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Boltzmann’s tomb with his definition of entropy engraved on it.

c
o

The second law of thermodynamics can be used
to prove the existence of
a new function of state known as entropy
which allows to determine quantitatively
- whether a process is reversible
- whether it can occur naturally or not



7.1 The Zeroth Law and Empirical Temperature

The zeroth law:

“if a system A 1s in thermal equilibrium with two other systems, B
and C, then the systems B and C are in equilibrium with each other.”

Two systems are in thermal equilibrium if
no heat is transferred between them
when they are placed in thermal contact

The Zeroth Law means that we can assign a label to any system, the
label being the value shown on a thermometer when it is thermal
equilibrium with the system.

We call the label temperature.

Temperature is a function of state which determines whether one

system will be in thermal equilibrium with another. 3




7.1.1 Empirical temperature scales

We need a thermometer, a device with some easily measured
property, X, that varies with temperature, such as the length of the
mercury column in a mercury-in-glass thermometer.

The temperature is some function of X, 6(X).

We choose: 0X)=aX +b

where a and b are constants, fixed using two easily reproduced
calibration temperatures.

For instance, the Centigrade temperature scale assigns values of 0 C for
the temperature of ice in equilibrium with water (known as the ice
point) and 100 C for the temperature of boiling water (the steam point).
Letting the values of X at these two points be X, and X,,,,
the Centigrade temperature is defined as:
X —Xo
0= lOO( )

X100 — Xo



The Centigrade scale is not very good for two reasons:

1. the ice and steam points are not well defined as both depend upon
pressure, and dissolved air makes a difference to the ice point.

2. any errors made during the calibration are amplified when
extrapolating to very low temperatures.

Temperatures are now defined by setting 8(X=0) = 0 (so that b = 0) and
choosing one other calibration point.

A good choice is the triple point, the unique temperature (and pressure)
at which ice, water and water vapour co-exist in equilibrium.
Temperatures are thus given by:

X
0=273.16 (—)
XTp

where X, is the value of X at the triple point



The trouble with empirical temperatures is that, except at the
calibration points, the temperature depends upon the
thermometer.

For instance, the rate at which the length of a mercury-in-glass
thermometer changes will slow dramatically once the mercury

shrinks to be inside the bulb.

The temperature can thus depend upon the substance (mercury
versus alcohol for instance), and the exact dimensions of the

thermometer.

a very unsatisfactory situation



7.1.2 The ideal gas scale

In constant volume gas thermometers, the volume of a quantity
of gas is kept constant, while the pressure is measured.
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The height of the rightmost
tube is adjusted to hold the
mercury at the level of the
mark, keeping the gas volume
constant.

The pressure is read from the
difference in the heights of the
mercury in different tubes.



For an ideal gas, PV =n_RT, soif Vis constant, Ta P

the pressure is used for X, and T for 6, so:

% becomes p
6= 273.16(—) :> 11 = 273.16(—)
p—0

XT1p Ptp

The units of this scale are Kelvin, symbol K.
The measurement is carried out in the limit of zero density since
that is when gases tend to the ideal case.

Constant volume gas thermometers are not very convenient,
but they can be used to calibrate more convenient thermometers.

The Celsius temperature scale is directly related to the ideal
gas scale by:

t=Ty—273.15

The triple point has temperature 0.01C by definition



7.2 Thermodynamic temperature

Carnot's theorem says that all e
reversible engines running between the same

two reservoirs have the same efficiency,
regardless of their construction.

Therefore we can say that the efficiency and
the ratio of heat input to output is a function of
the reservoir temperatures only:

G _ f(61.67)

2

—

where 8, and 0, are the empirical
temperatures of the hot and cold
reservoirs respectively Cold reservoir

The function f will depend upon the particular two Carnot engines run between

empirical temperature scale in use, but reservoirs at temperatures 0,

and B, via an intermediate stage
Ql/QZ does not, . at temperature 6,
as long the reservoir temperatures do not vary. 9



There is no net flow of heat into or out of the
intermediate reservoir, in which case we can also
think of the two engines combined into a single
engine producing total work W, + W,..

The ratios of heat input to output of the two
engines considered separately and the two
considered as one are given by:

I f(61,62). 0, |
gz a = f(6,,63).
Qs

\ 4

f(61,63) = f(61,62)f(62,63)
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f(61,63) = f(61,62)f(62,63)
B, appears on the right-hand side but it does not appear on the left

the only way that this can be true for arbitrary 0, is if the function f is of
the form:

g(6h)
g(62)

where g is a function of the empirical temperature

f(61,67) =

let's use T = g(0) for our temperature

-

% = f(61.62)  becomes % = %

where T, and T, are the thermodynamic temperatures of the reservoirs
11



9 _nh
O, Ty

the ratio of thermodynamic temperatures of two reservoirs is the
ratio of heats exchanged during the operation of a reversible
engine running between them.

