6dh\nzvZObLFRTnLYj7cfNpMvYF6QpkGR7TBLXrPavSddavnGXAOgW0eGxkeKXaWWz6PXQ/mN6d9In8Fz\nPdlIegPTa07B2tKbvnGWan/R9uzpy0j/wdt+OXQd4vzDHO3sTdemN7B+NWdqvRnDFJqT41oZ6QtV\npM4dKrp8nIqC+cy95lG+Ns0ZO6a6zpuiYd7+3Ui+kHQp77W8IMaevfl57T4yVgHDPpM3vxz23Mas\n8V9PfnUKZu836dJix4RgtjHURnSMsklUHN973qF03vNGxpbbiLy/0ZdfRUHsdSKVrvPnir94keYt\nvua1ETE+C2aba+SKb3g1IDounGPO2Td3zhW/WpR7xAWLp3nSu8WeezYpSLtud5Gy9qMiyqfoSpeq\nn1Exp9TzDtUjNV2UvrcRrYupFEjzvEjzjKnXTFVErHGa99qE1HQQc0/fq6FTre3IcZ8nh2YUpPud\nfwj8ICH9S7AFzgfWjt0Fa4PbtKSXXs5HL7dh7faXPWnm3e67Ywvgt/WkmbIfKr6NbawAbBfQWuOB\n2OsUvuJIexS2u+XlWOdU/DrWEE8uP++BPYnyM+XnW2ppj8VeQVLxDkzkL2o531Xl+e6B7RT6CPZI\n+LHpokipb52u9tsN28lxWUIZUvotgqpObU715vL/3RPyS62zp49/DRtbD8NeH/JQrE+O78izrw3H\n9rGXrrEAw/VI6QtvPVL6I8WGPQzVt6rLnbBXoFTswHb1vKJ2bD9W7yB6DrYrqGqvfYHvYO3+b8Cr\nWfnKmxxE2w/4+2Ef2nddTUFkO4zNK8LuPelSyjfmGgD9OjI0PlLsKlqvPfmN6d9In8FzPdlIegNr\nT3Om1pu+cZZifxBrz578INZ/8LZfDl2HOP8wRzt707XpDaxfzVlregPTaE6Oa2WkL1QxZu7Q5+OM\nYZa5V+7ydWlOtG2laJi3fzeSLyRd8uWVyw+tE2F/XruPjFV4fCZvfjnsuUlE/NeTXwqao61kLeoS\nxMdbo2OUdSLj+BGknDcyttwkul3m6ffVOZ7Vb29MZR7XvT6keYuveU2ix/sQ84xveDUgR1w4x5yz\nb+6cI36V+x7xWtc86d3a07sIUtd+zENjU/UzKuaUet5IIvW9SbQuVkjz8iDNM6ZeMwUxax2mWJuQ\nmg5i7ul7NXSqtR057vMsgmYAHAd8NyH9WcCHsE0RFVW9vt+SXno5H728Glsw/vCeNPNu91uwtxq9\nCngC7Wu1p+yHihuxp5oDJshrjV8FPuZItxfwduBy4IWN724AfgZ7tfirsVdpXI69TuLH2EWrohkY\nvqX8/X8pf9/GTdiugQ8DbwQeOWO6WUmpb0Vf+z0FM56bEsrg7bd7lXl7du6CvdLjCS3Hb+j5zb7l\n/20i3sWYOkN3Hz8HOANzEMAcgP8OPAt4G9YOTfracEwfe+kbC556pPSFtx4p/THGhrvw1Lcq4xeB\nHzV+fx3mWFSvorgBe+1JnVdgQl1xGssXq69ir9LrYlHtB/z9cCDtr4BJ4S2029ARwMm0j5snYrtj\n60S2w9i8Iuzeky6lfGP0sE9HYHh8pNhVtF578ptlrMzqM3ivJxtJb2B+mrOe9Abax1mK/UGsPXvy\ng1j/wdt+OXQ90j/M0c7edG16A+tXc+bp4yxiO+S2Gei+Bkb6QhWpc4chHyeVWedeucvXpTnRtpU6\np/KOg43iC0mXfHnl8kMrIuzPa/fRsQqPz+TNL4c914mK/3ry86I52mrWYkwI4uOtkTHKOtFx/Ai8\n542OLdeJbpd5+n11tgF/gz1d66wZzpf7uuc5vzRvsTWvTvR49zDP+IZXA3LEhXPOOdvmzjniVznv\nEa8HzZPeLfbcMzee+z3z0tgU/YyMOaXqdiSR+t4kWhdBmteGNM9Y1HaItp0ca4MqZl2bkJquziz3\n9L0aOtXajhz3eWbRjMj50Bbanyzext2BU1j9xOmd5f/7sLodpJd59LKNLw18P0u7XwGcOLJcB5S/\nPxl4WuO7KfuhYm9Mh3spiHm9T0pennSbsVcMvMyR35XYKwZS+CrwV7XPVwN/25LuOuwCVnEccM9G\nmi1YfXZiO01S0tUpiGu/Js361ulqv4OxR/836XslRkq/RbEv1qa/0/LdX2O7S7yk1NnTx5vK89+j\nJc+nlmnv2jg+tg37+rjAN2a6xoK3HhF9Ua9HSn94bbhOQXu7pPTbv5fnbvI3ZbpDys8XYzuRurhr\nmf5BPWlyEGk/kNYPj8ac5hwUpL3aJrIdxuSVw+670nnLN+YaAP3XZO/48NhVtF5780vp30ifIUWX\nNorewGJoTsHa0BvvePRe1yLtOSW/Lsb4D972i9b1HP5hdDt70w3pDawfzVkEvRnDFJqTQ5u6GOML\nwTjN8cYdCuYz98pZvj7NGTum+s7r1bAumv27UXwh6VLeaznMbs/e/Lx2Hx2rSJlTee002p7rRMR/\nx+RXMHvsSLq02DGhPry+Rp3IGGWTyDh+ynm70nnPmzu2HN0u8/L7mhyH6ejrHWn7zp8j/pKCNG9t\nad6Y62sXBbPf+42Mb3g1IEdcOHrO6Zk7R8evct8jXg+aJ71b7Llnk4LZ1sSMiWFF+xR96Tz6mSPm\nNGYOWDAfHzRax8b6liDNy4k0z5hqzVRFxFqHKdcmRK4XjI7fTbW2I/d9nijNKEifD32C7mtekz8G\n/qDl+DFlHke0fCe9XEy9nFe7H46Nscd0fD9lP4A9Nf0m4NT6gbXEyVgjfmsg3RLweeC3asceP/Cb\n22Md+J7asRNof8XMgcC15d9bsJ0cnwaOrqWpVvpvwh477003L9rqW7FEd/s9CBP+q2r/3l9+d275\n+ZxGft5+i+RGrL3v2PLdnVl+TYoHb529fXx7bGfTF1rO9fvYKx1u1Tg+pg37+tjLEt1jwVuPWfui\nWY+UMeixYS8p/faxMn2T+lO3AD6A7ULs4oGYaNdfwXOUv8ijibQfSOuHB2B9uAhEtsOYvHLafTOd\nt3xjrgFL9F+TvePDY1fReu3Nz9t+0T5Dii5tFL2Btak5U+hNim/qva5F2nNKfm2M9R+87Ret6zn8\nw+h29qYb0htYP5qzFvUGptGcHNrUxlhfCNI1Z4n0uEMfffmN0Yjo8vVpTo7ruVfD2mjr343iC0mX\n8l7LvSwxu/157T46VpEy5/PaabQ9VywRE/+dJb+2/DVHW8la1aUuxsZbI2OUdZaIjeNH4D1vztjy\nErHt0pffGFLy+xfgIOzJfrOQ87rnQZq3djRvidjx7mGe8Q2vBkTHkbzlq7NEd194587R8avc94jX\ng+ZJ79aO3s3KmBjWEvPVWI9+5og5zTIHHEu0vteJ1sUKaV4+pHnGFGum6kSsdZhybULkesHo+N1U\nazty3+eZSjMAPl7+f+FAuidhT5p+est312J1vG3Ld9LLxdTLebT7ZuyJ/88u/29jyn4A26iymXaN\nWkFB/w7AY7BHnXsYyisl3fllmuaj3+s8lvadMm+q/f1sbFfP4bVjz8dW4tcd4vdijVnnhLIMF5ef\nbwXcjDVqXRROKtP9fWK6JgWzt5+3vuBrvyZb6d/B5Om3HLwE+BorX/FwdFmWpmOeMqahvc7ePt4E\nfAO4X0u++2P9slfj+FAbpvRxRUH/2BoaCyn18PbFmHpA9xj02HCTgu6nTHnrex72Koj6mNoEfBd4\nd+O378aEmTL9K4Hjy8/vY6U27IZ/l/KsRNqPtx8OBS4bU1gnBek7ESPbISUviLN7b7rU8lVspfsa\n4LmmeMdHil0NlW/sNbkrP/C1X7TPkHo92Qh6A4uhOQWLrzcpduC1v2h79uYX7T94+yJS13P4h9Ht\nnOJX1fUG1q/mLILejGUKHydam6J9oZQxnjpvLpjf3CtH+WBYc8b4kn3n9WpYyjVgI/hC0qW0vKLH\nLcTZn9fuc8Uq6myl3Wfy5pfDniPjv9786hTMHjsC6dKix4RSxlBUO9QpiNUbGI7je86bmq7rvDli\nyxDfLvP2+2al7/xjY39RSPOWWUTNA//4jL5HPO/4RpOt+J4k25XOO4Yi55wpc+fo+xJNtjLdPeKC\nxdQ86d0yizj3rFMwfk1M6n2mHLGaoXQe/cwRcxoz9yyYjw86Jl20Lo6lQJqXgjTPmPeaqTo51jgN\nnTdybULkesEc8bup1nZE3ufJpRkF6fOhe2GLwW8CHtKR5pnAW+kfn58BHtfxnfRymZx6uRXYs+O7\nKdr96cB2R7op+qHi57GNJIO8s8xkn5bvtmGPWf8LT0YDeaWme0GZ5okd32/DduO8rfHvncA7aule\nCHwFe70DWKN9Ezitkd99sVc5VMK9CROHj7LScf5t7GJX79Qrsdd3nDQiXZ2I9vPW19t+TarXNnS9\nqmSo33JxCHZRrYv1a4FrWCkeqWMauuvs7eNHA59l5UVsC7bT7hEt5xtqQ28f1xmyc89Y8NbD2xdj\n6gHd/eG14Tp97eKt727A32EOb8WjsDat/xasbtUut/+KjcVzsZ2C1wAfqaW9mNorJjITaT+eftgN\nu0BumbXgPRSkO46R7eDNqyLK7r3pUstX0WV/Xh3x2mmKXXnKN+aa3Jc51KvEAAAE40lEQVSft/2i\nfYaU68lG0BtYDM0pWBt64x1nXvuLtmdvftH+g7f9onU92j+MbucUv6quN7B+NWcR9GYsU2hOtDZF\n+0LeMT5m3jzPuVd0+SqGNGeML9l3Xq+GpVwDNoIvJF1Kyyt63Ebbn9fuc8Qq6nT5TN78ou05Ov47\nVb+BdGnRY0IpYyiiHZpE6w0Mx/GHzjsmXd95o2PL0e0yld83C33nHxv7i0KaZyyq5nnHZ457xPOO\nbzTxaGNfOu8Yip5zeufO0fGrJlPeI15UzZPeGYs696wz65oYrx3mitUMpfPqZ3TMaczcc54+aGq6\naF0cizQvDWmeMcWaqYoca5z6zhu9NiF6vWB0/G6qtR2R93lyaUbBuA22L8Ha5mbgD4Bfwp6i/TTg\nw8BzHXm8CnvqfBvSSyOnXt4f68M3dnw/Rbt/CntbwxDz7oc6Ly3P1cpB5cn+CWvcXZhYfBj45Vq6\nu2Ai3rci35uXN13F2VjjdS30+o9aPs1/L62l2xu4FHgztir/Q3QPiDMwAX8r9qj9l9K+2+QCTEjf\nVub3LuDYkemi289bX2/7VWwpz3V9mebH2IXt7Ea6oX7Lyb2xV3a8Brgc+CNW7nAD35iu8NT5Anxj\nYRs2pt5Vpn8PcGbHeYfa0NvH3jGTMha89fD0RYptgq8/PDacokXe+t4Wc1Teg7224h2sfJ1LnYcD\nd8d2CF2BtcGl2EXlLZjD8TrgrI7f5yLSfob64Q7Yq2FyUjDOcYxsB09eFVF2n2JXKeUbsr8UHfFe\na1PsKlKvvfl52897Xm+6lOvJRtAbmF5zCtaO3lyAb5x57S/anj355fAfvO0XqesQ6x9CfL9508Gy\n3sD61pyp9WYWptCcSG3K4Qt5xrjXx5lq7hVdvgqP5nj6N+W8Hg1LvQZsBF9IuuTPy5su2p5zxCBy\nxCo8PpM3v0h7jo7/TtlvIF2CxY0JecdQVDtAHv8Bhu051/0cj45Expaj22VKvy+FlH5JmcPmQJq3\nuJrnHZ+R94grpohvgP8eZ2QcKXLOCf64XnT8Cqa7R7xWNE96t7hzz8g1MeCzw2ifIjq2ArExJ+95\np/RBU9JF62IK0rzZkOYZU6yZgri1Dt7z5libEL1eMDp+N9Xajqj7PLk0o2DcfXqAJwD/gLXP94FP\nYIuMD3L+/iT6n/Qsvcyrl3fDrpNXd3w/73Y/gv43gzaZZz/U+WfgxIRyCiGEEOuGgvGOoxBCpFAg\nvRFCCCGEEEKIRaFAczQhxMahQJonhBBCCCGE2JgUTDsf+gjwcxOeX8BFUxdgDXF/bMOHEEIIsSE5\nEdg8dSGEEBsC6Y0QQgghhBBCLA6aowkhNhLSPCGEEEIIIcRGZer50H2BD054fgEvmroAa4RNwA7g\nuInLIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCHEumI78OSpC7FBeQRw2tSFWCNcBJw7dSGEEEII\nIYQQQgghhBBCCCGEEEIIIYQQQgghhFiPLAH3nLoQG4zdsEXSYpiDscX3QgghhBBCCCGEEEIIIYQQ\nQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEII\nIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE2ED8P/luY/scAfj3AAAA\nAElFTkSuQmCC\n",
"text/latex": [
"$$1.11729533119247 - 0.438791280945186 \\left(x - 0.5\\right)^{2} + 0.0799042564340338 \\left(x - 0.5\\right)^{3} + 0.0365659400787655 \\left(x - 0.5\\right)^{4} - 0.00399521282170169 \\left(x - 0.5\\right)^{5} - 0.00121886466929218 \\left(x - 0.5\\right)^{6} + 9.51241148024212 \\cdot 10^{-5} \\left(x - 0.5\\right)^{7} + 2.17654405230747 \\cdot 10^{-5} \\left(x - 0.5\\right)^{8} - 1.32116826114474 \\cdot 10^{-6} \\left(x - 0.5\\right)^{9} - 0.479425538604203 x + \\mathcal{O}\\left(\\left(x - 0.5\\right)^{10}; x\\rightarrow0.5\\right)$$"
