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9.1 The Clausius-Clapeyron Equation

Let us consider two phases in equilibrium, like liquid and vapour.

Since we are at equilibrium, both phases have the same temperature T
and pressure P.

We recall that the Gibbs free energy G=U-TS+ PV = G = G(T,P)

When ligquid and vapour are in temperature and pressure equilibrium with
its surroundings, G is at a minimum.

Now consider the specific Gibbs free energies of the phases, i.e. G per unit
mass or per mole, g, and g, (where m is the mass or number of moles).
We can write:

G = mig1 + mag



G = myg1 + mag2

Let us consider an infinitesimal variation of G:

dG = m dg; + mydg, + gy dmy + g2 dmy

Since T and P are constant, and g = g(T, P), we have dg, =dg, =0

-~

dG = g1 dmy + g dmy

dm, = -dm,, from conservation of mass, so, at equilibrium dG =0,

we have:
g1 = g2

-~

two phases are in equilibrium
if their specific Gibbs free energies are the same

It is useful to consider cases of constant T and P,
since typically V changes in phase transitions



We have shown that: g1 = g2

Now let's consider what happens if we alter T and P:
dg; = dg»

But we know that: dG = =S dT + VdP
If we consider specific quantities, we can rewrite it as:

—51dT + vy dP = —s5,dT + vr dP.

where s;, vy, S,, V, are the specific entropies and volumes
of the two phases, i.e. per unit mass or per mole



—51dT + 0, dP = —s5, dT + v, dP

in order to maintain equilibrium between the phases, a change in

temperature must be matched by a change in pressure.
Therefore we can work out the rate of change of pressure with

temperature which is:

dP 57— 5q
dT” vy — vy
If we consider the latent heat L, it converts mass between phase 1 and 2:
L

52— 81 = =
2 1 T

P L

dT  T(v2 —v1) 5

Clausius-Clapeyron equation




dP L

Clausius-Clapeyron equation R
dI” T(vp —uv1)

It describes how
the vapour pressure of a liquid changes with temperature
how the melting point of solids and the boiling point of
liquids changes with pressure.



9.1.1 Melting point of ice

Let us consider water and ice:

the latent heat of fusion of ice is L = 335 103 J kgt

the specific volumes are

v, = v,y = 103 m3 kg?

v, =v,=1.09 103 m3 kg

for water and ice respectively (note that ice is less dense than water
and hence has a larger specific volume).

Putting these figures into the Clausius-Clapeyron equation gives:

dP 335 % 10° Jkg™!

— = = —13.6 x 10° Nm—2 K™
dT 273K x (1.00 — 1.09) x 10-3 m3 kg™!

This equations shows that if the external pressure increases by 134
atmospheres, the melting point of ice drops by 1 K.

It is the fact that ice is less dense than water that determines the sign
of the change. Most solids are denser than their equivalent liquids and
their melting point increases with pressure.



9.1.2 Boiling Point of Water

The latent heat of evaporation of water is L = 2.257 10° J kg'l,
while the specific volumes of steam and water are
v, =V =1.673m3 kg!and v, =v,, = 1.043 103 m3 kg™, so:

dP 2.257 x 10°
dT  373(1.673 — 1.043 x 10-3)

=3619Nm 2 K™!

This shows the rate at which the vapour pressure of water increases
with temperature.

Alternatively, given that the boiling point is defined by the point at
which the vapour pressure of a liquid equals the surrounding
atmospheric pressure, this equation can tell you how the boiling
point changes with pressure.



9.2 Supersaturation

Consider cooling a vapour down.

At some point when its pressure matches the saturated vapour pressure
for the temperature in question, one expects condensation to occur.
However, this is not always the case, and the vapour can carry on without
condensation down to cooler temperatures, at least for a while.

It is then known to be supersaturated

To see why this can happen we have to look at the vapour pressure of

small droplets which turns out to be higher than that of a flat liquid
surface.

The reason is to do with surface tension

Surface tension is a force that acts on the surfaces of liquids and is
measured in terms of a force per unit length, y.



Now consider a spherical liquid drop of radius r.
Around its equator surface tension provides a force of: 2nry

Opposing this is a pressure P acting over the cross-sectional area of
the drop mr?, therefore:

2
ar°AP = 2nary
and so surface tension raises the pressure inside a drop of radius r by:

-

AP==-L

-

This increase of pressure changes the specific Gibbs free energy of
the liquid g, and therefore there has to be a compensating increase
in vapour pressure.
From the equation for dG, at fixed temperature g, is increased by
g, = v|P, where v is a specific volume, and therefore g, must increase

by the same amount so:
Ag, = v,AP, = v]AP



As a result the vapour pressure of a droplet of radius r is larger
than that of a flat surface at the same temperature by an
amount:

v; 2y
vy, I

APU:

It is this which allows vapours to be supersaturated
because the saturated vapour pressure of droplets is such that
they will not form until higher pressures than the normal saturated

vapour pressure of a liquid surface are reached.

Since droplets have to start from a tiny radius, it is rather difficult
to see how condensation happens as easily as it often does.

The reason is thought to be the presence of condensation nuclei,
such as charged particles and dust. The attractive forces of these
lower g, enough for condensation to get going.
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9.3 Summary

applications of Gibbs Free Energy
to the equilibrium of chemical reactions

dP L
dT’  T(vy — 1)

Clausius-Clapeyron equation

-

o Melting point of ice
o Boiling point of water

o Supersaturation