This defines thermodynamic temperatures up to a multiplicative
constant.

If a calibration point is defined, then the scale is uniquely
determined.

The triple point of water is defined to have T = 273.16K,

the number chosen so that there are 100K between the ice and

steam points, consistent with the standard usage of the Centigrade
scale.



7.2.1 Temperature and hotness

We know from the Second Law that if Q, is extracted from the
hotter reservoir then some work can be obtained and therefore

Q,<Q — T,<T,

This implies that the hotter reservoir has the higher
temperature, as expected.

(but we could have defined it the other way round, reversing the
ordering of temperature and hotness).



7.3 Efficiencies of Engines, Heat Pumps
and Refrigerators

What is the maximum efficiency of
an engine, heat pump or refrigerator?

o1 T W O -0 T)-T,
_ = — ‘ NE = = =

O, T Q1 Q1 T

4

for an engine

to increase the efficiency a heat engine running between the
one wants to maximise the steam point (T, = 373 K) and the ice
temperature difference point (T, = 273 K) has a maximum

between the reservoirs efficiency of 27%.

14



For heat pumps we are interested in the reverse, i.e. the ratio of
heat dumped to the hot reservoir to the work input:

J :le Ql p— Tl
P =W = 01-0, Ti-Ts

4

for small temperature differences, the efficiency is high

For instance to heat a house to 18C with a river flowing by of
temperature 8C, n,,, = 29%

One issue is the efficiency in the transfer of the heat.

15



in refrigerators we are interested in the amount of heat extracted
from the cold reservoir per unit work:

high efficiency when T,-T, is small

16



7.4 Goodbye to T,

Is there an easier way to measure the thermodynamic temperature?

Let’s go back to the Carnot engine:

Hot —1

Hot —

Cold —1

Cold — OO““]""z"IA3n-A.4.|
V/Vstp

If we consider the transition from A to B,
the gas is in contact with a hot reservoir and expands isothermally

all heat absorbed in an isothermal expansion of an ideal gas is

converted to work,

so the work performed in this stage gives the heat absorbed Q,
17
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We know that the work is given by:

2av Vi
vV V V2

1

Considering the transition from A to B,
V,=V,,andV, =V, and T, =(T);:

Vg
01 = nuR(T1)1 In V_ heat absorbed
A

Considering the transition from Cto D:

V
02 = npR(TT)2 In V—C heat released
D

18



Combining the results obtained:

Q] — ”mR(TI)l ln pp— Q2 — ”]]}R(T[)Z ln M—
Va Vp

\ 4

Or | T _ (D1 In(Vp/Va)
Q» Tz (T1)2In(Ve/Vp)

this is the definition of '

thermodynamic temperature T,/T,=(T,),/(T),
if In(Vy/V,)/In(V/Vp)=1

the equivalence between the
thermodynamic and ideal gas scales

19



1 _ 1y _ ()1 In(Vp/Va)
Q> T, (Ty)2In(Vc/Vp)

remembering that points B and C, and points D and A are
connected by reversible adiabatic transitions for which we
know that T V¥ = constant

(T V' = (TiaVy
(Tl)lVX_1 - (_Tlﬁ)zvly)_l

Dividing these two equations shows that V,/V, = V/V, and so:

O _ T _ (T
O, T, (T

the ideal gas temperature scale is identical to the
thermodynamic temperature scale.

From now on, there will be no more T, but just T instead.
20



7.5 Entropy

To
Let’s consider a Carnot’s engine: Reservoir
For each infinitesimal cycle of the ‘ dQ
Carnot engine the heat transferred aw
from the reservoir is: [ Engine P
doQ d
dQo = To - ‘ QO

where T, is positive.

By making each cycle infinitesimally

small we can consider T to be fixed The engineruns between a reservoir
over the cycle at temperature T, and a part of the

system at temperature T .

21



Now we take the system through a large cycle, encompassing
many complete cycles of the Carnot engine,

returning everything to its initial state, so that the internal
energy (of system plus Carnot engine) is unchanged.

-

Hence the total heat Q, extracted from the reservoir is equal to
the work done by the system and the Carnot engine.

By the Kelvin-Planck statement of the Second Law these must be
less than or equal to zero or we would have converted heat
completely into work with no other effect.

Therefore, the heat transferred to the system:

d
dQOzTOTQ = Q0=(}§on—T0¢dQ

T

: : - d
Given that T, is positive: QQ?Q <0 Clausius' inequality

22



F2<s

In general, the different parts of the system might not be in
thermal equilibrium with each other and it might be
impossible to define a temperature for the system as a whole.