],
"text/plain": [
" 2 \n",
"1.11729533119247 - 0.438791280945186⋅(x - 0.5) + 0.0799042564340338⋅(x - 0.5)\n",
"\n",
"3 4 5 \n",
" + 0.0365659400787655⋅(x - 0.5) - 0.00399521282170169⋅(x - 0.5) - 0.0012188\n",
"\n",
" 6 7 \n",
"6466929218⋅(x - 0.5) + 9.51241148024212e-5⋅(x - 0.5) + 2.17654405230747e-5⋅(\n",
"\n",
" 8 9 ⎛ \n",
"x - 0.5) - 1.32116826114474e-6⋅(x - 0.5) - 0.479425538604203⋅x + O⎝(x - 0.5)\n",
"\n",
"10 ⎞\n",
" ; x → 0.5⎠"
]
},
"execution_count": 73,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cos(x).series(x, 0.5, 10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In some cases, especially for numerical evaluation and plotting the results, it is necessary to remove the trailing `O(n)` term:"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACskAAAAXCAYAAABDXTPeAAAABHNCSVQICAgIfAhkiAAAIABJREFU\neJztnXm0JkV5h5/BGWBgGBRHGDYZQHADFVQUEA5RSTQSg0RUDIFxScSF4MZRVPSiUUHiFhM1cg62\n4AHXBBNNjEl0XGIMblE0UdwVEcW4K4uC+aP6O7dv315+Vf3W131n3uecOXO//uqrqq7lV2+9VV0N\njuM4juM4juOMyRHA3sAqYCNw/3Gz4ziOkxXXPMdxHMdxHGdeuO3pOI7jOI7jOI7jOA6rx86A4ziO\n47RwGnBH4DpgV+CV42ZnxXI4cAbweeBg4BLgU6PmyHGcOk8BTgduBa4k6J+Txv7ACcBNwB7Ae4HP\njpojx3HquObZcQ2wrnbtcuDJI+TFcRxnhs/lHceZEm57Oo4zBhcQfFIfHTsjjuNslRwD7APsBBwH\nXAx8aMwMOY6z4rgfcBTBb3M08BLgI6PmyHEcx3EcZxtlM3B++fcm4GZgw1iZWcHsClwPHFp+3h34\nOrDdaDlyHKeJBcKJNhtHzsfWwIWVv1cBl42VEcdxWlnANc+CjcAzgQMJDwhsAt4A3H7EPDmO42zG\n5/KO40yLBdz2dBxnvhwDfJ+wcc1xHCcHPyQ8BARwMvBLlj9E7TiO08Y64OWVz48CfkV4A4fjOI7j\nOI4zR7YnbOzcr3LtgJHystI5CfgtS0+O/x7hiTDHcabDwtgZ2Iq4Gjik8vmisTLiOE4rC2NnYCth\nT5ZuiH0s4el/x3GcsfC5vOM4U2Rh7Aw4jrNNsR54GrAF3yTrOE4+DgF2Lv8+Gfg1sMt42XEcZ4Vx\nD8KbNg4sP68n7Cd41Gg5cpw5sbo/iMydCbvNv0XoQBuAswlPyw3l2cAalu5mfyjwRuBzwA2EV6re\nWvn+SuD15d8HAC8CbgRuIRgNzyG89is2XYAjgOcCawlH2V8JvBD4bi3c+cB7gC+V+dsfeDhwKeG1\niLHh7g88qbzfteW/lwJX1dLdBziHUA87EI7aP78hHIRXby+wWIY3lJ9/XgmTWrdDy09NVy2XqbET\n8AnCIJSKeu9qmcfmTQmntDG1zcbch5JuzH3EhJvR1geUcDEal5puDH33bjkGHFn+fj/gAcC9gfcT\nTkBtYg3hyaZvJqSVE8sy6Rsn9gROJJweVmXW3rcHflP+vRNwT+A/EvKRQqz+KHS1x9i+o2iFOk7X\nGaIBoLchNX9qXahji5I/ay0bEp/KPPVuxs7AEwj3dDzwl8AXG8JNVe9gGpoH8DfAZ4DXAD8B/joh\n/SGkzjuaiNWevrabqsd9WjZvO0q1G9U2aV0u1nZ3jnE0Jn3XvOVMRe++V/l7b4JNM8/Tsy3LQY0r\nNk3r/tUXn6pP1j6bOl26rcanhFPHPLWcreObYVVvMF1dgmloU+xc3hrrMctam9R5ltoX1HDW88UZ\nVhqbwyfYl7+YeaX12AO2GgvT1aYp6BLotmcuxrCZYtZLrP1ilvFZr+tZ6nqMjig6N6Y/M6Z+XW+6\n9QbgTwm+qEcmpD2UeetNjnV6NdxY69bWeqjmL3UdfKgequnm2L/getOtN1+o/H0S4TXpXW3Lmnnv\nCwLbdpZzn9G850lqXVjbVdZrFzl8Za4j7TpyFcGHM/PX7Fv+/5WEPAzFYs9UbFxW/gJrn6f1vsFY\n+8FqrS+Xj3fGWPsHlrAroVJOrVx7HmGA3n5g3PsRjohfqF1/FkE0mv7dCvxeGW5/wpHzJ1V+eyqh\ncLo2CbelezjwAeC25ed1wEeAHxBeI1alnq9bgHMb0lLCHQb8A7Bj5drrgZ8B96pcuz1wBUHwZuwP\nfBk4qBbn3YBvs3jazEbgGyy959S6HVp+arpquUyN+wKfJNR3Kuq9x7TZmLwp4ZQ2prbZmPtQ0o25\nj5hwM9r6gBpO1bjUdGPou3frMeCxZVrHlJ/XETY67dMQ9jbA8wmD8ZSwLhNlnHgoy5/wWk3YLHZc\n+flIwiThnIQ8rEn4Taz+KPS1x5i+o2qFOp5XGaoBMW1IyZ9aF+rYoubPWstS41OZt97NOBJYVf59\nPGEM3K4WZqp6B9PRPIA9CJvEvk7YQPbAhPQhTfNS5x1txGhPX9tN1eM+LZu3HaXajWqbtC4Xa7s7\nxzgak75r3nKmpHdVLib0hXlhWQ5qXLFpWvevvvhUfbL22dTp0m01PiWcOuap5Wwd3wyreoPp6hJM\nR5ti5vLWWJeBtTap8yy1L8TYnZbzxRlWGpvDJ6jkT51XWo89YKuxMF1tmoougWZ7KqTMEcewmWLW\nS6z9YpbxWa/rWeu6qiOqzo3pz1TDud4s0qY3f8Di2422kH6S7ErRG+t1ejXcWOvWYK+HSv5S18GH\n6qGabo79C643i3T5hI4AXkDwCc2zrMbYF2TdznLtM5r3PEmtC2u7CmzXLnL4ylxHFlF8y5cCr0xI\nH9LslhkWe6Zi47LyF1j7PGlIb8i+wVj7war8cvl4Z7TpUu79A8t4KSGz1ZvajXC0+5MHxv0mQsYX\natffQNjRvoalTo2jgddWPl8B/KgWZi1h1/LmhHTfB9ypdu2wMuzbate/VcZzBUFU7tmSlhLu1WUa\nJ1eunVBe+6vKtbOBMxt+/zzggsrn1YSB5emVa/sSXot2VuVaat0OLT81XbVcpsJdCWVQEHbXDxF8\n9d7VMlfzpoZT25jaZtX7UNO1vt86bX1ADadqXGq6Cuq9x+jEmYTT/dr+nQI8rExrbeV33wPOaEj7\nqdg8WWSN9biojifvYqmxA8HgPgt4DKHPXAecnpCHiwhP3MUQM2b2obZHte+oWgF6+VcZqgExbUjJ\nn1oX6tii5s9ay1Lj62MsvZtRjW9TmX69HqeqdzAdzdsF+HuC42NH4DzCxoxNCXlI0bzUeUcbSjmo\nbTdVj9v64lh2lGo3qm3Sulys7W7LcbSKa146U9G7KrsTnMPzxLIc1LjUcNb9S41P1Sdrn02dNn1S\n41PDqWOeWs7W8VnXG0xXl2A62hQzl7fGugystUmdZ6l9IcbutJwvWmustU/Q2m9gPfZYayxMV5um\nokug2Z4KKXPEMWwmVW+s/WLW8Vmv61nruqojqs6N6c9Uw7neLKWuN3sBp1U+byF9k+xK0RvrdXo1\n3Fjr1mCvh0r+UtfBh+qhmq71/gVwvanT5ROCMN/6NGGD0TwYY1+QdTuz1q+x5klqXVjbVWC7dpHD\nV+Y6spQuHXk88AoWHyyMJcVusdwzZb1WpeqDtc8TbPcNquGsy8/ax1tn3vsHWrka+MeG61cBHxwQ\n70mETT1NN9n06tR1wD+x6IzdniAoVzaE/TLw3oR0f0FYgNq9dv3HhB3RVba0xF9HCXca8FPgdyvX\nTinzeH7l2hsImwPqPBN4VeXz44GbWdyZ3UZK3VqUn5quWi5TpGCY4Kv3HtNmY/PWFU5tY2qbVe9D\nTbdKwfD7rdLVB9RwisalpptCQfu9W48BexOe6KhO6K4FnlYLtxZ4e0L888C6TLaI4c5i+dNgVaN2\nA8EI2SshDwXxG81S9EfNS1t7VPtOjFZsicgb2GhATBtS8qfWhTq2qPmz1rKU+GIpmJ/eQXjdxS9Y\nnKAeWqZ/t0qYKesdTEfzTmKpgwSC06HvKdkmCuI0L3Xe0cWWyPAF7W03RY9VLetKNyVcV7qq3ai2\nSetysba7c42javquecuZit5VOR34bELaQ7AsBzWulDQLbPtXV3yqPln7bKp06ZManxIuZsxTytk6\nvjoFw+ttyroE09EmdS6fA+sysNYmZZ6l9oVYu3NLQ7g6Y9kw1j5BNX/qvNJ67LHW2Clr01R0SbE9\nVQri/WJj2EyqX8faL2YZX451PWtdV3VE1bkx/ZlKONeb5dT15nGEt7c9t/x3LWER/2EJeShYGXpj\nuU4f0+/HWrcGez1U8peyDm6hh2q61vsXXG+W02TffJ/FNwrdhVDej0zIQwpj7Auybmc59xkVzG+e\npNRFDrsKbNcurH1lriPLafMt/z6hXCHMmTYl5KFI/F3190P2TKXE1RVOtcutfZ5gu28wxX4oGFZ+\nuX28JvsHUl4rU2cXwjHXTSeXXAvcOzHedYRO2bZLuMnB+grghcAN5efdCLvwb2wI+1PCMfSx6X6D\n8BrXnWvXb8Juc0YTlxBOA/xA5drhhCOWL69c+2/gRMJrZm9XXtuBcIRxUQl3CvBVwulabaTUrUX5\nxaSrlsvWiHrvY7VZpY2B3mbV+1DTzUVfH1DDKRqXkq41OcaA7xKMgKPLz3cg1HvdQD6ecJz71Mg1\nLip8FHhI7dp3WHztxJ8RJhvXZsxDlTH0R+07ubTCQgNytCG1LpSxJSZ/1loWG58lufr2NcCFLNqr\nRwMfB/6nEmaqegfT0ryvsvw1IbcB/itjHmakzDvmSawej2VX9KWr2I0xbdK6XKzHvbHseHDNa2JK\nelflEOBXGdOuY1kOalxj2kYq6rzW0mdTpU+f1PiUcDFjnlLO1vHFoNbHVHUJpqVN6lzeGusyyKFN\nyjxL7Qs57M6xbBhrn6CKMq/M0besNXaq2jQlXVJsz1yMYTOBvmZg7RezjM96XS+Hrqv+KVXnxvZn\n9uF6s5y63rwZeDlh08H5hE08lxFOycrNWHpjuU6vhhtr3ToG67lc7Dq41bqDmq71/gXXm+XU9eY3\nwBdZXOc7gLAp6XMZ8zBjrH1B1u0s1z6jPiznSWpd5NgvZY21r8x1ZDlNvuVjgT0Jmwg3lt/vmTEP\nKwXVLrf2eapYj8+W5PTxmu0fWN0QMJb9yv9/1vDdL4H1BBG7KTLecwgTCpWjCZt+P1W5dj1hsajp\n6Oi9CM7a1QRjQk33/gQBu64W1x4s39m9fRnfBsJJCgcSniC8OjFclQMJxxGfyVKjpwCeSBgkfodw\nPPlDgOcDny/DrAIeQNjBfSxh9/g6wg7/81g8hSalbi3Kb0ibaisXCAPLqYSd5ZsI5fQkwtMmewMv\nAr7Wkfep03bvMW3WCrWNgdZmQbuPmHRzoWqXhcYNic+KXGPA6YQ+eTfC8e0nEhbcqjwI+LuG347d\n13OUiTpOXAPcvXbtNYQyOY7QH86OSHcoY+hPnaa+E6sVMeO0hQbEtiElf6l10TS2DGnj1lrWF58l\nufTuGuAzwLMJGzoPBh5RC9Omd+CaV9W8zwP/THgNyTVluv9GeEVJblLmHX2kzBHaiNWAseyKvnQL\n+u3GmDZpXS7W496Y4+gUNc/1rpmfNYTPiWU5qHHlKHvr/lWgzWuVcCnz2i59UuNTw8WMeUo5W8cX\nQ4FWb26L6dqkzOWtsS6DeWhT0zxL7QuxdmfO+WIbanwFdj7BITTNK63bVQ6NdZupX5cU2zMXY9hM\nqt5Y+8Ws47Ne15uHrrf5pwo0nVPiy+XPVMK53uhztH2APydsNnkWoY5S3i4Uw1T0Zsg6vRpurHXr\nGdZ6qOSvTtc6eF98udbflXAFw+ZerjeLfAq4mLAh6FZCmzsB+EpE2qlMZV/Q0HZWx2qfUR+W8yS1\nLnLslwLbtYsCW1+Z60i/jhxAsE92qYXbNSLtbYU2O9/a5wm2+wZTww0hp493UvsHjiIIyXkN311a\nfrdHZJz3ItzkjL5XfAJ8muZjnC8mHMdbfd30RkKj+i1Lj+9NSRfgZYQd10fVrn8N2Lfy+VTC8fcb\nE8NBcC6/jtARzmHpfc3YBXh/mf/fEgSuWgcbyuv/C5xRuX4c8HMWBTK2bq3KL6VN9ZXLQeX3s+tF\nGfYoQge5lTBhnScFNkeHK22iTlubjc1bWzi1jc3oa7Nt1O8jNt2++4gNp/YBS41LjS+WguZ7zzEG\nqLyb5XU6hb6eo0zUcWIN+TZJFAx7XcKMPv1R86LqZ1PfidUKtfytNCC2DcXYEVW66qJrbBnSxq21\nrCu+VApWht6Ba97UNC9m3qEQ27cL4mzLNg2I7Ytqun3h1HT77MahbdKqXPrim1FgU2+ptKU/Nc1z\nvZvvRtguLMtBjSs1zQLb/tUXnzqvtfLZzOjTJzW+mHSHjHlN5WwdX5WC4fXmtti0tcm6DHJqU58P\nT+0LMX0mx3wR7DTWyic4JH