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5.1 Reversible changes

A process is reversible if the
system and surroundings return to their original state
when the process is reversed.

A reversible change can be carried out by making a tiny change,
allowing the system to settle to equilibrium, making another
tiny change, etc.

This is called a quasi-static change.



5.1.1 Reversible heat transfer

Imagine placing a pan of cold water onto a hotplate.

At first there is a temperature gradient which gradually disappears as
the water warms up.

Imagine a film of this run backwards.

One would see a spontaneous development of a temperature
gradient, something that never happens.

The process is irreversible.

For heat transfer to be reversible, no temperature gradients must

occur.
This can be done by making a tiny increase in surrounding

temperature, allowing the system to warm up, making another tiny
increase, etc.



5.1.2 General Criterion for Reversibility

A reversible change 1s one which can be reversed in direction by an
infinitesimally small change in the surroundings.

In reality all changes are irreversible, but it is possible to come close to
reversibility.
Examples:

1. A piston of area A holds a gas at pressure P in equilibrium with an external
force, F = PA. The applied force is suddenly doubled, F* = 2PA, causing
compression.

This is irreversible, because a small change in F’, 6F’ = 0.1PA say, would not
reverse the compression.
2. A stone is heated to T = 500 °C and thrown into water.

This is irreversible, because a small change in temperature, 67 = 20 °C say,
would still heat the water.

s

. A sealed container of water and vapour is cooled, condensing some of the vapour.

This is reversible if done slowly, because a tiny change in temperature can re-
4
verse the effect.



5.2 Calculating reversible work

The general definition of work is force times distance:

W= Fx

If the force is not constant, it can for instance vary as a function of position,
hence F = F(x)

If we consider infinitesimal changes: dW = F(x)dx

v
W = f B F(x)dx
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Example:

How much work is needed to extend a spring with force
constant k from x; to x,?

X2 X2 1
W= f F(x)dx = f kxdx = I;k.\2
X1 X1 =

X2 1

— (2 2
—?I\.(.xz x7)

X1



5.2.1 Compressing a Gas

-

X

Let's consider the work done when compressing a gas with a piston.
The piston is flat, has area A, and moves perpendicular to its surface.
If the gas pressure is P, then the force needed

to move the (frictionless) piston is F = PA.

To move the piston in by an amount dx requires an amount of work:

dWgr = Fdx = PAdx

The subscript R indicates that the change is
reversible. The change in volume of the dWp = —PdV
gas is dV = -A dx (V decreases as x

increases), and so




dWR = —PdV this is a general result

Minus sign because this is the work done by the
piston, which is the work done on the gas.

For a finite change:




5.3 Heat Capacities of Gases

For a reversible change, we know that:

dQgr =dU —dWgi =dU + PdV

Since the right-hand side is a function of state,
this is a general relation for dQ
whether reversible or not.

If we consider 1 mole of ideal gas: PV = RT
dU = CV dT[

If we consider a change at constant pressure:
d(PV) = PdV = RdT;



d0g = dU
dU =

- dWy = dU PV

CydT d(PV) = PdV

Therefore the molar specific heat capacity at constant pressure

C, is given by

Cp

~dQ  CydTy+RdT,

dny dT;

Cp=Cy +R

Relation between molar specific heats of an ideal gas at

constant pressure and volume
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5.3.1 Reversible Isothermal Compression of a Gas

For an ideal gas: P =n,RT{/V

v

Vs Vs

Z 2 , RT

WR:—f PdV = — f Im®71 gy
“ V] - V] V

If we consider isothermal changes, T, is constant, therefore:

2 qv v, Vi
WR - —”;nRTI -_— = —””lRT] [ln V]v-’ - n’nRTI lIl p—
. V] V : V2

if V, > V,, the gas has been compressed
so work has been done on it

¥

W, > 0, which is OK since In(V,/V,) >0
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5.3.2 Reversible Adiabatic Compression