Here, T is the temperature at which heat is supplied to the system

If we consider a reversible process, we can run the cycle in reverse,
therefore, every heat transfer +Q becomes -Q:

\ 4
$dQ/T > 0

¢ $Lco e §AO/IT20 W PTE-0

T

Clausius's inequality becomes an equality for reversible changes .



Consider a system taken through a cycle from A to B via path 1
and then back to A via path 2, reversibly:

A

P-4

v

(7))

24



(7)),

the value of this integral is independent of the path taken

there must be a function of state S, such that:

B
dQOg
sB_sA:f e
A

the new function of state is called the entropy

A change of entropy in the system is given by: dOr

ds = —
T

where the R is a reminder that this only applies to
reversible transfer of heat

and T is the temperature at which heat is supplied to the system. .



if a change is reversible and adiabatic as well (dQ = 0), then dS =0

the entropy of a system is constant for reversible, adiabatic changes.
Entropy is a “label” that uniquely defines reversible adiabatics.

26




Now consider that path 1 is irreversible while path 2 remains reversible.
Then from Clausius's inequality:

dQ [ (* a0 A dOg
$7 -, 7). (), T
| (B aox (f"%) 6.
Given that SB_SA_fA T :> 5 T ), A B

B
dQ
—_— > i
SB SA_L T

And for an infinitesimal heat transfer: dO<TdS

27



7.6 The Increase of Entropy
and Heat Death of the Universe

For an isolated system dQ = 0, so Clausius' inequality becomes:

dQ < TdS ) dS >0

the entropy of an isolated system can never decrease

This result imposes a direction in which processes can occur.

Applied to the Universe as a whole, the entropy will carry on increasing
until it can no longer do so, by which point the Universe will be in a
state of equilibrium and it will no longer be possible to extract work
from any process.

This is the so-called heat death of the Universe.

The increase of entropy gives us another way to decide whether a
process is reversible or not:

reversible processes do not change the total entropy of the Universe




7.7 Calculations Involving Entropy

Since entropy is a function of state, it does not matter how you
calculate the change as long as the system begins and ends in an
equilibrium state.

Therefore, you might as well make things simple and do things
reversibly when you can.



7.7.1 Heat engines

In a heat engine, the hot reservoir has heat Q, removed so:

Q1 0>

AS| = —— Similarly: ASH, = —

T Y 2 1>
So the total entropy change after a cycle is: AS 0, 0O
T, T

If the engine is reversible: 0/Ty = OQ2/T> and AS =0

If the engine is irreversible, then it is less efficient,

or, equivalently, Q, is larger for a given Q,
than in the case of a reversible engine

Irreversible engines are therefore

AS>0
entropy sources



7.7.2 Entropy Change during a Change of Phase

The change of a liquid to a gas or solid to liquid
is called a change of phase.

This involves latent heat, heat absorbed at constant temperature.

This implies that an increase of entropy has occurred, with no change
in temperature.

Let us consider to bring a mass m of liquid to boil, this requires to
provide an amount of heat to the system:
QO = mL
where L is latent heat of vaporisation, at temperature T, (boil).

Therefore:
mL

AS| = —
I T,



s, = ML

In this case, an entropy increase is associated with
increasing disorder

It is only the entropy of the substance that has increased
the entropy of the Universe could stay constant if the process was
carried out reversibly because then you would have supplied

heat Q at temperature T,
and so the entropy of the surroundings would have dropped by AS,.

32



7.7.3 Hot objects placed in water

Consider to heat a lump of iron to temperature T.,, and then
place it into a large quantity of water of temperature T,,,.

The final temperature will be about T,,.

Such a process is irreversible

el

we expect the total entropy to increase.

If we consider that the temperature of the water hardly changes, the
heat transferred from the iron to the water is:

Q=M Cro(Tee — Ty)

~

the change in entropy ASw = meC Tre — Tw
for the water: W = MMFe®Fe Tw




as the iron loses heat, it cools down

so the temperature T that we use in the relation dS = dQ;/T changes

as a function of time.
We therefore need to integrate.
Remembering that

dQ=mgC. dT

\ 4

the change in entropy ASw. =
for the iron: e Tre

™ mpeCre dT

T

= —ME.Cge In —

The total entropy change of the Universe is then:

TFe - TW _

0S = ASw + ASge = mp.Cre

entropy increases

L o

(

I'w

In

TFe
Tw

>0

Tre
T'w

34



7.7.4 Isothermal Expansion of Gas

During the isothermal expansion of an ideal gas, the heat
absorbed equals the work performed by the gas.

Therefore:
dOQr=TdS = PdV
Ag _ [PPdV
gas Jv, T
For an ideal gas, AS gas = IR fV2 ﬂ = n,RIn ﬁ
py=n RT U Jv, 'V Vi

since entropy is a function of state, this formula is correct
regardless of how the volume change is carried out, as long as
we start and end in equilibrium at temperature T.