9N80rrsSeHxrrNNO054hg2U5UuvbH2i+Xws1mu6+W2OaHbP5Wic/P0\nZyrhXG9cb5S4hq7TK+HGWreeYa2HMflT1oKt1x3UdNVwqXMv15tpzLtg/H1BVu2sjsU+oxkF85kn\nxdRFjv1S1msXlr4y15Fp2y1Nv4/pMxZxxaQZsw491OdpvW8wJhzYlF8OH6/p/oHten6ocEslI3XW\nlP/fJiK+7YBnEE6AUnkQ4cjdbzZ89xzgR4RXTEPYmfw0wrHdsJj/lHQh7LI/k7Br+eO17w4mvOZ6\nxuUEgX9eYjiAK8r0DiE8IfEx4Pa1ME8t4zuBcEzxwwj3e2j5/aw+9gfeUvndFsIxxxeUn2Pq1rL8\nUtpUX7k8g7DLfhbnzsCPyzS/DbyKpce1rySUNlGlq81aobaxGX1ttomm+4hN1xK1D1hrXGrfg1C+\n9SeEYrEeA2JYx/KnqabQ13OUiTpO7ETzE2hTYR76U6Wt78RqhVL+lhoQ24Zi7IgZfXXRNbaktnFr\nLeuKr87WqHfgmjc1zVPnHSopfVulTQOG2BVDiEm3z24c0iaty8V63FPj2xo1z/VuOnpnWQ5qXPNo\njxb9VZ3XWvlsQNMnNb6YdFPHvLZyto4vBqXe3BabtjZZl0FOberz4al9IabP5JgvxtIVn5VPMJW2\neaV1u8qhsW4zTVeXYBybqUqX3lj7xXL42SzX9XLbnH3+qVidm6c/Uw3neuN60xeXxTq9Em6sdesZ\nlnoYm78+OzLHuoOSbky41LmX683WqTdg3w/AbtwFe39/nSHzpJi6yLFfynrtwtJX5joybR1ZScSs\nQ1v4PK33DcaEs8Lax2u+f2B15e97Ejq+cgolhCOrH0c4MreNncv/fy7GCeFI6wK4OeI3TwE+0fLd\n9cD9CK+3eBXheN+LCEd030iooNR0dwAuK+N7QcP39Qq+pczPH5b5iQ1X5WbCUwYfAt4InFxefwZw\nDGHggDAw/AVwFvBWQj3P7vmrwA21eK8Bjmfx+PU26nVrWX5D2lRbuVxAOKZ8xlEsDnTfIbxyqY3U\nvjFv2u69Sl+btUJtYzehtdk6bfcRk641ah+w1riU+CC8iuDDhNdQHx/52yrWY0Bs2rerXZtCX89R\nJuo4sYHQ1ofwFpr73R2BI2hua08gPJHTxbz0p0pb34nVCqX8LTUgtg3F2hExddE0tqS2cWst64qv\nytaqd+CaNzXNU+cdKilzBIUuDUi1K4aipqvYjalt0rpcrMc9Nb6tVfNc74br3RTLQY0rd3u06K/q\nvNbSZ3MTmj6p8cWkmzLmdZWzdXwqar1Z22KWfqaVrE1T1KWY+HL4L9W+ENNncs4XFbris/QJptI2\nr7RuVzk01m2mac8Rx7CZmmjSG2u/WA4/m+W6Xm5d7/JPpejcPP2ZajjXG9ebvrgs1umVcGOtW8+w\n1MNUH1ybHZlj3UFJVw03ZO7lerN1+oTAvh9Yjrtg7++vMnSeFFMXOfZLWa5dWPvKXEembbesJNR1\naCufp+W+wdRwQ7H28ebcP5DMzoSjcV/b8N0HCTvwVTYSjvqt03Vc7hrgF8BLI9KBIHb/PiBdCMde\nv7jlu48AH224fg2h8mPD3QW4Ry3M+jKPtxKeiFhFKO9DGuI7owx71/LzD8q063y4DLcnet1al19M\nm1LKpc5dy+8f3JG3eVAw7OjwlHvvarMpeesKp7SxmDZbpes+lHTrFAy7X7UPWGtcat+D0H5+ALy+\nJ9yMguZ7txwDYjkXeETH92P1desyUccJgEcTJg05KBj2ugRVfxQK+vtsn32gaoVS/tYaENOGYtrH\njK66UMaWlDZurWUx9t+2oHfgmmdNwTDNq1Kdd6ik9O0CzZ5p04BUu0JNty2cmq5qN6a2Setysba7\n1fi2Bc1zvRsXy3JQ40pNs8C2f7XFp+qTtc8mRp9U2zdlPl2la8xLmQ9YxFcwrN7AbTGYtjZZl0EO\nbUrx4VVR7cl6OOv5YpWCYRqbwycYm7+ueWWOscdaY91mmvYccQybCXS9sfSL5YivjZR1vZw2Z5eO\npOjcPP2ZMeFcb1xvuuKyWKdXw421bg22ehiTP0XXc6w7qOOJ9f4F15vpzrtgvH1B1u1sRg79KpjP\nPMmiLlL3S1muXVj7ysB1ZOp2S9Pvh+yZSolLCRejDxY+T8t9gzHhqhTYlV+dFB9vlv0D27VmUeeX\nhN3w+zZ8dycWj81VeDChsq6o/Htf+d1jys8n1X5zBEFQfhiRzh2AfYB3Dkh3AbgaeGHl2mmVvw+j\n+RWXG4BvRYZbTyjjzwAHVsLMdpKvIhy9fQfgtsBXGuL7W8IR2juWnz9Rhq9TfcJCrVvr8lPTVcul\nzoMIO82rxzQf0BBuyqTc+wLdbdYapY3FtNkZC3Tfh5KuNWofsNa4lPhmfAnYnfAkxRAsx4BY3k94\nsqyNsfq6dZmo4wnAAwn1PjUWmK/+QL99oGqFUv7WGhDThmLaB3TXhTq2pLRxay2Lsf+2Bb0D17yp\nUp93qMT2bZUF2jVgiF0xBDVd1W5MaZML2JZLV3wpxMS3LWie6924WJaDGlfO9rjA8P6q6pO1zyZG\nn1Tbd8h8umvMWyC+nK3ja4pfrQ+3xaatTdZlYK1Nqf7LGao92RTOcr6YQld8OXyCsXTNK3OMPdYa\n6zbTdHUJxrGZYvTG0i+WI74mUtf1ctqcXTqSonPz9GfGhHO9cb3pistinV4NN9a6NdjqoZo/Vdet\n9VBNN8f+BdebbUdvrPtBjnG3iVR/f5UFhs+ThtbFkP1SlmsX1r4ycB2Zuo6sFFR9WMDG52m5b3Co\nH8qaVB/vvPaPJvFi4LssPWL6QMIO3vri3EHA2oi4N9G9E/j08vsnt3z/dMJTBftUrj2bsOO6PhCq\n6Z5K807mN1X+fhehwVY5rIzz3MhwOwK/JgwOu1XC3acM98ny8yrgOuABDXnbhXDPO5SfTyEcbVyt\ni1XAT4B3VK7F1G2VTQwrPyVdtVzWAq8ADi0/v6fyHYTN4upJS5YUdO+w7+or6r3PUMo8Jm9KOKWN\nxbRZ0O5DbdtVCuyfitiEdqJrX7g+jUtNN5aC9ntP1QkL3kF4IgSm1dctx0V1PNkLeGVKZkUK0p4E\nU/Unxj4o6O+LfX1H1Qq1/OtsYpgGqG0oJn99dREztsT2e2sti40vhoLp6x245k1R82LmHVblUKWg\nWxtj7UHQtKwv3dhwbenG2I0xbdK6XKzt7pT8xdCV/lQ0z/Uur96lYFkOalwp7bHAtn+1xafqUw6f\nTZ1NNOuTGp8aLmbMU8rZOr4qBcPqbYbbYtPWJmvftKU2xcyz1L6ghrOcL9YpGKaxOXyCMfmD/nml\n9diTQ2PdZlpkinPEedtMMXpj7Rezjs96XS+XzdmlI7E61xcf2JdzzDjherOI681SrNbp1XBjrVtb\n66GSv9i14L74wHY8ybF/AVxvpjzvgvnvC8rVziDPPqOC+c2T1Lqwtqss1y5y+cpcRxaZot1S/33q\nnqnYuGLCKevQlj5Py32DqfZDwfDyy+njhXH3DyxhT4L4/Enl2muAq4DtK9eOJRzd+y8RcR9EuIm2\n43DPLr9/Qsv3LwC+STiKF0JD+j5wVGK6xxKeQnhr7d/bgMsr4e5LOBZ4JtqrgEsITyTskBDuZYQG\nVRXMSwlHBd+ncu3RwBdZKkTrCbuyH1m5th3wn4QGOeNR5b1Vf6vWbZ2h5aemq5TLHxHa3WMIO82v\nAj5WCX8ucGTHveTibYQy2qnhO6WvqG1CLXM1b2o4tY2pbVa9DzVd9T5SwkG/dqnh+jQuNd1Yuu49\nVScsOAp4Yvn3lPq65biojBPbEYyI9UMz3kFBvJGr9ttY+0Dpi319R9UKdZyuM1QD1Dak5k+tC3Vs\nie331loWG18MK0HvwDVvipqnzjusyqFOn20Zaw+CpmXztKNUuzGmTVqWi7XdnZq/GFaC5rne5dW7\nFCzLQY0rpT1a96+u+FR9svbZ1GnTJzU+NVzMmKeUs3V8VSzqDdwWm7o2WfumrbVJnWepfUENZz1f\nrGKhsdY+QTV/M/rmldZjj7XGgttMU58jjmEzqXpj7Rezjs96XS+XzdmnIzG2hhKfdTnH+B5cbwKu\nN8uxWqdXw421bm2th2r+VF1X47MeT6z3L4DrzZTnXTDOvqAc7Qzy7DOa5zxJrQtru8p67SKHr8x1\nJDBVu6XK0D1Talyx4fr0wdrnab1vMMV+sCi/nD5eGHf/wDLuRTja9tXARcC7Wbo7GODOhAJQduKv\nBz4EXEu4iRsJondiLdyJBCFpq8i1wIXAmwm7r/+VbpHrS/f/yutN/15Si+sYgnhfQjjq9yU0P42h\nhttMaBRvLe/j7cDBDeGOLeN5exn+ncBxDeF2I4jWO4HLCI3twIZwSt3OsCw/Nd3NdJfLBuBiQju4\nkHC88lsIR7S/Dji+5V5ysDtBxL/A4n1fTyizP66EU/vKZvrbhFrmat7UcKC3MaXNxrQdJd0c9wu6\ndllpXGx8McTce4xOWPNw4O5Mq6+D7bjYN07sAdxueJY7KYg3ctV+q5RDbF9U+o6qUeo4DbYaoPYr\nJX8xGroZzd6I6ffWWqbGp7LS9A5c86aoeeq8w6ocQG+7MRoA/X1xTDtKnesobdK6XKzt7tj8qaw0\nzXO9myaW5aC2MyWcdf+K6S+qPln7bEDTTzU+JZw65qnlbB1fjnoDt8VmTFWbrH3TltoE2jxL7Qsx\n/m7L+WIOG8bSJ5jDb2A59oCtxs5wm2m6c0QYx2bajObXsfaLWcZnva4H9roOmo7E2Bpj+DNj/J6u\nN643TVit08f0+7HWra31UMkf6Lquxmc9nqjhUuZerjfTZIx9QZuxb2dW+jXWPAm0ushhV1muXcTc\nb4y+uo5M126x3DOVa62qTx+sfZ5gv29QCWddftY+3hlj7R9wHMdxHGcbpWDYk2CO4zgriQLXPMdx\nHMdxHMdxHCdQ4HNEx3HmQ4HrjeM4juM4K4MCt1scx3Ecx3GcrYzDgTUQousrAAAAjklEQVRjZ8Jx\nHGdOuOY5juM4juM4juM4M3yO6DjOvHC9cRzHcRxnpeB2i+M4juM4juM4juM4juM4juM4juM4juM4\njuM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4\njuM4juM4juM4juM4juM4juO08//mQcOnqGt/bAAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$- 0.479425538604203 x - 1.32116826114474 \\cdot 10^{-6} \\left(x - 0.5\\right)^{9} + 2.17654405230747 \\cdot 10^{-5} \\left(x - 0.5\\right)^{8} + 9.51241148024212 \\cdot 10^{-5} \\left(x - 0.5\\right)^{7} - 0.00121886466929218 \\left(x - 0.5\\right)^{6} - 0.00399521282170169 \\left(x - 0.5\\right)^{5} + 0.0365659400787655 \\left(x - 0.5\\right)^{4} + 0.0799042564340338 \\left(x - 0.5\\right)^{3} - 0.438791280945186 \\left(x - 0.5\\right)^{2} + 1.11729533119247$$"
],
"text/plain": [
" 9 \n",
"-0.479425538604203⋅x - 1.32116826114474e-6⋅(x - 0.5) + 2.17654405230747e-5⋅(x\n",
"\n",
" 8 7 6 \n",
" - 0.5) + 9.51241148024212e-5⋅(x - 0.5) - 0.00121886466929218⋅(x - 0.5) - 0\n",
"\n",
" 5 4 \n",
".00399521282170169⋅(x - 0.5) + 0.0365659400787655⋅(x - 0.5) + 0.079904256434\n",
"\n",
" 3 2 \n",
"0338⋅(x - 0.5) - 0.438791280945186⋅(x - 0.5) + 1.11729533119247"
]
},
"execution_count": 74,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"cos(x).series(x, 0.5, 10).removeO()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"SymPy provides two inbuilt plotting functions, `Plot()` from the `sympy.plotting` module, and `plot` from `sympy.mpmath.visualization`. At the time of writing, these functions lack the ability to add a key to the plot, which means they are unsuitable for most of our needs. Should you wish to use them nevertheless, their `help()` text is useful.\n",
"\n",
"For most of our purposes, Matplotlib should be the plotting tool of choice. The details are in chapter \\[cha:visualisingdata\\]. Here we furnish just one example of how to plot the results of a SymPy computation."