For an ideal gas: P =n,RT{/V

v

V V
2 > n, RT
WR:—f PdV:—f Im®71 gy
V, v, V

But we can no longer consider the temperature to be constant:

For an adiabatic change, dQ =0

For a reversible change, dW = -PdV

\ 4

dU =dW +dQ.  becomes dU = dWw

\ 4

dU + PdV =0
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Foranidealgas: dU = CydTj

\ 4

dU + PdV =0 becomes CydTj+PdV =0

If we consider one mole: PV = RTj
dV
Cydli+RT1— =0
|74
If we divide by T;: Cvd_TI + Rﬂ =0
I

And integrate, we obtain: CyInT;+ RInV = constant

Dividing by C,, and taking the exponential, we obtain:

Ty VERICV = constant
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T VRICV = constant

If we multiply both terms by R and remember that PV=RT,, we can write:

pvVvRICy — pyCv+BICy _ onstant

We know that: Cp=Cy+R

_Cp_Cv+R
_CV_ Cy

We can define the ratio of specific heats as: Y

v

PV? = constant
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PV? = constant

Although derived for one mole, since the heat capacities are in
the form of a ratio, this expression is general

The ratio of specific heats y is greater than unity

P o ]/V)’ is steeper than P o ]/V

adiabatic case isothermal case

as you compress a gas adiabatically its temperature rises which
increases the pressure compared to the isothermal case

all the work applied

is stored as internal energy during an adiabatic compression.
15



The adiabatic pressure-volume relation applies to sound waves

It can be shown that the speed of sound can be written as:

CS = \/)’RT[/IH

where m is the mass of one mole of gas

measurements of sound speed,
which can be done very accurately,
can give estimates of y

We saw how to estimate heat capacities from the equipartition theorem. For a
monatomic gas we had Cy = 3R/2, therefore Cp = 3R/2 + R = 5R/2, and so
y = Cp/Cy = 5/3 = 1.666. For diatomic gases such as nitrogen, we found that
without excitation of vibrations, Cy = SR/2, and therefore y = 7/5 = 1.4. This is

the value that applies to air.
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Let us consider a gas with initial pressure P, and initial volume V,:

If the gas expands/compresses to V,, the work done will be:

V2 y 2 qy
We = - | Pav = -pv? [ =
Jv, Jv, V7
vi-r1> ey (v !
- _pV? _ PV ( 1) 1

For a compression we expect W, >0, thenV, >V, (and y > 1)

In a Joule expansion, no work is done and the process is irreversible,
therefore there is no Joule compression
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5.4 Indicator Diagrams

Indicator diagrams or pressure-volume (P-V) diagrams are used to describe,
for instance, phase transitions in gases or cycles of engines

Pn |

\ The work done to change a volume

\ is given by:
\\adiabatic

\ — [ PdV

\
\ \ in an indicator diagram this
\
\ equals

\
Wal the area under the curve

AN

-

vV

As discussed, the adiabatic change is

steeper than the isothermal one
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5.5 Other forms of work

Form of Work Expression Comment

Gas compression —-PdV most common form in this course

Magnetic work B-dm m is the magnetic dipole moment of a
specimen

Electrical work E-dp p is the electric dipole moment of a
specimen

Battery Edg q is the charge that flows, & is the volt-
age

Spring, rubber band F dL L is the length

the expressions of work are all of the same form Y dX

where X is some coordinate defining a system

Y is an associated force.

The X variable is extensive: it scales in proportion to the size of system
The Y force is intensive: it does not scale with the size of the system

General expression for reversible work:
Wg=-PdV + FdL + B-dm + - -- 19




5.6 Summary

Reversible processes, although an idealisation, are at the heart of
equilibrium thermodynamics, and lead to the evaluation of
guantities of interest such as work.

For gases, we have shown that: Wrp = —PdV

For ideal gases and adiabatic changes: PVY = constant

where vy is the ratio of the specific heat capacity at constant pressure
to the specific heat capacity at constant volume.

_Cp_Cv-l-R
- Cy  Cy

Y
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