7.7.5 Joule Expansions

Joule expansions are classic examples of irreversible changes.

In this case no heat is transferred, so the surroundings do not
change their entropy.

However, in expanding from V, to V,, the entropy of the gas does
change according to:

Vs
AS = n,,R1In V_l

this is the change of entropy of the Universe,
and since V, > V,, then AS > 0 as expected.



7.8 Generating Entropy

Any irreversibility generates entropy
Entropy is not conserved

The sun, which is a huge entropy source,
generates 4*10%6Watt at a temperature of T = 15*10°K at its centre.

This corresponds to an entropy generation rate of:

4x 10%°W
15% 106 K

=267 x 107 JK 157!

All this power is radiated at its surface at a temperature of 5700 K,
so entropy is generated at:

4% 10%°W

=7.02x 102 JK 157!
5700K % >

between the core and the surface

irreversible heat transfer processes have generated entropy. .



7.9 Statistical Interpretation of Entropy

Entropy shows in which direction processes can occur
and distinguishes reversible adiabatic processes,
but what is it?

The increase of entropy during a Joule expansion indicates that it

is irreversible.
Gas molecules in a box of volume V will never spontaneously all

move to volume V/2.

Let us count the number of ways in which we can distribute N
molecules into two halves of a box.

At the microscopic level, each molecule can be in either the left
or right half (but not both), and there are 2" possibilities in
total: these are the distinct microstates.



At a macroscopic level, all that matters is how many molecules are in
each half: we can label these macrostates by the number or fraction
of the molecules in, say, the right half of the box (since the total

number is fixed).

The number of ways in which we can have n molecules out of N on
the right is simply the number of combinations of n distinguishable

objects drawn from N:
N'!
(N —n)!n!

If there are N = 10 molecules in
total, for example, there are 11
possible macrostates, with
microstates distributed as follows:

macrostate
right left
0 10

1 9

2 3

3 7

4 6

5 5

6 4

7 3

8 2

9 1

10 0

number of microstates
1
10
45
120
210
252
210
120
45
10
1



Multiplicity distributions for states of
N = 10, 100, 1000 and 10 000 molecules distributed in two halves of a box

N =10 N = 100
=
8
B
&
°
*
gp 0 1 0 1
§ N = 1000 N = 10000
&
5’)
s
©
o7
| | | | | | | Jl | | |
0 10 I

fraction of molecules in right half (macrostate)

As N increases it becomes less and less probable to
have anything other than
(almost) equal numbers in the two halves. 40



What you can see is that as N increases,
there is a sharper and sharper peak centred at 50% occupancy.
This should make it easy to believe that with N = 10?3 molecules

you essentially always find a macrostate with equal occupancy in the
two halves of the box.

N =10 N =100
§
Z
5
'E
b
*
& 0 I 0 1
-
é N = 1000 N = 10000
L
=
g
_%’
&,
1 1 1 | 1 1 lJll 1 1
0 | 0 1

fraction of molecules in right half (macrostate)
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All this suggests that entropy may be related to the number of ways of
arranging molecules, which is known as the multiplicity, W.

The multiplicity of a macrostate
is the number of microstates which correspond to it.

For N molecules expanding from volume V, to V, (so V; and V, label
the macrostates), the multiplicity changes by:

W» 3 Vs N
Wy \V
If we take the natural logarithm: In & — Nln ﬁ
Wi Vi

Remembering that for the Joule expansion:  AS = 5, RIn 2

1

42



If we suppose that we can write S = k InW, where k is a constant:

AS = Sz—Sl - k(llle—lIlWl)

W» Vs Vo Vo
= klIn— = kNIn— = nuNakln — = nuRIn —
W] V] miVA V] m V]
This is exactly the same as:
Vs
AS = n,,RIn V_]
S=kInW entropy as a measure of the number

of microscopic arrangements or

Boltzmann relation microstates of a system W

The Universe is always changing to a more probable configuration,
in the sense of more available microstates.
The new configurations are so much more probable that the change is

irreversible. N



7.10 Summary

In the hands of Clausius and Kelvin, Carnot's theorem led to the
definition of an absolute, as opposed to empirical, temperature
scale.

A new function of state was recognised, called entropy.

The entropy change of a system absorbing heat dQ, with the heat
transfer occurring at temperature T, is Clausius' inequality in the
form dS > dQ/T.

When the change is reversible, this reduces to dS = dQg/T where T is
the temperature of the system.

The important consequence of Clausius' inequality is that the
entropy of an isolated system always increases.

Following Boltzmann: a system always tends towards states of

greater multiplicity given external constraints.
44