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 76,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from sympy import sin,series,Symbol\n",
"import pylab\n",
"x = Symbol('x')\n",
"s10 = sin(x).series(x,0,10).removeO()\n",
"s20 = sin(x).series(x,0,20).removeO()\n",
"s = sin(x)\n",
"xx = []\n",
"y10 = []\n",
"y20 = []\n",
"y = []\n",
"for i in range(1000):\n",
" xx.append(i / 100.0)\n",
" y10.append(float(s10.subs({x:i/100.0})))\n",
" y20.append(float(s20.subs({x:i/100.0})))\n",
" y.append(float(s.subs({x:i/100.0})))\n",
"\n",
"pylab.figure()"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4lFXax/HvCT2kAAkkQEhCJ1KCKF0hgKiLBVkQ9BVU\nlHV1Xd3VdVGxxV5xde0IgthwVURQ6RCaSAs1lFBDDySYkFASktzvH4ORTsrMnGeS+3Ndc5Ey8zy/\nDMncc8pzjhERlFJKKQA/2wGUUko5hxYFpZRShbQoKKWUKqRFQSmlVCEtCkoppQppUVBKKVXIEUXB\nGONnjEk0xky2nUUppcozRxQF4B/AetshlFKqvLNeFIwxEUAfYLTtLEopVd5ZLwrAf4B/A3pptVJK\nWWa1KBhjrgNSRWQVYE7elFJKWWJsrn1kjHkJGAzkAdWAQGCiiNx+xv20FaGUUiUgIsV6s221pSAi\nI0QkUkQaAbcAc84sCKfcV28iPPPMM9YzOOVWHp6LVq2ElSv1uSjOTZ+LP24l4YQxBaXUOYjAtm3Q\nuLHtJKo8qWg7wO9EZB4wz3YOpZxi/36oXh0CA20nUeWJthR8TFxcnO0IjlHWn4utW4veSijrz0Vx\n6HNROlYHmovKGCO+kFMpdxo3DmbNgs8/t51E+SpjDFLMgWbHdB8ppU5XnJZCWRIdHU1KSortGD4l\nKiqKHTt2uOVYWhSUcqitW+Haa22n8L6UlJQSz5wpr4xx3yVeOqaglEOV15aCskuLglIOpUVB2aBF\nQSkHysyE48chLMx2ElXeaFFQyoF+byW4satYedH69etp3769W441YMAApk+f7pZjFYUWBaUcaMsW\n7TpysnHjxtGmTRuqV69OvXr1+Nvf/kZmZmbh959++mmGDx9e+Pl7771H+/btqVq1KnfddddZx5s9\nezYxMTEEBATQq1cvdu7cWfi9Rx99lCeeeMKzP9AptCgo5UA6nuBcI0eO5PHHH2fkyJEcPnyYX3/9\nlZSUFHr37k1eXh779u0jISGBvn37Fj6mfv36PPXUU9x9991nHS89PZ3+/fvz4osvcujQIS677DIG\nDRpU+P327duTlZVFYmKiV34+nZKqlANt3QqXX247hTpTVlYW8fHxjBs3jt69ewMQGRnJ//73Pxo2\nbMjnn39OhQoVaNeuHZUrVy583E033QTAsmXL2LNnz2nHnDhxIq1ateLPf/4zAPHx8YSGhpKcnEyz\nZs0A6N69Oz/99BPt2rXz+M+oLQWlHEi7j5zpl19+IScnh379+p329erVq9OnTx9mzJjB2rVrad68\neZGPmZSURGxsbOHn/v7+NG7cmKSkpMKvxcTEsHr16tL/AEWgRUEpB0pOhmK8rpQrxrjnVhJpaWmE\nhobi53f2S2fdunVJT08nMzOTwGKsYpidnU1wcPBpXwsODiYrK6vw88DAQDIyMkoWupi0+0gphzl8\nGDIyICLCdhJnsnmxc2hoKGlpaRQUFJxVGPbt20doaCg1a9Y87QX9YgICAjh8+PBpXzt8+PBphSUr\nK4saNWqULnwRaUtBKYfZvBmaNoVzvBlVlnXu3JkqVaowceLE076enZ3N1KlT6dWrF61btyY5ObnI\nx2zZsiWrVq0q/PzIkSNs3bqVli1bFn5tw4YNp3UxeZL+2inlMJs2adeRUwUFBfH000/zwAMPMH36\ndPLy8tixYweDBg0iMjKSIUOG0Lt3bxITE8nNzS18XH5+PsePHyc/P5+8vDxycnLIz88HoF+/fiQl\nJfH999+Tk5PDc889R2xsbOEgM8C8efP405/+5J0f0vZ2cUXcUk6UKi+eflrkySdtp7DHF/7eP/nk\nE2nVqpX4+/tLeHi43HfffZKRkVH4/YEDB8rXX39d+Hl8fLwYY8TPz6/w9uyzzxZ+f/bs2dKiRQvx\n9/eXHj16SEpKSuH3li5dKpdddtkF85zvOTv59WK93up+Cko5zK23wnXXweDBtpPYcXIPANsxSmXD\nhg3ceeedLFmypNTHGjBgAMOGDePaCyyZe77nrCT7KWhRUMph2rWDDz+EDh1sJ7GjLBQFbyszRcEY\nUwWYD1TGNRPqWxF59hz306KgygUR157Me/bAGbMUyw0tCsXnzqJgdUqqiOQYY3qIyFFjTAVgkTFm\nqogstZlLKVv27oWAgPJbEJR91mcficjRkx9WwVWk9C2CKrc2bYJTJp0o5XXWi4Ixxs8YsxLYD8wU\nkWW2Mylli05HVbZZLwoiUiAilwIRQEdjzCW2Mylliy5voWxzzDIXInLYGDMXuBZYf+b34+PjCz+O\ni4sjLi7Oa9mU8pZNm6BHD9splK9KSEggISGhVMewPfsoFDghIpnGmGrAdOAVEfn5jPvp7CNVLkRH\nw6xZ0KSJ7ST26Oyj4nPn7CPb3Ud1gbnGmFXAEmD6mQVBqfIiOxsOHICGDW0nUaWl23GWkIisFZF2\nItJWRNqIyIs28yhl04YNrvGEChVsJ1EXU5ztOHNzcxk2bBjR0dEEBwfTrl07pk2bdtrxdDtOpdRZ\nkpLglIUxlUMVdzvOvLw8IiMjWbBgAZmZmTz//PMMHDiw8IVft+NUSp1TUhJconPvHK0k23H6+/vz\n9NNPFx7juuuuo2HDhqxYsYLIyEjdjlMpdW7r12tLwencsR1namoqycnJtGrVCnDedpzaUlDKIbSl\nUDTm2RLupXkGeab4M5wuth1nYmIigYGBhISEnPPxeXl5DB48mKFDh9K0aVPAtUFPnTp1Trufbsep\nVDn3+8yjRo1sJ3G+kryYu0tptuMUEQYPHkyVKlV45513Cr+u23Eqpc6yYYNrzSOdeeRspdmO8+67\n7yYtLY2JEydS4ZT/aN2OUyl1Fh1P8A0l3Y7z3nvvZePGjUyePLlwAPp3TtuOU4uCUg6g4wm+49//\n/jcvvfQSjzzyCMHBwXTu3JmoqChmzZpFpUqVqFOnDj179mTSpEkA7Ny5k1GjRrFq1SrCwsIIDAwk\nKCiIr776CnB1SX333XeMGDGCWrVqsWzZMiZMmFB4vmXLlhEYGMjll1/ulZ9Pd15TygGuuw6GDYMz\nJrWUS2VhmQvdjtPDtCiosq5BA0hIgMaNbSexrywUBW8rS2sfKVXuHToEmZm65pFyBi0KSlm2ejW0\nbg3nmPqulNfpr6FSlq1eDV6abajURWlRUMoyLQrKSbQoKGXZmjVaFJRz6OwjpSzKy4OgIDh4EKpX\nt53GGXT2UfHp7COlyohNmyAiQguCcg4tCkpZpOMJZcPLL7/MPffcU+T7F2e7Tm9vx6ndR0pZ9Oij\nEBgITz5pO4lzlIfuowEDBjBo0CBuvvnmi9532bJl3HfffSxfvvy89ykz3UfGmAhjzBxjTJIxZq0x\n5kGbeZTyNm0plD/79+8/bbvOi/H2dpy2u4/ygIdFpCXQGbjfGNPCcialvEIEVqyAyy6znUQVx6uv\nvkpERARBQUHExMQwd+5cnn32WYYMGQJASkoKfn5+jB8/nqioKOrUqcNLL71U+PiZM2eetl3ntm3b\nCAkJKVw+e+/evdSpU4f58+cXPub37Ti9wWpREJH9IrLq5MfZwAagvs1MSnnLzp1QqRLUq2c7iSqq\n5ORk3nvvPVasWMHhw4eZPn060dHRgKur5lSLFi1i8+bNzJo1i+eee45NmzYBnLVdZ6NGjXjttdcY\nPHgwx44dY+jQoQwdOpRu3boV3seb23HabikUMsZEA22B0i8rqJQPWL4cvLQactlijHtuJVChQgVy\nc3NZt24deXl5REZG0vAci1YZY4iPj6dy5cq0adOG2NjYwhf1jIyM03ZVA9cGPE2aNKFjx46kpqby\nwgsvnPb9crcdpzEmAPgW+MfJFsNZ4uPjCz+Oi4sjLi7OK9mU8hQtCiVkcRC6cePGvPXWW8THx5OU\nlMS1117LyJEjz3nfsLCwwo/9/f3Jzna9tJ1vu85hw4bRt29fRo0aRaVKlU77XlG340xISCAhIaEY\nP9HZrM8+MsZUBH4EporI2+e5j84+UmVO797w0EPQp4/tJM7iK7OPsrOzueeee6hYsSKNGzdm69at\njB8/npSUFBo1asSJEycK93Hu0aMHQ4YM4a677uKLL75g/Pjxp00zPXLkCLGxsfTs2ZOpU6eydu3a\n04rAPffcQ4MGDXjqqafOmaXMzD466RNg/fkKglJlkYirpaCDzL4lOTmZuXPnkpubS+XKlalWrdpp\n+y3/7kJF7VzbdT744IN06NCBUaNG0adPH/7617+e9physx2nMaYrcBvQ0xiz0hiTaIw5//ZCSpUR\n27a5rk84pYdB+YCcnBwee+wxateuTb169Th48CAvv/zyWfc7c9D51M/P3K5z8uTJzJgxg/fffx+A\nN998k5UrVxZu16nbcZ6Ddh+psuZ//4MJE2DiRNtJnMdXuo9Kozjbdep2nOegRUGVNcOHQ40aMGKE\n7STOUx6KgruVtTEFpcqdZct0PEE5k7YUlPKyvDyoWRN27XK1FtTptKVQfNpSUMqHrVkDkZFaEJQz\naVFQyssWL4YuXWynUOrctCgo5WW//AKdO9tOodS5OWKZC6XKk8WLdf+EC4mKijprnr+6sKioKLcd\nSwealfKi/fvhkksgLQ38tJ2uPEwHmpVyuMWLoVMnLQjKufRXUykv+uUXHWRWzqZFQSkv0kFm5XQ6\npqCUlxw54loALzUVqle3nUaVBzqmoJSDLV4MbdtqQVDOpkVBKS+ZNw90w0DldFoUlPKShATo3t12\nCqUuTMcUlPKCo0ehTh0dT1DepWMKSjnU4sUQG6sFQTmfFgWlvEDHE5Sv0KKglBfMnavjCco3WB9T\nMMaMAa4HUkWkzXnuo2MKymcdPgz167vGE/z9badR5YmvjimMBa6xHUIpT5kzx3UVsxYE5QusFwUR\nWQj8ZjuHUp4yfTpco297lI/Q/RS8IO9EHnu372Hv5u1kpaUDYPz8qBYQQESLJtRv0oCKlfS/oiwS\ncRWF+++3naSMOHYM0tMhM9P15IJrydmaNSEkBCpXtpuvDPCZV6L4+PjCj+Pi4ohz4FSO3OO5zPt6\nCrt+/gH/zSsJT9tLdGYmEVn5BFeG/CoVCaxUofD+VfLyCTqej5wQdvv7sa1GEHtD63EkuiV1r+lL\nz9v7U9W/qsWfSJXWli2QkwMtW9pO4mP27XPN412+HJKTXbdt2+DECdeLf40af6w/npcHv/0Ghw65\n5vw2aQLNm0NMDHTo4LqVkw2xExISSEhIKNUxrA80AxhjooApvjjQvGz6QtaMeo/IlXPouOcA+6tX\nYl3dBvzWOJZqMW2J7tKVNnEdCQgOOO8xjmYdZf2vK9mSMJ8jSSsI2raWlntSaJCdw/LwWmxr052Y\nYffTpW8vL/5kyh3efRdWrICxY20ncbjsbJg9G376CWbOdI3Od+rkekGPiYFmzaBRIwgMhPPtyibi\nakVs2eIqIklJsGSJ6z8gOhquvRauuw66doVKlbz649lSkoFmpxSFaFxFofV5vu+oorBh6Tp+ef4p\n2i2dTkTWcRY2bEhm1+u58oG/07h1U7edJ2XDduZ/8CFVEyZxxbYt/FalEr9eFke7J56nbff2bjuP\n8pwbboDbboNbbrGdxIFyc2HaNBg/Hpkxg+y2MWxs34i5MVVZEXyE/UdSSTuaRl5BHiJCUJUgQv1D\naRDUgFZ1WtEmrA2dG3SmasWLtKZPnICVK+Hnn+HHH2H7dhgwAG6/3bW5RRne+tMni4Ix5ksgDggB\nUoFnRGTsGfexXhQK8gv45tk3qPHFm3Tck8rcxo3I+fNf+PMTD1O5quf7MfNO5DH5zVHkffkOVyVv\nYnWdmuzu91cGvRLvlfOr4jt6FMLDYccOqFXLdhoH2bED3n2X/HFj2RcRzHeXV+eNejsICo8kNiyW\nNmFtiK4RTXhAOKH+oVT0c/VyZ+VkkXY0jR0ZO0g6mMSKfStYd2AdXRp0YUDMAAa1GkRQlaCLn3/X\nLvjiC/j0U1dhuuce161mTc/+3BaUpCggIo6/uWLakZmeKWMGDpF1IVVkbUgVGTPodkndlWotj4hI\n+v50GTv0PlkWVl02B1eU0X37y37LmdTZJk0S6dHDdgoHWbRIjve9Xo4G+cvnV4dL+0dryV8m/0W+\nSfpG0o6kleiQGccy5Nukb6XfhH4S/HKw3P3D3bIlfUvRHlxQILJkiciQISI1aojcd59IcnKJcjjV\nydfO4r3eFvcBNm42ikJWRpaMvvk22RFYQWZG15YJT78m+Xn5Xs9xIfl5+fL96+/Lj03qyb7qfjK6\nz42Svj/ddix10tChIm+9ZTuFAyxeLBndOsiBOgHy7xuryT1f3irTt0yXE/kn3HqaA9kH5Jm5z0jI\nqyFyx/d3yJ7De4r+4L17RZ58UiQ0VOSOO0S2FLGwOJwWBTc4kXtCxtx2t2wLqiizokLkh7dGe+3c\npTFj7Dfyc+O6sjvAT0bfdLNkZx6xHalcy8sTqV1bZPt220nsKUhMlLS4jrK/VhV5fGCIjEx4ucQt\nguL47dhv8visxyX0tVB5a/Fbkl9QjDdzGRkizzwjEhIiMmyYyK5dHsvpDVoUSun71z+UFXX85de6\nAfLdK+955Zzu9uN7n8qcyFqyoVZl+eLRF2zHKbcWLBBp08Z2CksOHJC9t14vaUGVJH5AqIxf8rHk\n5uV6PcaGgxuk65iu0uvTXsVrNYiIpKeLPPaYSK1aIs8/L3L0qGdCepgWhRJambBUvm8RJTsDK8gn\nQ//muG6i4srPy5fPH3pSNteoKFMbhcuiSbNtRyp3HnlE5KmnbKfwstxcOfjCCMkIrCyjuwXKV/M/\ncHsXUXGdyD8h8XPjJfyNcJm/Y37xD7Btm0j//iLR0SLffusah/AhWhSK6UTuCRl9081ysJqRcVd0\nlf0p+zxyHlsy0zPlk6uvkYPVjIy+6ho5cli7lLyhoECkcWOR5cttJ/Ge7F/mye7GdWRuk0ry0fh/\nytFcZ72znrZ5mtR+rbaMXzW+ZAeYM0ekZUuR66/3qS4lLQrFkPD1T/JL3UBZXDdQEr7+ye3Hd5Kl\nU+fJnMhakli7mvz0wZe245R5S5eKNGnic28qS+bIEdly95/lQICffPTgFbLv8F7bic5rXeo6ifpP\nlPz31/+W7AA5OSLPPusajH7/fZF85/coaFEogpxjOTLmqqtd7577DpATuXabt96Sn5cvnwwZJqn+\nRsZ26SyZh7JsRyqzHn7YNZGlrEufMVn2hgfIlEsDZN6Sb2zHKZLtv22Xhm81lJG/jCz5QdatE+nU\nSeTKKx0/S0mLwkUsm7FQFtULknkRNWTZjIVuOaav2bB0tUxrFCaJtavJ7C+m2I5T5uTni9SvL5KU\nZDuJB+Xmyrp7+klqgJ98Gt9PjuT6Vrfkzoyd0vCthvLxio9LfpC8PJGRI12thrFjHdss1KJwAZ8M\n/Zuk+hsZfW2fctM6OJ/8vHz5ZOD/yYFqRkbdNEjyTji/Gewr5s8Xad3adgrPyVy7XDY3DZF5MdVl\n5cqptuOU2Ka0TRL2epj8lFzKruPVq0VatRIZMEAkzfPTbYurJEXB+n4KnrZry04mxTSk8w+jSXzr\nC+6e+lO5X6bar4IfQ7/+gk2f/8Rlv0xhdtO6bFi2wXasMuGrr+DWW22n8AARNr06nBOdOpDY8xIu\nX5VK27bX2k5VYs1CmjHplkncMekO1h1YV/IDtWkDy5ZBRATExrr2XfV1xa0iNm6UsKUw7eMJsjm4\nokyIjZGDew+W6Bhl3ZHDWfJZlw6SElhB/vfyh7bj+LTjx129Cdu22U7iXicOZ0jiVa1kfXhFmffT\n+7bjuNX4VeOl6X+bSsaxjNIfbPp0kfBw13UNDhmERlsKf/jk/4bS7sFbWTjgXgatWk9o3VDbkRzJ\nPzCAwYuWsPhvI+j2/H2MurYv+XkFtmP5pEmTXG8WGza0ncR9DiQuYFdMPdKOpROyZjPd+txnO5Jb\nDYkdQu9Gvblj0h2/vwEtuauvdu3/MH069OkDaWnuCellZa4oHEo9xDetm9F5+pesHTOJO0e/YzuS\nTxj0ynPsnTyfdqtmM615BNvXp9iO5HPGjIG777adwn2S3n0Gv+5xrLv1KnrO20md2tG2I3nEf679\nD7sP72bUilGlP1j9+q5NuWNjoV0710ZBvqa4TQsbN4rYfbRo0ixZFVpVJjWPLHMXonlLdkamfNW+\njWwJriiT3//adhyfsWOHa7mcY8dsJym9/OPHZGn/zrItpIIs/qFsdRedT9KBJAl5NaToK6wWxQ8/\nuBbAevtta7OTKM/dR18Mf5Ym/9eb5V2v54ak7YRFhtuO5JOqBwdxy9LVLL71Pjr96xY+uuMflLZV\nXR6MHesaYK7q47unZmzfyMbW9Ti2dRNVEtfQ6cay1V10PpfUvoQnrnyCOybdQYG4qfv0xhtdO7+N\nGQNDh8Lx4+45rqcVt4rYuHGBlkJ+Xr6MueZPsqe6n3z/ug6UutPczybItuCKMrp9JzmSlWM7jmPl\n5opERIisWmU7Selsm/mN7KlZUX4e3Elyc4/bjuN1+QX50mVMF/lo+UfuPXB2tsjNN4t06CCye7d7\nj30RlLfrFNL3p8v3LaIlsU41SZz9a4mfOHV+O9atlwUNasiMyNqycdUO23EcacIEke7dbaconRUj\nH5GD1Y3MHvl321GsWr1/tdR+rbYcyD7g3gMXFIi8/LJIvXoiC7134WxJikKRtuM0xtQBugL1gGPA\nOmC5iLvaWRc9v5yZc/WC5eTd3J3dNULpOneFzi7yoJyjR/mhZxfablpP8uvfcv2wG21HcpTOnWH4\ncOjXz3aS4pO8PBbf0Yv60xaRMWEcsb0H245k3cPTHybzeCZj+o5x/8F//hnuvBNeeMG1BaiHuX07\nTqAHMB1YBowCXgDeACYDScCzQFBxK1Fxb5zRUvjhrdGyK8BPxlx1tc8vc+1Lvrh7qByoZuSDv4yw\nHcUxFi92raqcl2c7SfFlH9gjy9vVleXNA2Xf9rW24zhG5vFMqftGXVm+x0PL3G7aJBITI3Lvva5F\n9jwId3cfAa8Dkef5XkXgJqB/cU96xnGuBTYCycCj57lP4Q/5ye1/lQPVjIz/p74w2TBzlKsgv9/1\nKjl+TAvyLbeIvPmm7RTFt2v5HNkaXkVm/qm5HDt62HYcx/lw2Ydy1firPHeCzEyRG25wLap3wM1d\nVadwe1Hw9A3XdRJbgCigErAKaHGO+0nOsRwZ36m9bAmuKLM/m+T+Z08V2eYVK2RZ3eryfaMI2bYx\n1XYca5KTXVcwZ2baTlI8qz99XQ4E+MnMR2+WAocu5GZbbl6uNP1vU5mxZYbnTpKfLzJihKup6aFZ\nCiUpCkWakmqM+cwYE3zK59HGmNnF6qc6tw7AZhFJEZETwASg77nuOD8mgsjdW2DBenoOPuddlJc0\nadeOSzbupkJAZTKviGb6hEW2I1nx4ovwwAMQFGQ7SRGJsOihAYT9/VFSRr/BVa/8D2OK191cXlSq\nUImXer3Eo7Medd8U1TP5+bl+iV55Ba66Cr791jPnKaaiXqewEFhijOljjPkLMAN4yw3nrw/sOuXz\n3Se/dpYDIXVpv343jVs3dcNpVWn5B9Xg+pWb2RTXizbDuvHhv961Hcmrtm6FH3+EBx+0naRoThzN\nZvHVMYR88yPHFszh8kEP2Y7keP1j+mOMYcqmKZ490aBBrqUx/vUvePppKLC7zEyRlgsVkY+MMUnA\nXCANuFRE9ns02RmSr+/HayNfAyAuLo64uDhvnl6dg/HzY9A3U5j62ov8+dkHGbn2Vx786XMqVbKd\nzPNefBHuvx9q1LCd5OIO7djI3t4dKajpT73V2wgKqWc7kk8wxjDiihG8uOBFbmx+o2dbVe3awdKl\n0L8/rF0L48dDYGCxD5OQkEBCQkLpshSljwkYgmsg+FbgZSARiC1uX9U5jtsJmHbK549xjsFmPLRH\ns3KftbOnyaZalWVsTCvZtcO3Nl0prrVrXasXHDpkO8nFbZ7zreyqVVFm3tZZ8k7k2o7jc/IL8iXm\n3RiZuXWmd06YkyMybJhrP+itW0t9ODw10AxMAuqc8nkHYGVxT3aO41bgj4HmyrgGmmPOcb9SPznK\n8w7tTZG5TWtLQt0akvDTRttxPKKgQOTqq13L2TjdsndHyMHqRua9+jfbUXza+FXjJW5cnPdOWFAg\n8u67ImFhIrNnl+pQHisK53wgVC7pY884zrXAJmAz8Nh57lOqJ0Z5T15ujnzXu6NsDaooHz3jG/v2\nFsfPP4s0a+Za2sKpCvLzZd6w3rIn2E/W/PiJ7Tg+LzcvV6L+EyXL9izz7olnz3YVhnfeKfGCeiUp\nChe8otkY8yTwvogcOs/3ewL+IvJjsfqsiulcVzQrZ5sy/H46vfsBo3o/wvBvXysT4ww5Oa4VkV9/\nHW64wXaaczue9Rsr+1xK4O6D1Jo2j3rNL7cdqUx4bdFrJB1M4tObPvXuibdtg759oVMneO89qFy5\nWA8vyRXNFysKfYHhwHFc4wgHgapAU6AtMAt4SUQOFitpMWlR8E3Lvh1P+N138V3DK7hl6izC6/r2\nNqhPPQXr1sHEieDEmZypmxJJv6Yb6ZEhXPZjIv5BIbYjlRnpR9Np8k4TNv19E3Wq1/HuybOy4Pbb\n4eBB+O47CAsr8kNLUhQuNiV1gIh0xbXURRKuMYDDwOdABxF5yNMFQfmu9gNup+KyRK5IX8GvnaKY\n8aNXJ6y51Zo18NFHrjdrTiwIST+MpqBjB/Zf04UrErZrQXCzEP8Q+sf05+MVH3v/5IGBrmLQqxd0\n6ACJiZ4934X6loD1uBbBWw3UOvNW3L6qkt7QMQWfdjw7U6Z2biprQqrKs/+Y53PrBOXkiFx2mcjH\nH9tOcg4FBTL/sf+TA9WN/PrBk7bTlGmr9q2S+iPrS26exQGlb791XUY/YUKR7o4Hrmj+EJgNtACW\nn3JbcfJfpS6qSvUgrlm4kT0D+3DP6B7cF/cm+/bZTlV0jz7q2mXRaVttHs/6jUVXNSds/HdkzZlG\nx3uftx2pTIsNjyWqRhTTtkyzF6J/f5g1Cx57DEaM8MiFbkVdOvsDEbG2BZOOKZQdy8a9RtTfH+PV\niIH0fOOjKlzYAAASD0lEQVRLrrve2Zv/TZoE//ynq8Veq5btNH/Ys/YXMm/ozW/1a9Fm8lICQ+ra\njlQujE4czc+bf2bioIl2gxw8CDff7Opa+uKL86614okxBQBsFgRVtrS/czjH5s3irxmTOPDPlvxl\naAaHD9tOdW5r17qWvJ8wwVkFYeXnb1Cp65Wk3tCTLgtStCB40cCWA5mzfQ4Hj1geSq1dG2bOhAYN\nXDOTNm5026Gd/TZNlUlRl/Wk7rptNAvJ4oGp9biuw3RKe2W+u+3eDdddB2+/7fqbc4L83Bzm3d6d\nuvc/yu73X6XHO1Mwfvon7E1BVYLo26Ivn6/53HYUqFQJ3n8fHnoIrrwSPvvMLYctUveRbdp9VDZJ\nQQELHr+NS979mhEN7sUv7n1efhlq1rSb68AB10SPwYNd4wlOsH/TClL79iKvgh8RP8wlrEms7Ujl\nVsKOBB6c+iCr713tnFVm16xxLazXqRO8+y5Urw54sPtIKU8wfn50e/Ur0n/4iscOjab3L81o1/IA\nn34Ktt4D7N0L3bu7ttYcPtxOhjMtH/0cfu07cOjKy2m7ar8WBMu6RXUjKzeLNalrbEf5Q5s2sGyZ\n6w+nfXtX32cJaVFQ1jW/ahB1Nu4krFY+M/IbMPm9L+jWDZYs8W6OtWvhiitc1wk995z96xGOHT7E\n/H7tqPvv59g75i16fDyLCpWKd0Wrcj8/48fASwbyddLXtqOcLiAAxo1zNW979oQPPijRYbQoKEcI\nqBXOFQlbOfDPu/lw/RDu8+/BoAFH6dcPkpI8f/6vvnL9HT3/PDz+uOfPdzHrfxzHvmZ1qXAwnWpr\nN9L25gdsR1KnGNRqEF8nfY0ju7XvuAMWLixxa0GLgnKUro+/T97ypTTbt5af/WrTpfFkevSAgQNh\n8WL3n2/fPhgwAJ55xjWZ47bb3H+O4sg9lk3CkCupfetd7H/kProuTKFWRBO7odRZLg2/FD/jx4p9\nK2xHObfmzV2D0CWgRUE5Tt0Wl3PZqgOkDe7HXR/cxJfXX03nDtncdptrHG3sWMjMLN05Dh1yrWXU\nurXr72fNGmjb1j35S2rdlDFsb1ob/3XJFCQm0uURd2xuqDzBGMOgloP4ep3DupDcQGcfKUfbvWYh\ne+/oT8j+DDLeeJVd1f/JuHEwd65rW9s+fVwzhaKjL36so0dhwQLXtT5TprhaCCNGQMOGnv4pLixz\n3w5W330dzRduZMuIe+ky/B2dauoD1qau5fqvrmf7P7bjZ5z5/+X2VVKdQotC+SYFBSx59zEin3mT\nbW2jaD7mByrWbMWkSa4un9mzXYPCrVpB06YQGgrBwZCfD0eOQEoKJCe7ulhjY11dUbfeCnW8vNjl\nmQry81j86gM0fnUUm7q2IHb0j9SoZ7lCqSITEWLei+Gzfp/Rvn5723HOSYuCKtOy0vay4t4baTM1\nkTWD4rj8jS8JqBWOiGsq6bp1sGULpKdDRobr2p5q1SAqCho3hssuK5y+bd2qr/5D5cefRAzI22/T\n6sZhtiOpEhg+czhVK1bluR7P2Y5yTloUVLmwc2UCux68k8ZrdpF8/y10euojKlcLsB2rSDbP/Y6M\nf/2NsJ2H2P3ofXR6+E38Kvj2PhPl2cKdC/n7z39n1b2rbEc5J714TZULkZfG0XXBDg5NGEv1ydM4\nWK8G8/41gKOZabajndf6H8ex5PK6BPUdyJErOxOWkk6Xf/9XC4KP6xzRmT1Ze9iZudN2FLfRoqB8\n1iV/up3L1qWT8dnHVFnwC9kRYSTc3YvUzc5415aXe5xf33mUxJa1CB4yjOM9riBo90Hi3p5Elern\nXtVS+ZYKfhXo07QPUzZNsR3FbawVBWPMAGPMOmNMvjGmna0cyve1vH4onZbu5fBPE/HbvZcqbdrx\na4d6LP/kBfJyj3s9z86VCSTc1ZMDYQH4//cDjt02iNp7M+j++jdUC3LQcqvKLW5sdiNTkstOUbA2\npmCMaQ4UAB8Bj4jIefeY0zEFVRxZaXtZ+Z/hhHw5ibCDR1nfpRn+twym9aAHPfIOXQoKSFk+mx3j\n36bOj3OpnXaMDd0vIezhp2nea6Dbz6ecJSsni/pv1mfPw3sIrBJoO85pfHKg2RgzF/iXFgXlCbvX\nLGTL6NcJ+XkO0buy2dykJoc7tyOo+9VEXnkDodExxT5m7rFsti2YwsFFM2DRIhqt2IafCJs7NCVg\nyF20GfQgFStX9cBPo5yq1/hePNTpIa5vdr3tKKfRoqDUBWTuT2HTD2M4OuNnaiRtITrlMDmVDPvD\nAzhSO5jcunVc63ZXrYqpWg3y85Ej2XDkCH5p6fjvPUjNg1nUTc9lb0gVUpvVJa/D5TT481AadrxW\nLzgrx15Z+Ap7s/by3z/913aU05SkKHh06oMxZiYQduqXAAGeEJFidcLFx8cXfhwXF0dcXJwbEqry\nJDg8ig5/fQ7+6ppTLgUF7F2/BFm3BNmeDLt2uNbPOPQb5vhxxM8Pqvu7Lm6IbYv0b0FBszbQ9kqa\nBIeiKxKp313d+Gpum2h54SwgISGBhFLuWKUtBaWUKqUCKSDsjTAS70mkQXAD23EK+fJ1Cg7Zvkgp\npYrPz/hxVaOrmLltpu0opWZzSupNxphdQCfgR2PMVFtZlFKqtHo36s2MrTNsxyg1691HRaHdR0op\np9uVuYt2o9qR+kiqY1ZN9eXuI6WU8mkNghtQq1otZ+3dXAJaFJRSyk26R3VnQcoC2zFKRYuCUkq5\nSbeobszfOd92jFLRoqCUUm5yZeSVzE+Zjy+PgWpRUEopN4mqEUXVilVJTk+2HaXEtCgopZQbdYvq\nxvwU3+1C0qKglFJu1C3St8cVtCgopZQbaUtBKaVUoWYhzTied9xnt+jUoqCUUm5kjKFTRCd+3f2r\n7SglokVBKaXcrGP9jizZvcR2jBLRoqCUUm7WsX5HluzRoqCUUgpoX789q/av4kT+CdtRik2LglJK\nuVlQlSCia0T75OJ4WhSUUsoDOkV08skuJC0KSinlAb46rqBFQSmlPKBjhG/OQNKioJRSHtCydkv2\nZu3lt2O/2Y5SLFoUlFLKAyr4VSA2PJaV+1fajlIs1oqCMeY1Y8wGY8wqY8x3xpggW1mUUsoT2oW3\nY+U+LQpFNQNoKSJtgc3A4xazKKWU211a91IS9yfajlEs1oqCiMwSkYKTn/4KRNjKopRSntCurrYU\nSuouYKrtEEop5U4xoTHsyNjBkdwjtqMUWUVPHtwYMxMIO/VLgABPiMiUk/d5AjghIl9e6Fjx8fGF\nH8fFxREXF+fuuEop5VaVKlTiktqXsCZ1DZ0bdPb4+RISEkhISCjVMYzNDaaNMXcCfwF6ikjOBe4n\nvrwRtlKq/Lpnyj3EhsVyf4f7vX5uYwwiYorzGI+2FC7EGHMt8G+g24UKglJK+bJLwy9lxb4VtmMU\nmc0xhXeAAGCmMSbRGPO+xSxKKeURl9a9lMR9vjMDyVpLQUSa2jq3Ukp5S5uwNmxM20hufi6VK1S2\nHeeinDL7SCmlyiT/Sv5E14hmw8ENtqMUiRYFpZTysFZ1WpF0MMl2jCLRoqCUUh7Wqk4r1qautR2j\nSLQoKKWUh7Wu05p1B9fZjlEkWhSUUsrDWtVpxboDWhSUUkoBjWo2IjU7laycLNtRLkqLglJKeVgF\nvwrE1I5h/cH1tqNclBYFpZTyAl/pQtKioJRSXtCqdivWHnD+DCQtCkop5QXaUlBKKVWodVhrLQpK\nKaVc6gfW53jecQ4eOWg7ygVpUVBKKS8wxhBTO4aNaRttR7kgLQpKKeUlzUOasyl9k+0YF6RFQSml\nvKRFaAttKSillHLRloJSSqlC2lJQSilVqHGtxuzK3EVOnnO3pbdWFIwxzxljVhtjVhpjphljwm1l\nUUopb6hcoTINghuw9bettqOcl82WwmsiEisilwI/Ac9YzKKUUl7RIrQFm9KcO65grSiISPYpn1YH\nCmxlUUopb3H6YHNFmyc3xrwA3A5kAD1sZlFKKW9oEdqChTsX2o5xXh5tKRhjZhpj1pxyW3vy3xsA\nRORJEYkEvgAe8GQWpZRygnLdUhCR3kW865fAz0D8+e4QH//Ht+Li4oiLiytFMqWUsqN5aHM2pm1E\nRDDGuPXYCQkJJCQklOoYRkTck6a4JzamiYhsOfnxA8CVIjLwPPcVWzmVUsqdRISQ10LYcP8GwgLC\nPHouYwwiUqzKY3NM4RVjTDNcA8wpwL0WsyillFcYY2ga0pQth7Z4vCiUhLWiICIDbJ1bKaVsalyz\nMVt/20rXyK62o5xFr2hWSikva1yzMVsPOfMCNi0KSinlZY1rNXbsVc1aFJRSysua1GqiRUEppZSL\ndh8ppZQqFB4QzpETRzicc9h2lLNoUVBKKS8zxtCoZiNHtha0KCillAW/T0t1Gi0KSillgVPHFbQo\nKKWUBU6dgaRFQSmlLHDqtQpaFJRSygLtPlJKKVUoMjiSfdn7yMnLsR3lNFoUlFLKgkoVKhERFMGO\njB22o5xGi4JSSlkSXSOalMwU2zFOo0VBKaUsiQ6OJiVDi4JSSikgqkaUdh8ppZRyiQqO0u4jpZRS\nLtE1orWloJRSyiWqhrYUzmKM+ZcxpsAYU8t2FqWU8qaIoAgOHDlAbn6u7SiFrBYFY0wE0BtwVql0\nsISEBNsRHEOfiz/oc/EHX3ouKvpVJDwgnN2Hd9uOUsh2S+E/wL8tZ/ApvvQL72