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The paths of isolated molecules in a gas paths are called random walks.

o how far molecules travel on average over given intervals of time?

o how far do they travel before a collision occurs?

Before a collision we can describe a gas as if composed of many individual
molecules.

When collisions occur, we need to consider a gas as composed of
interacting molecules (the density will be a critical parameter). 2



3.1 The Mean Free Path

Molecules collide, travel freely, collide and so on.
The mean distance between collisions is the mean free path

usually denoted by A

To estimate A
we consider N stationary molecules and a molecule travelling from
left to right, all with radius R and diameter D = 2R.
The moving molecule can potentially hit any molecule located
within a distance D from its projected path.

The moving molecule sweeps O O

out a cylinder of radius D and QmQ
any molecule within this O\/ID
cylinder can be hit. Q O



after each collision, the
direction of the moving
molecule changes.

The moving molecule sweeps out a volume D% per unit time

giving a collision rate xD*nv where n=N/V

If we now consider that the other molecules can move,
the collision rate becomes:

\/ZrDzrw



Example:

If we consider air at STP, P = nkT7.

P 1.01 x 10° Pa

KTy 138x 10-2 JK-1 x 273K

=27%x 10" m™>

Taking D =0.3 nm and v=477ms!

then the collision rate \/EzrDznv ~5.110%s.



The mean free path is the speed divided by the collision rate

speed =v collision rate  \/27D*nv
f h |4 :
mean free pat =
P V27D2n

For air at STP, A= 10" m



Exercise:
Electrons travel 3 km along the SLAC linear collider at Stanford in

California.
To reduce scattering losses, the electrons need to have a mean free path

of at least 50 km.
What is the maximum allowed pressure inside the collider's beam pipe

at T, = 20C?

We know that:
1

/{electron -
\V27D%n

P = nkTj

v

_ = ~ 1x1.38x10°B3JK-'x 293K
V21D Aderecwron . V2 7(1x 10-10m)2 x 50 x 103 m

We have taken the gas molecules to have a diameter D = 0.2 nm,
appropriate for diatomic molecules.
This pressure is about 2 101! atm.

=1.8% 107°Pa

P



3.1.1 What is the distribution of molecular path
lengths?

The mean free path tells us how far a molecule travels on average

what is the probability that a molecule travels a distance r
without collision?

The probability of colliding in a small distance dr
equals the time taken multiplied by the collision rate:

dr o dr
— X (collision rate)|= | —
0 P

dr
The probability of NOT colliding in a small distance dr is: (1 — 7)



We consider the probability of traveling a distance r, defined as P(r)
the probability of traveling a distance r+dr, defined as P(r+dr)

We can write P(r+dr) as the probability of getting to r multiplied by
the chance of surviving (i.e., not being hit) within the next short

interval dr:

P(r +dr) = P(r)(l — d—:)

P(r+dr)—P(r) _ P(r)
dr -2

-

f __Lp wd  P@r)=PO)""
dr A




P(0) is the probability of not hitting any molecules for a zero
travelled distance, which is clearly unity -> P(0)=1

4

P(r)=e "4

exponential probability distribution
typical for random events
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3.1.2 Distance travelled

How far will a molecule have travelled after a time t?

If there are no collisions, the answer is vt, where v is the
speed of the molecule

If there are collisions the distance travelled will be different.

We consider the total path travelled by the molecule to be

composed by N steps.
We can then write the position vector r as:

=8 +S +S3+...

where s, is the displacement of the i-th step.
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Let us now consider the square modulus of r:

2
r‘=r-r=s%+s%+s§+---+sl-sz+s,-s3+52-sl+...

The cross terms can be written as:
Si-Sj = §i5;C0s b;;
for i # j, where 6;; 1s the angle between step i and step j

while S? = 5‘12

If we assume that the angle between the steps is random,
the average value of <cosB,>= 0.

Therefore, the mean squared distance can be written as:

=1 12



N
. 5 _ 2 . A722
Mean square distance: re = Z -~ NA

S‘?' is the mean squared steplength
I which we have approximated with A

Thus the root-mean-square (rms) distance
travelled, measuring in a straight line from the r~ VNA

point of origin is

for a random walk
of N steps

13



Random walks

Seven random walks of a particle.
Each walk comprises 100 steps
with steplengths distributed
according to the exponential

distribution

P(r)=¢e "

The distance travelled (displacement from the starting point)
and the path length can be hugely different,

since VN < N for large N

14




Examples:

1. How far on average does an air molecule travel in 1 second?

We had found that the collision rate for air at STP was = 5.1 10° s!
(see previous example).

in 1 second we will have 5.1 10° collisions

We saw that for air at STP, the mean free path A= 107 m

Sor = YNA= 6.7mm

This compares to 477m of actual total path length travelled.