n6XPxBn4s/+Npz\nEV3DWdNSrRUFY8yNwC4RWWsrg1JK2RYV7KxpqRU9eXBjzEwg7NQvAQI8CYzA1XV06veUUqpccdpV\nzUZEvH9SY1oBs4CjuIpBBLAH6CAiB85xf++HVEqpMkBEivWG20pROCuEMduBdiLym+0sSilVntke\naP6doN1HSillnSNaCkoppZzBKS2FczLGXGuM2WiMSTbGPGo7jy3GmAhjzBxjTJIxZq0x5kHbmWwz\nxvgZYxKNMZNtZ7HJGBNsjPnGGLPh5O9HR9uZbDHGPGSMWWeMWWOM+cIYU9l2Jm8yxowxxqQaY9ac\n8rWaxpgZxphNxpjpxpjgix3HsUXBGOMHvAtcA7QEbjXGtLCbypo84GERaQl0Bu4vx8/F7/4BrLcd\nwgHeBn4WkRggFthgOY8Vxph6wAO4xibb4JpZeYvdVF43Ftfr5akeA2aJSHNgDvD4xQ7i2KIAdAA2\ni0iKiJwAJgB9LWeyQkT2i8iqkx9n4/rDr283lT0nr4TvA4y2ncUmY0wQcKWIjAUQkTwROWw5lk0V\ngOrGmIqAP7DXch6vEpGFwJmTdfoCn578+FPgposdx8lFoT6w65TPd1OOXwh/Z4yJBtoCS+wmser3\nK+HL+4BYQyDNGDP2ZFfaKGNMNduhbBCRvcBIYCeu6e0ZIjLLbipHqCMiqeB6cwnUudgDnFwU1BmM\nMQHAt8A/TrYYyh1jzHVA6smWk6F8z1qrCLQD3hORdriu+3nMbiQ7jDE1cL0rjgLqAQHGmP+zm8qR\nLvpGyslFYQ8Qecrnv1/gVi6dbBJ/C3wmIj/YzmNRV+BGY8w24CughzFmvOVMtuzGtVTM8pOff4ur\nSJRHVwHbROSQiOQDE4EuljM5QaoxJgzAGBMOnHVx8JmcXBSWAU2MMVEnZxHcApTnmSafAOtF5G3b\nQWwSkREiEikijXD9TswRkdtt57LhZLfALmNMs5Nf6kX5HXzfCXQyxlQ1xhhcz0V5HHQ/s/U8Gbjz\n5Md3ABd9Q+nRtY9KQ0TyjTF/B2bgKl5jRKQ8/idjjOkK3AasNcasxNUEHCEi0+wmUw7wIPCFMaYS\nsA0YajmPFSKy1BjzLbASOHHy31F2U3mXMeZLIA4IMcbsBJ4BXgG+McbchWuLgoEXPY5evKaUUup3\nTu4+Ukop5WVaFJRSShXSoqCUUqqQFgWllFKFtCgopZQqpEVBKaVUIS0KSimlCmlRUEopVUiLglIl\nYIy53Biz2hhT2RhT/eTmLpfYzqVUaekVzUqVkDHmOaDaydsuEXnVciSlSk2LglIldHK9oWXAMaCL\n6B+TKgO0+0ipkgsFAoBAoKrlLEq5hbYUlCohY8wPuPZ0aAjUE5EHLEdSqtQcu3S2Uk5mjBkC5IrI\nBGOMH7DIGBMnIgmWoylVKtpSUEopVUjHFJRSShXSoqCUUqqQFgWllFKFtCgopZQqpEVBKaVUIS0K\nSimlCmlRUEopVUiLglJKqUL/DyuW7TTSNs6uAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"pylab.plot(xx, y10, label='O(10)')\n",
"pylab.plot(xx, y20, label='O(20)')\n",
"pylab.plot(xx, y, label='sin(x)')\n",
"\n",
"pylab.axis([0, 10, -4, 4])\n",
"pylab.xlabel('x')\n",
"pylab.ylabel('f(x)')\n",
"\n",
"pylab.legend()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Linear equations and matrix inversion\n",
"\n",
"SymPy has a `Matrix` class and associated functions that allow the symbolic solution of systems of linear equations (and, of course, we can obtain numerical answers with `subs()` and `evalf()`). We shall consider the example of the following simple pair of linear equations:\n",
"\n",
"$$\\begin{aligned}\n",
"3x + 7y&= 12z\\\\\n",
"4x - 2y&= 5z\\end{aligned}$$\n",
"\n",
" We may write this system in the form $A\\vec{x}=\\vec{b}$ (multiply *A* by $\\vec{x}$ if you want to verify that we recover the original equations), where\n",
"\n",
"$$A=\\left(\\begin{array}{cc}\n",
"3 & 7\\\\\n",
"4 & -2 \\end{array} \\right),\\qquad\n",
"\\vec{x}=\\left(\\begin{array}{c}\n",
"x\\\\\n",
"y \\end{array}\\right),\\qquad\n",
"\\vec{b}=\\left( \\begin{array}{c}\n",
"12z\\\\\n",
"5z \\end{array}\\right).$$\n",
"\n",
"Here we included a symbol, *z*, on the right-hand side to demonstrate that symbols will be propagated into the solution. In many cases we would have *z* = 1, but there may still be benefit to using SymPy over a numerical solver even when the solution contains no symbols because of its ability to return exact fractions rather than approximate `float`s.\n",
"\n",
"One strategy to solve for $\\vec{x}$ is to invert the matrix *A* and pre-multiply, *i.e.* $A^{-1}A\\vec{x}=\\vec{x}=A^{-1}\\vec{b}$. SymPy’s `Matrix` class has an `inv()` method that allows us to find the inverse, and `*` performs matrix multiplication for us, when appropriate:"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/latex": [
"$$\\left[\\begin{matrix}3 & 7\\\\4 & -2\\end{matrix}\\right]$$"
],
"text/plain": [
"⎡3 7 ⎤\n",
"⎢ ⎥\n",
"⎣4 -2⎦"
]
},
"execution_count": 78,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sympy import symbols,Matrix\n",
"x, y, z = symbols('x,y,z')\n",
"A = Matrix(([3, 7], [4, -2]))\n",
"A"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/latex": [
"$$\\left[\\begin{matrix}\\frac{1}{17} & \\frac{7}{34}\\\\\\frac{2}{17} & - \\frac{3}{34}\\end{matrix}\\right]$$"
],
"text/plain": [
"⎡1/17 7/34 ⎤\n",
"⎢ ⎥\n",
"⎣2/17 -3/34⎦"
]
},
"execution_count": 79,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"A.inv()"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/latex": [
"$$\\left[\\begin{matrix}12 z\\\\5 z\\end{matrix}\\right]$$"
],
"text/plain": [
"⎡12⋅z⎤\n",
"⎢ ⎥\n",
"⎣5⋅z ⎦"
]
},
"execution_count": 80,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"b = Matrix(( 12*z,5*z ))\n",
"b"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/latex": [
"$$\\left[\\begin{matrix}\\frac{59 z}{34}\\\\\\frac{33 z}{34}\\end{matrix}\\right]$$"
],
"text/plain": [
"⎡59⋅z⎤\n",
"⎢────⎥\n",
"⎢ 34 ⎥\n",
"⎢ ⎥\n",
"⎢33⋅z⎥\n",
"⎢────⎥\n",
"⎣ 34 ⎦"
]
},
"execution_count": 81,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = A.inv()*b\n",
"x"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/latex": [
"$$\\left[\\begin{matrix}5.726\\\\3.203\\end{matrix}\\right]$$"
],
"text/plain": [
"⎡5.726⎤\n",
"⎢ ⎥\n",
"⎣3.203⎦"
]
},
"execution_count": 82,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x.subs({z:3.3}).evalf(4)"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"sympy.matrices.dense.MutableDenseMatrix"
]
},
"execution_count": 83,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"An alternative method of solving the same problem is to construct the system as a matrix in augmented form; that is the form obtained by appending the columns of (in our example) *A* and $\\vec{b}$ together. The augmented matrix is[1]:\n",
"\n",
"$$(A|\\vec{b})=\\left(\\begin{array}{cc|c}\n",
"3 & 7 & 12z\\\\\n",
"4 & -2 & 5z\\end{array} \\right),$$\n",
"\n",
" and as before we construct this as a SymPy `Matrix` object, but in this case we pass it to the `solve_linear_system()` function:"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/latex": [
"$$\\left[\\begin{matrix}3 & 7 & 12 z\\\\4 & -2 & 5 z\\end{matrix}\\right]$$"
],
"text/plain": [
"⎡3 7 12⋅z⎤\n",
"⎢ ⎥\n",
"⎣4 -2 5⋅z ⎦"
]
},
"execution_count": 84,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sympy import Matrix, symbols, solve_linear_system\n",
"x, y, z = symbols('x,y,z')\n",
"system = Matrix(([3, 7, 12*z],[4, -2, 5*z]))\n",
"system"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANUAAAAZCAYAAACmamtMAAAABHNCSVQICAgIfAhkiAAABr1JREFU\neJzt3HuMHXUVwPHPltpuLW1BqW54WGl5rG8qxqCCoUZMlKAFUYkQ0wCKEBVMUVGivRFRedWoBDUa\ni4ogUhqRIEZ8ARJAFMXGiKjRViSK7xdUBeofZ8b+7t2ZuXO3e+/cxftNJrvze8zv3HPu/M75nd9v\nlxEjRgyMPXAuPoW9G5alSY5pWoARPdFve12Ej+NpvXbcG1tx/ExLNMuYxJeaFmJEbQZlr2fgfhxb\nVDm3pNMr8Ud8vk9CdeODuAZ341/YFy/H53Bv0m451mEbHsZCvAO/nSE5XosrOsoOwSl4EAuy61xs\n7vKsM/EYfGCGZBsm6upkurqry6DstVm8G6dhY13hWvh23cZ9YHvH9TDe3dFmX/xBu7s/AXcpnyx6\n5U5hhJyV+DLGk7JL8DccVPGcZfin0Oujjbo6ma7uemGQ9mrhtqKKOd3lbISt+KTwVuvxbJzT0eZD\nQv7U3V+NA8XLtbM8Fz8WM1zO63BUduV8BYtwYsWzzsZjZ0CmYaSuTqaru7oMjb2G9aX6Jd6A1Vgr\nvE/KPByJn+ORpPxBbFES6/bI8bi8o+wHYpb7a1K2KPv5QMlzjsE3Z0CeYaWuTqaju14Yenu1NBv+\ndRt7QoSFNxXUfVcsIneGXfAj9cLIC/AQnlVQt6vInhLytnZSrtlClU6m064bTdirZRrh3/aKuoNF\n+LUem/A4vBPn4TKsKOl3AO7L+lYxL3veRUIJm7K+Ob8XM8341K72xFJTFXxy1m+zyN4Qi9Ci1OiL\ncLNQfhUrsAZvNtWbyj7DsCQmluNiXCcW9Clr8YWCPnXtldJNJ3XbDbu9qt6PQjaKXHwR++OjGMvu\nL8U9eD5eIMKxtSV9X5jVf73L+L/APsn9Cfid8FA5nxaJirGkbCJ7/nY8ISk/THi1dSKzeDm+g3eV\njL8h+yxlrBY6uEcYYqygzUFZXU7TnupjYrI6XczqKXfhyoI+de1FPZ3UbTcb7HWcyJB3XXvNFSnp\nW8RsX8QlInWdcxVuz37fBxfi8RVjrKghyC4F9w/gI0nZUqGkUxLZ3ycyQNs7ZDhAu+d6tTBUkace\nxw+VfylS5uFbQl/peHPwmaw+p8mX6lA7vNP12tPAu4ns6mklfevYK6VMJ720mw32GhOe/3oRHZVy\nuwi3qsLCZR33vxF5/36zJbtSdhez2XrxQi3D90TCokzJJ4k9hqo9ul5CtsOFAa5Kyk7Fqo52Tb5U\nE5iPvcQLdHRSd5SQrecTAhUcbqpOpttu2O11tNg73a+swXgm4C3imFI3npIN/uIabetyk4iPO7lX\nbPJ249f4Rknd20VYWzVpbMTTS+om8cyOssVCB4+Ihe6ECDU6aTr8g7eKTNj8pOx8sXapM9MXUUcn\nvbRLGWZ75Z7qa3hiRbv/cbXyNVXKm8SJhzQ8WF5ngAr+Ltx5J9vw0y59lwplvLGg7r2metTdO+6X\niOxhEYuFB3xIeyJmoR2b1EvE+u8GsX+WX9dl9Xdn902dJ/yqqcd4bhP2ng51dVK3Xcqw2+s1Istc\nlCwrpCViz04WiJktz8ZcgzuS+jlizVXFk7THrp1sNNVLrhQfMj1VcYb4UOlh3zOFR+v8oC1TN48n\nxfov5UScVSLXOP6Dn4lsZ85zMtnuKOqU8WTlM9+BBfL2i5+IDG3OQvwbb6noU2WvujrpVXctw2uv\nnHVKUupVef2icOBl4ot7pxB4ufaNtbPF+bwyDsWNYsY8sqTNeSKFe7LwgmMibLlVvNA5u4rkRZ5G\nXYm3iRg3DRNXi/Nf1wrvu1UkVF4i4uuU4/D6Erm2ifXm/fhzUn66ONJyakk/4gxZ+jNnldho3CTW\nBv1mi/Yv2PmZTDeWtO9mr7o66UV3w2yvlJ7D5ZbiDdg9RCr7guxaKLImnxBx6RFdnjspUuPdvNlh\nYiH5WeF+zzF1Nl+QybBBeLcb8LyONou0p//PEjvstwoPkTKh/MuVskbs6VyWjXml9j20lMXC498n\nZr5t2dirs/qnivXMr2qMOxNMitT0xWLWvxl/Ur5mqWuvNerppFu7YbdXSkuJpyqjpdkTFU1whvK0\ncr9pNTDmHHGaf0MDY88ETdqLWXigtglehS82NPb87k12miu0b/q+QuxRvX8AY/eDJu1VSdlL9Q87\nDh7+P7Af/iJOaAyaVfj+AMY5wo5waU9xBGyNWMjPNpq0V85uIlNdm73EAvGkvogzfLzHzPy5SK/M\nNbizgceKxMSFYjP1kAGN2w+aslfOwWLd9dJeOy4RRrjUo/9/VFyrePNxxHDSpL0+LBJz+zc0/ogR\nI0aMGDFixIjh4r/AsP+iG7cDZwAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$\\left \\{ x : \\frac{59 z}{34}, \\quad y : \\frac{33 z}{34}\\right \\}$$"
],
"text/plain": [
"⎧ 59⋅z 33⋅z⎫\n",
"⎨x: ────, y: ────⎬\n",
"⎩ 34 34 ⎭"
]
},
"execution_count": 85,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sol = solve_linear_system(system,x,y)\n",
"sol"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"dict"
]
},
"execution_count": 86,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(sol)"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"x = 5.726\n",
"y = 3.203\n"
]
}
],
"source": [
"for k in sol.keys():\n",
" print(k,'=',sol[k].subs({z:3.3}).evalf(4))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A third option is the `solve()` method, whose arguments include the individual symbolic equations, rather than any matrices. Like `dsolve()` (see [ODEs](#Ordinary-differential-equations)), `solve()` expects either expressions which it will assume equal to zero, or `Equality` objects, which we can conveniently create with `Eq()`:"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANUAAAAZCAYAAACmamtMAAAABHNCSVQICAgIfAhkiAAABr1JREFU\neJzt3HuMHXUVwPHPltpuLW1BqW54WGl5rG8qxqCCoUZMlKAFUYkQ0wCKEBVMUVGivRFRedWoBDUa\ni4ogUhqRIEZ8ARJAFMXGiKjRViSK7xdUBeofZ8b+7t2ZuXO3e+/cxftNJrvze8zv3HPu/M75nd9v\nlxEjRgyMPXAuPoW9G5alSY5pWoARPdFve12Ej+NpvXbcG1tx/ExLNMuYxJeaFmJEbQZlr2fgfhxb\nVDm3pNMr8Ud8vk9CdeODuAZ341/YFy/H53Bv0m451mEbHsZCvAO/nSE5XosrOsoOwSl4EAuy61xs\n7vKsM/EYfGCGZBsm6upkurqry6DstVm8G6dhY13hWvh23cZ9YHvH9TDe3dFmX/xBu7s/AXcpnyx6\n5U5hhJyV+DLGk7JL8DccVPGcZfin0Oujjbo6ma7uemGQ9mrhtqKKOd3lbISt+KTwVuvxbJzT0eZD\nQv7U3V+NA8XLtbM8Fz8WM1zO63BUduV8BYtwYsWzzsZjZ0CmYaSuTqaru7oMjb2G9aX6Jd6A1Vgr\nvE/KPByJn+ORpPxBbFES6/bI8bi8o+wHYpb7a1K2KPv5QMlzjsE3Z0CeYaWuTqaju14Yenu1NBv+\ndRt7QoSFNxXUfVcsIneGXfAj9cLIC/AQnlVQt6vInhLytnZSrtlClU6m064bTdirZRrh3/aKuoNF\n+LUem/A4vBPn4TKsKOl3AO7L+lYxL3veRUIJm7K+Ob8XM8341K72xFJTFXxy1m+zyN4Qi9Ci1OiL\ncLNQfhUrsAZvNtWbyj7DsCQmluNiXCcW9Clr8YWCPnXtldJNJ3XbDbu9qt6PQjaKXHwR++OjGMvu\nL8U9eD5eIMKxtSV9X5jVf73L+L/APsn9Cfid8FA5nxaJirGkbCJ7/nY8ISk/THi1dSKzeDm+g3eV\njL8h+yxlrBY6uEcYYqygzUFZXU7TnupjYrI6XczqKXfhyoI+de1FPZ3UbTcb7HWcyJB3XXvNFSnp\nW8RsX8QlInWdcxVuz37fBxfi8RVjrKghyC4F9w/gI0nZUqGkUxLZ3ycyQNs7ZDhAu+d6tTBUkace\nxw+VfylS5uFbQl/peHPwmaw+p8mX6lA7vNP12tPAu4ns6mklfevYK6VMJ720mw32GhOe/3oRHZVy\nuwi3qsLCZR33vxF5/36zJbtSdhez2XrxQi3D90TCokzJJ4k9hqo9ul5CtsOFAa5Kyk7Fqo52Tb5U\nE5iPvcQLdHRSd5SQrecTAhUcbqpOpttu2O11tNg73a+swXgm4C3imFI3npIN/uIabetyk4iPO7lX\nbPJ249f4Rknd20VYWzVpbMTTS+om8cyOssVCB4+Ihe6ECDU6aTr8g7eKTNj8pOx8sXapM9MXUUcn\nvbRLGWZ75Z7qa3hiRbv/cbXyNVXKm8SJhzQ8WF5ngAr+Ltx5J9vw0y59lwplvLGg7r2metTdO+6X\niOxhEYuFB3xIeyJmoR2b1EvE+u8GsX+WX9dl9Xdn902dJ/yqqcd4bhP2ng51dVK3Xcqw2+s1Istc\nlCwrpCViz04WiJktz8ZcgzuS+jlizVXFk7THrp1sNNVLrhQfMj1VcYb4UOlh3zOFR+v8oC1TN48n\nxfov5UScVSLXOP6Dn4lsZ85zMtnuKOqU8WTlM9+BBfL2i5+IDG3OQvwbb6noU2WvujrpVXctw2uv\nnHVKUupVef2icOBl4ot7pxB4ufaNtbPF+bwyDsWNYsY8sqTNeSKFe7LwgmMibLlVvNA5u4rkRZ5G\nXYm3iRg3DRNXi/Nf1wrvu1UkVF4i4uuU4/D6Erm2ifXm/fhzUn66ONJyakk/4gxZ+jNnldho3CTW\nBv1mi/Yv2PmZTDeWtO9mr7o66UV3w2yvlJ7D5ZbiDdg9RCr7guxaKLImnxBx6RFdnjspUuPdvNlh\nYiH5WeF+zzF1Nl+QybBBeLcb8LyONou0p//PEjvstwoPkTKh/MuVskbs6VyWjXml9j20lMXC498n\nZr5t2dirs/qnivXMr2qMOxNMitT0xWLWvxl/Ur5mqWuvNerppFu7YbdXSkuJpyqjpdkTFU1whvK0\ncr9pNTDmHHGaf0MDY88ETdqLWXigtglehS82NPb87k12miu0b/q+QuxRvX8AY/eDJu1VSdlL9Q87\nDh7+P7Af/iJOaAyaVfj+AMY5wo5waU9xBGyNWMjPNpq0V85uIlNdm73EAvGkvogzfLzHzPy5SK/M\nNbizgceKxMSFYjP1kAGN2w+aslfOwWLd9dJeOy4RRrjUo/9/VFyrePNxxHDSpL0+LBJz+zc0/ogR\nI0aMGDFixIjh4r/AsP+iG7cDZwAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$\\left \\{ x : \\frac{59 z}{34}, \\quad y : \\frac{33 z}{34}\\right \\}$$"
],
"text/plain": [
"⎧ 59⋅z 33⋅z⎫\n",
"⎨x: ────, y: ────⎬\n",
"⎩ 34 34 ⎭"
]
},
"execution_count": 88,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sympy import symbols,solve,Eq\n",
"x, y, z = symbols('x,y,z')\n",
"solve((Eq(3*x+7*y,12*z), Eq(4*x-2*y,5*z)), x, y)"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANUAAAAZCAYAAACmamtMAAAABHNCSVQICAgIfAhkiAAABr1JREFU\neJzt3HuMHXUVwPHPltpuLW1BqW54WGl5rG8qxqCCoUZMlKAFUYkQ0wCKEBVMUVGivRFRedWoBDUa\ni4ogUhqRIEZ8ARJAFMXGiKjRViSK7xdUBeofZ8b+7t2ZuXO3e+/cxftNJrvze8zv3HPu/M75nd9v\nlxEjRgyMPXAuPoW9G5alSY5pWoARPdFve12Ej+NpvXbcG1tx/ExLNMuYxJeaFmJEbQZlr2fgfhxb\nVDm3pNMr8Ud8vk9CdeODuAZ341/YFy/H53Bv0m451mEbHsZCvAO/nSE5XosrOsoOwSl4EAuy61xs\n7vKsM/EYfGCGZBsm6upkurqry6DstVm8G6dhY13hWvh23cZ9YHvH9TDe3dFmX/xBu7s/AXcpnyx6\n5U5hhJyV+DLGk7JL8DccVPGcZfin0Oujjbo6ma7uemGQ9mrhtqKKOd3lbISt+KTwVuvxbJzT0eZD\nQv7U3V+NA8XLtbM8Fz8WM1zO63BUduV8BYtwYsWzzsZjZ0CmYaSuTqaru7oMjb2G9aX6Jd6A1Vgr\nvE/KPByJn+ORpPxBbFES6/bI8bi8o+wHYpb7a1K2KPv5QMlzjsE3Z0CeYaWuTqaju14Yenu1NBv+\ndRt7QoSFNxXUfVcsIneGXfAj9cLIC/AQnlVQt6vInhLytnZSrtlClU6m064bTdirZRrh3/aKuoNF\n+LUem/A4vBPn4TKsKOl3AO7L+lYxL3veRUIJm7K+Ob8XM8341K72xFJTFXxy1m+zyN4Qi9Ci1OiL\ncLNQfhUrsAZvNtWbyj7DsCQmluNiXCcW9Clr8YWCPnXtldJNJ3XbDbu9qt6PQjaKXHwR++OjGMvu\nL8U9eD5eIMKxtSV9X5jVf73L+L/APsn9Cfid8FA5nxaJirGkbCJ7/nY8ISk/THi1dSKzeDm+g3eV\njL8h+yxlrBY6uEcYYqygzUFZXU7TnupjYrI6XczqKXfhyoI+de1FPZ3UbTcb7HWcyJB3XXvNFSnp\nW8RsX8QlInWdcxVuz37fBxfi8RVjrKghyC4F9w/gI0nZUqGkUxLZ3ycyQNs7ZDhAu+d6tTBUkace\nxw+VfylS5uFbQl/peHPwmaw+p8mX6lA7vNP12tPAu4ns6mklfevYK6VMJ720mw32GhOe/3oRHZVy\nuwi3qsLCZR33vxF5/36zJbtSdhez2XrxQi3D90TCokzJJ4k9hqo9ul5CtsOFAa5Kyk7Fqo52Tb5U\nE5iPvcQLdHRSd5SQrecTAhUcbqpOpttu2O11tNg73a+swXgm4C3imFI3npIN/uIabetyk4iPO7lX\nbPJ249f4Rknd20VYWzVpbMTTS+om8cyOssVCB4+Ihe6ECDU6aTr8g7eKTNj8pOx8sXapM9MXUUcn\nvbRLGWZ75Z7qa3hiRbv/cbXyNVXKm8SJhzQ8WF5ngAr+Ltx5J9vw0y59lwplvLGg7r2metTdO+6X\niOxhEYuFB3xIeyJmoR2b1EvE+u8GsX+WX9dl9Xdn902dJ/yqqcd4bhP2ng51dVK3Xcqw2+s1Istc\nlCwrpCViz04WiJktz8ZcgzuS+jlizVXFk7THrp1sNNVLrhQfMj1VcYb4UOlh3zOFR+v8oC1TN48n\nxfov5UScVSLXOP6Dn4lsZ85zMtnuKOqU8WTlM9+BBfL2i5+IDG3OQvwbb6noU2WvujrpVXctw2uv\nnHVKUupVef2icOBl4ot7pxB4ufaNtbPF+bwyDsWNYsY8sqTNeSKFe7LwgmMibLlVvNA5u4rkRZ5G\nXYm3iRg3DRNXi/Nf1wrvu1UkVF4i4uuU4/D6Erm2ifXm/fhzUn66ONJyakk/4gxZ+jNnldho3CTW\nBv1mi/Yv2PmZTDeWtO9mr7o66UV3w2yvlJ7D5ZbiDdg9RCr7guxaKLImnxBx6RFdnjspUuPdvNlh\nYiH5WeF+zzF1Nl+QybBBeLcb8LyONou0p//PEjvstwoPkTKh/MuVskbs6VyWjXml9j20lMXC498n\nZr5t2dirs/qnivXMr2qMOxNMitT0xWLWvxl/Ur5mqWuvNerppFu7YbdXSkuJpyqjpdkTFU1whvK0\ncr9pNTDmHHGaf0MDY88ETdqLWXigtglehS82NPb87k12miu0b/q+QuxRvX8AY/eDJu1VSdlL9Q87\nDh7+P7Af/iJOaAyaVfj+AMY5wo5waU9xBGyNWMjPNpq0V85uIlNdm73EAvGkvogzfLzHzPy5SK/M\nNbizgceKxMSFYjP1kAGN2w+aslfOwWLd9dJeOy4RRrjUo/9/VFyrePNxxHDSpL0+LBJz+zc0/ogR\nI0aMGDFixIjh4r/AsP+iG7cDZwAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$\\left \\{ x : \\frac{59 z}{34}, \\quad y : \\frac{33 z}{34}\\right \\}$$"
],
"text/plain": [
"⎧ 59⋅z 33⋅z⎫\n",
"⎨x: ────, y: ────⎬\n",
"⎩ 34 34 ⎭"
]
},
"execution_count": 89,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"solve((3*x+7*y-12*z, 4*x-2*y-5*z), x, y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For more information, see `help(solve)` and `help(solve_linear_system)`.\n",
"\n",
"### Non linear equations\n",
"\n",
"Let’s solve a simple equation such as\n",
"$x = x^2$. There are two obvious solutions: *x* = 0 and *x* = 1. How can we ask Sympy to compute these for us?"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import sympy\n",
"x, y, z = sympy.symbols('x, y, z') # create some symbols\n",
"eq = x - x ** 2 # define the equation"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAADkAAAAWCAYAAAB64jRmAAAABHNCSVQICAgIfAhkiAAAAblJREFU\nWIXt179rFEEYxvGPehpJNBqRgIhYqAQRLBRJm1iI/g/6B9iIIDZWNmJrky5FIAQEtZKAIMiWgkgC\nWtlFRDljIcqBaESL2cBm2Ql3tzuJP/Jt3rn3nZl9nt1Z9j3+A7aVfj/BNzzFFMZwF0v4hYO4ifYG\naowxiOc4Xcpfw3nsxsWqhVlhvA/vcLmQu4XX2NWQ0H45hxfCjY+RdVO4g49oFXIH8ANX+5ZXj5OY\nx4zwFGubfIPHFXNe4Vmv6hIwo0uT2yMT9uIE3lbU3uNsn8I2hZjJo3n8UlHrYBgDSRQlIGZyOI/f\nK2qdPO5vXk4aYiZ/5rHqzO/M447m5aQhZnJ5nTVDefzasJZkxEy2hac4UlEbwmf/gMkOFnCkonYc\ni8kUJSBmkvDRHbe29TsmGH9QmjsmtFF/BVlhfEg4llcKuXtCM1Bs6yaFo/0otbgS9/PrDkbq2eqg\nFZkAHzAhtHdnsEdo6y5Z+2lp45ONaRBGMYvDOJXnloR+ehpz3WyS1RBwu8baFGSrg/XeyV75Yzug\npkxO4mVDezVO2eSK8Mf5eg97tHABD5sSVZMbgoeVzRayxRZ98BurMkmtl8geLgAAAABJRU5ErkJg\ngg==\n",
"text/latex": [
"$$\\left [ 0, \\quad 1\\right ]$$"
],
"text/plain": [
"[0, 1]"
]
},