2. The mean free path of a photon inside the Sun before it is absorbed
and re-emitted in a random direction is about 0.01 m.

a. How many steps will photons take to travel from the centre of the
Sun to its surface, a distance of 7 108 m?

The number of steps is equal to the number of collisions N, using

r = \/N/l we obtain
N = (r/2)? = (7 x 10 m/0.01 m)* = 4.9 x 10*!

b. How long will this take if the time between absorption and re-emission
can be neglected?

Photons will travel at speed c, therefore the time that each steps takes is

A/c, the total time will be N A/c
NAi r (7 x 10° m)*
% = 1.6x 10" s = 5200
¢c Ac 00Ilmx3x103ms! > years

Without scattering it would take 2.3s instead!
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frequency

_8ES8E8E8¢E¢

P—

Since the number of collisions increases with time, N« t,

and r = V—/l

the distance travelled from the origin by a molecule scales

with t1/2,

The distance is in reality best described by a distribution
rather than simply a mean.

| |

| |
0O 5 10 15 20 25 30
distance travelled /A

| |
35 40

Frequency distribution of the distance
travelled in 100 000 random walks,
each of 100 steps, with the step-
lengths themselves distributed
according to an exponential
distribution with mean A.
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3.2 Transport

Transport processes apply when there is a departure from
equilibrium

if a temperature gradient is set up, then energy will be transported.
If a concentration gradient of one type of molecule is set up, then
there will a flow of that type of molecule from high to low

concentration (diffusion).
We can consider three cases:

e different identity: diffusion
e different energy: thermal conduction

e different momentum: viscosity.

18



We consider molecules that are free to move in all directions in space
+X, -X, +Y, -y, +2, -Z.

We will make the following assumptions to develop our models:

e 1/6 of the molecules travel in each of the directions +x, +y, +z at speed 0.

e Molecules have the average properties of the position of their last collision, A
away from the surface through which the property of interest is being trans-
ported.

We are ignoring correlations between the energy, speed and

mean free path of molecules
but we will capture the main features of the processes under

study.

19



3.2.1 Diffusion

Diffusion is the movement of a substance driven
by a gradient in its concentration.

The flow rate across area A in terms of a number of molecules N per
unit time is governed by an equation known as Fick's Law:

where D is the diffusion coefficient (defined by this equation).
The term dn/dx is the gradient in the number density (n=N/V) of
the substance of interest.

The minus sign indicates that diffusion causes a flow from high
towards low concentrations.

The diffusion coefficient has units of [m? s1].

The transported property in the case of diffusion is the type of
molecule (different identity). -
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Consider the flow rate (number of molecules per unit time)
from left to right across area A of the dashed line at x:

|
—n(x — A)AD
. ( )

We are only considering molecules moving along +x, hence 1/6
The number density is evaluated a distance A from the reference line
(molecules a mean free path away can scatter and cross the surface at x)

The flow rate will depend on the molecule mean velocity.
21



Molecules on the right-hand side of x can bounce to the left and cross A,
thus contributing to the flow rate with the term:

|
—n(x + AV
c ( )

The total flux is therefore given by:
1 —
g['l(x — /l) —n(x + ﬂ)]AU

Since A is small, we now expand each of the terms to the first order
as follows:

'n N
nx—A) ~ n(x) — Ell and nx+ A)~ n(x) + Eﬂ

so the net flow rate is

1 A dn
3’ ‘ dx

22



Given that Fick’s law defined the diffusion coefficient D as:

1 dn

d_N — —DA% net flow rateis ——=ADA—

dt dx 3 dx

The kinetic theory estimates the D= l/h')
diffusion coefficient to be:

we have a relation between
a macroscopic constant (the diffusion coefficient),
and microscopic properties of a gas
(the mean free path and mean velocity)

23



Example 3.4 How fast does water in a test-tube evaporate?

Answer 3.4 The question is very brief, so we have to make some assumptions:

1. The water vapour has its saturated density, ng, at the water surface.

2. The number density drops to zero at the mouth of test-tube, a height 4 above
the water surface.

3. There are no air currents within the tube.

4. Water vapour can be described as an ideal gas.

In equilibrium, the concentration gradient is constant along the tube, so dn/dx =
ns/h. Therefore the loss rate/unit area is

Avng  AvPs

3h  3hkTy’
using the ideal gas equation, ng = Pg/kT;. Therefore the rate of reduction in

water level is the loss rate in molecules per unit time multiplied by the mass of
each molecule m and divided by the density of water p:

m/ll-)Ps _ mmolelll-)Ps
3hkT1p a 3hRT1p -

In the last step, top and bottom were multiplied by Avogadro’s number, Ny, to
express the result in terms of the mass of a mole, mpge = Nam, and R = Nxk.