"execution_count": 91,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sympy.solve(eq, x) # solve eq = 0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `solve()` function expects an expression that as meant to be solve so that it evaluates to zero. For our example, we rewrite\n",
"\n",
"*x* = *x*2\n",
" as\n",
"*x* − *x*2 = 0\n",
" and then pass this to the solve function.\n",
"\n",
"Let’s repeat the same for the equation:\n",
"*x* = *x*3\n",
" and solve"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAHQAAAAWCAYAAAARprh2AAAABHNCSVQICAgIfAhkiAAAAgRJREFU\naIHt2c+LjVEcx/EXxo9mMihZkQWaWPiRZD0W8j+wkaVIiYXV7CytRLGYjVJYaYoUd6kkxEJWSGqa\njeiWNBqL89x6PPPc2/15zjM877qde8/3ud1330/nPPeeS80/xarC60f4iSe4HslhHM+xP9LndWIK\nV/EJS9iKS5hPKaV9j87jGDbgRNkbGyPVWs4RvBCal5pN+IJTubkreId1SYwC3fSo0XqyetQ2bdiL\nOZzF70QORS4Lwd3Nzd0UVu2ZBD5D6VFjWDY9MKsaK/QDHpbMv8XTyC5FZlV8hVaNjdiDzyW1rzgc\nV6d/6kADO7Pxe0mtiUmsj6fTP3Wggcls/FVSa2bj5kguA1EHGmh96Si7T63NxjWRXAZirIdrDwg3\n5+Jv13a8wulehRKx0KE2kY0/YogMSi+BvsGhUYkkZl5YnVtKahP4ZoUEWm+5gaawo+woqe3G67g6\n/bMSAp0SjrZGzRyO+vuWsksI+V4ip56pQqCtxoyX1KbxHncieNwQttf80d854ejvdiKnFp161JHG\ncD3asg2PhWYtZY8FPMPJ3HX7svmPkbwOCiv1Gm7hAbYXronl1G2P6JBb20JiZlILlDCTWiBHo/Wk\nCltuN1TxlKaKTisi0Gm8TC1RoIpOWB7oovAn94UELmWM4TjupxbJUSWni0Jei6lFampqav5D/gC/\n7lwPZzMlQQAAAABJRU5ErkJggg==\n",
"text/latex": [
"$$\\left [ -1, \\quad 0, \\quad 1\\right ]$$"
],
"text/plain": [
"[-1, 0, 1]"
]
},
"execution_count": 92,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq = x - x ** 3 # define the equation\n",
"sympy.solve(eq, x) # solve eq = 0"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Output: LaTeX interface and pretty-printing\n",
"\n",
"As is the case with many computer algebra systems, SymPy has the ability to format its output as LaTeX code, for easy inclusion into documents.\n",
"\n",
"At the start of this chapter, we called:\n",
"\n",
"```python\n",
"sympy.init_printing()\n",
"```\n",
"\n",
"Sympy detected that it was in Jupyter, and enabled Latex output. The Jupyter Notebook supports (some) Latex, so this gives us the nicely formatted output above.\n",
"\n",
"We can also see the plain text output from Sympy, and the raw Latex code it creates:"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"y**2/x**3 - y/x**2 + 1/x + O(y**3)\n"
]
}
],
"source": [
"print(series(1/(x+y), y, 0, 3))"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\\frac{y^{2}}{x^{3}} - \\frac{y}{x^{2}} + \\frac{1}{x} + \\mathcal{O}\\left(y^{3}\\right)\n"
]
}
],
"source": [
"print(latex(series(1/(x+y), y, 0, 3)))"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"$\\frac{y^{2}}{x^{3}} - \\frac{y}{x^{2}} + 1 / x + \\mathcal{O}\\left(y^{3}\\right)$\n"
]
}
],
"source": [
"print(latex(series(1/(x+y), y, 0, 3), mode='inline'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Be aware that in its default mode, `latex()` outputs code that requires the `amsmath` package to be loaded via a `\\backslashusepackage{amsmath}` command in the document preamble.\n",
"\n",
"SymPy also supports a “pretty print” (`pprint()`) output routine, which produces better-formatted text output than the default printing routine, as illustrated below. Note features such as the subscripts for array elements whose names are of the form `T_n`, the italicised constant *e*, vertically-centred dots for multiplication, and the nicely-formed matrix borders and fractions.\n",
"\n",
"\n",
"\n",
"Finally, SymPy offers `preview()`, which displays rendered output on screen (check `help(preview)` for details)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"### Automatic generation of C code\n",
"\n",
"A strong point of many symbolic libraries is that they can convert the symbolic expressions to C-code (or other code) that can subsequently be compiled for high execution speed. Here is an example that demonstrates this:"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAOgAAAAbCAYAAAB2r8PPAAAABHNCSVQICAgIfAhkiAAAB6tJREFU\neJzt3HuwVVUdwPEPQqKCikaKEnkzVMAcS5KQEC3Fmcb+yEhQMM3EKRtNe/yTZSE9TcscZ2xK00Nk\nMGIvjTKbMXspEWaF9tR0jCyltFSMpKQ/fnt399l3n3v2Ofc8LpfznbnD3Wuvtdfvt56/32+tCz16\n9OjRo23MwmSMwiTM7q44I5LjcGwbvz8Wl2NMG+voGsfidJyDlXhtd8XpOBVsx39xNw7pqjQjj8Nw\nWYu+dSY+iKV4b+7dq/DJFtUzrPgbzkp+PxVbML5k2Te1RaLOskzsnJOaKDsS9G83N2OvFnznrfon\nYB+ew8RcnmswswV1DStejnHJ76diG/YsUW4avtEuoTrIsibLjRT9G2E03o+rk+fjcRuewhP4EiZk\n8s8Vk2ao7IrNOCiTdnBBvmlY04L6hi2r8KGSeZdjUUH6ofgKvig659PKTfhucbkw7xfjBhxeslwt\n/WEP/GqQsrPwNXwHG0VbTS7Id1iS70p8RkyA/UvK12om4Ha8R/jrn8IKzBcm58PCVbg1U+ZGHNOC\nuo9Lvj0PS0RbnFQj7y+wTwvqHFbMErb99WJwleHn2D2XNgOPYE7yPAkPaW6XekETZZrhGDHgiMH2\nO+xSolyR/nA0fiYGVBFHiYGe7jTj8UM8Lky3lL2xCWdk0i7GfWJHaZShtOc+2KDfpF9moPVwkNhJ\nt2N6kvaw5mTNszj5bhpoGo9/4MUFeb+AhS2oc1jyDtyjvg86SwSUsowRg/uiTNoUYZpc2IQs1yre\nVVpNNvLXJwbCkXXKFOk/HWtF0Gmd2hN0Labm0l6Z5F+dSfuYmLRZ+fYVLsh5deQrotn2HC0WkNSy\nOlH4f0Um5tVCj3NFsG1DE/UVcXLy3eyC+BcxXvO8E59oUb1dZzYew0uT52miId5cp9xVeH0u7W2i\n4yYMzN4UFdU7SjuYjWewW/J8hNB/Rp1yRfpnqag9QZ8RVsZ+ufQnRcAu5feqzcWUjbijjny1ZOpr\noty78Uf9O+E6tf3KRULvi4V/+u0m6itiMp5XvXE8ivML8p6Gm9KHMqbQcOY/uF8oS6yK2/DLQcqM\nFkcx38uln44HhOmxo7BJ+KBbk+fX4C78epAytfQvy0PCjxyXS/+3/h1iT7EDPVJQ/lGdi1TugUvE\nhHxOyL1CtZWU5Ynk32fxIvyzRXL8GXeK/pF8exy+XpD3SeEeYODB6EzhM2wXq9VSvF3sKpPxYTzY\nIqFr0YgMG4Tfeb5YoebiDfjDIN9/HX4kJnfKqKTseuHInyRWuz5cinuHqlQDNKL/JuFLvk9MvENx\nSp3vF+nfCLPFBPxrJu1AMfjvTJ7TaOVTBeW3iGOLsWJSt5OFwv/8ZvL8GD43SP7UenpQ/VhGo3Pl\nrCRthnAn3igmbp7RYjEZwCHCBk8DDhVhpswRM/95Aw9XW00nZLhB/0qWMlE09G9U+wXH42nlI6NZ\nKho3ybqlf56K2iZuER8XFyXS4NqcpPylBXlXJu8ajeZWNN6eNwqTvCzLxcI1ESeIKHUR7eynJaKP\nBnCNarNlDX6a/D4FV+CFTVZalnbLsJsIY4/Kpe8vBs1WAyObm/CtJuqqaHxAdUv/PBXlJ+jBYhH7\naCbt1Un5ZQX5VyfvDiz5/axMfQ2WuUf0X1nu1j8pZwiLqoh29tOFIsCGahP3MmF+pMwRjQJ/EmZU\nEUcm+ep1esq9OLvGu2ZlKMvJogPygy/1PR7Av3LvNonji1om2QrFUdOXiGhpkblyjhg8ebqlf7OM\nFWfG14pjrpTNg5RJB/bTNd63sj33Uj7od7gw3+clz78VC/cYA92BdvbTTMW+aRXTRSeeOISKhko7\nZLhZ3Dwq4nERjs/zg0SOAxqsq2JoUdxO65+lotwkXinMwjzjhJl3VcG7O0QgpFEqGm/P9arPNQfj\nFlyXS7tJ/YBWq/vpfpmLMbWiuCeIlequTFrRuVE7abUMe4tV+L4a79eJ6FqedOccbFdoB53Wv1GW\nCb8re3PrzOTfLcJSmlJQbqowsztBanYurZPvXBFMyh97XI8Fdcq2sp+OFu32f+sinaC7i6tPRyTP\n88VVr2cz+YZqXtWj3TIsENfOarFKRB+zPugocbZ6i+ajnmXptv6NcIaQ5yO59LmZ39cKXzTr+rxM\nTNpO3Te9TuzkF6h97vsuccNnvv7jqpTbhLmdjei2s58ukPE/sywQipwmBuRG/Djz/hKtuZM4GO2W\n4XbVl5Xz7CKCBNnGXSh2zr4m6qs0WK7b+mdJAzlFRw3zRJt8OfezWixyKQeIM+W3ZNI+K/Rq5vpc\nRXP9sFzosk1M2FPEUdN5+L64mzsYs1T/GVi7+mm+uMhfyESxnV+e/IwTzvrnRTh5fhMVNko7ZZgk\nfMl67CsGwhoR/FglVv1mqGhsQHVb//3wXWECb09+NotBvCST7++Z9/mf/I76CrGTXikCSV9VfP+0\nDBXN+/RnC9NxqzAf14uJlL8NVYtF+n3MdvTTrviA8oHWEcdF4o5jJ6lo/1W/snRD/1ZTMXzas0eL\n+YmBfxzbbo7Sub9oqUc39G81w6k9e7SQqcLM2lnZ2fXfodnRL8uXYbHq4MXOxs6uf49hzq3K/x9F\nI5GdXf8ePXr06NGjR48ePXoMH/4HWQLWSpe7eV0AAAAASUVORK5CYII=\n",
"text/latex": [
"$$x - \\frac{x^{3}}{6} + \\frac{x^{5}}{120} + \\mathcal{O}\\left(x^{6}\\right)$$"
],
"text/plain": [
" 3 5 \n",
" x x ⎛ 6⎞\n",
"x - ── + ─── + O⎝x ⎠\n",
" 6 120 "
]
},
"execution_count": 98,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sympy import * \n",
"from sympy.utilities.codegen import codegen \n",
"x = Symbol('x') \n",
"sin(x).series(x, 0, 6)"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/******************************************************************************\n",
" * Code generated with sympy 1.0 *\n",
" * *\n",
" * See http://www.sympy.org/ for more information. *\n",
" * *\n",
" * This file is part of 'project' *\n",
" ******************************************************************************/\n",
"#include \"taylor_sine.h\"\n",
"#include \n",
"\n",
"double taylor_sine(double x) {\n",
"\n",
" double taylor_sine_result;\n",
" taylor_sine_result = x - 1.0L/6.0L*pow(x, 3) + (1.0L/120.0L)*pow(x, 5) + O(x**6);\n",
" return taylor_sine_result;\n",
"\n",
"}\n",
"\n"
]
}
],
"source": [
"print(codegen((\"taylor_sine\",sin(x).series(x,0,6)), language='C')[0][1])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Related tools\n",
"-------------\n",
"\n",
"It is worth noting that the SAGE initiative is trying to “create a viable free open source alternative to Magma, Maple, Mathematica and Matlab.” and includes the SymPy library among many others. Its symbolic capabilities are more powerful than SymPy’s, and SAGE, but the SymPy features will already cover many of the needs arising in science and engineering. SAGE includes the computer algebra system Maxima, which is also available standalone from ."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}