For example, at 71 = 293 K, the saturated vapour pressure is Ps = 1710 N m™>
and the density of water is p = 103kgm™. Assuming 4 = 0.1 m and taking
A=10"m, 5 = 650ms~! (water molecules are less massive and move faster

than those of air, mpyge = 0.018 kg), then the evaporation rate is

0.018kg x 107" mx 650ms~! x 1710N m~2

27%x 10 ms™!
3x0.1mx 8.314JK-1 x293K x 103 kgm~3 A ms

24

0.24 mm per day.



3.2.2 Thermal conduction

Thermal conduction is the transfer of energy as heat
that occurs when there is a temperature gradient

heat flow
cold C—— hot
The fundamental equation of dQ dT
heat conduction is Fourier's Law: Fri _KAE

where dQ/dt is the energy flow rate across area A because of a
temperature gradient of dT/dx.

This equation defines the thermal conductivity K,

which has units of [Wm K1].

25



The kinetic theory estimates K as for diffusion, but we are here
transferring energy.

Let the energy/molecule at position x be E(x),

then the energy flow rate from left to right is

1
gnA 0E(x — A)

then the energy flow rate from right to left is

1 | |
—nAE(x + A)
6
Their difference gives the net energy flow from left to right:

1 _ dE
—EIIAU/IE

26



After applying the same expansions as for the diffusion case,
we obtain:

dE  dEdT
dx  dT dx

We can define (n dE/dT) as the rate of increase of energy/volume with
temperature

that we call specific heat capacity per unit volume ¢

27



dQ dT

Given Fourier’s law:

dr - E
The net flow from left to right: I dE
€ net energy 1riow 1rrom 1e Oorig ——”AU/‘I_
3 dx
dte.  dEdT

And the relation: and c=ndE/dT

dx  dT dx

aQ _ 1, _dI
ar 374

We can write:

I

and we can define K = —=Avc

3

heat capacity here is per unit volume and hence density dependent

28



3.2.3 Viscosity

- -
Moving
>
.
>

—
—

Fixed

The phenomenon of viscosity is seen in its simplest form
when considering two parallel surfaces, with one moving
relative to the other

We consider that when molecules hit each surface they stick
briefly before leaving
In doing so they acquire the mean velocity of the surface.



If one surface moves with respect to the other, there must therefore
be a velocity gradient.
This produces a drag force on each surface given by

|

Moving
doy -
Fy=—-nA— -
dy -
Fixed

where F, is the force in the x-direction (left to right)
dv,/dy is the velocity gradient, i.e. the change in v, with y-position
A is the area of the surface

This equation defines the constant n, the viscosity coefficient
with units of [Nm=2 s1].
The minus sign means that the force is a drag force.

Viscosity is the transport of momentum, in this case the x-component of
momentum transported in the y-direction.



Let’s consider a surface in the fluid parallel to the upper and lower
surfaces

Moving "
The mean .
x-momentum/molecule aty >
will be mv,(y) >
———

y
Fixed ‘

the momentum per unit time carried from bottom to top across
the surface is: 1

—nAomo«(y — A
e x(y — A)

1 ‘
And the rate from top to bottom is: gnAanx(y + A)
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Therefore, the net flow rate is:

1 _ do,
——nAoAm—
3 dy

Given that n*m is the mass/unit volume, i.e. the density p, we deduce
that:

I

_/llj )
3 F

n =

Viscosity is important in the boundary layer near the surface of
a body moving through a fluid.
Outside this layer the flow can be taken as non-viscous.



Example: Fluid flow past a wing

. n
outeredge of — |
boundary layer

NON-viscous
flow outside
boundary layer

/
—

the flow velocity v changes, as a function of the normal

distance n,
from zero at the surface to the full non-viscous flow value at

the outer edge of the layer.
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Transport coefficients

transported Macroscopic kinetic theory
quantity law estimate
diffusion number density ”gy =-DAZ; dn D= %/u')
or ‘identity’
thermal thermal energy 40 — _gadL K = L e
' . o dr dx 3°
conduction
- : dpx — doy o 1=
viscosity momentum =F, nA% n = 3Ap
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3.2.4 Avogadro’s number

The kinetic theory of transport led to the first reliable estimate of
Avogadro's number, provided by Maxwell in 1865.

We cannot measure the flow rate of molecules directly, but we
can measure it in terms of the mass flow rate,
and hence we can measure:

I

Dy, =mD = —
m = m 3

Aom.

from kinetic theory, the ratio of the viscosity coefficient to the mass
diffusion coefficient is expected to be

n _pP _
D, m

n

the number of molecules per unit volume.



If we now measure the volume of one mole, the molar volume V_,
then N, =V _n, and therefore:

Vinl /
D,,

All the quantities are measurable experimentally

Ny =

although Maxwell found that there were no existing
measurements of the viscosity of gases and had to devise
methods to carry them out.

36



3.2.5 Temperature dependence of
transport coefficients

If we consider the temperature dependence of the mean speed:

R
D o TII/"

At constant pressure, the number of molecules per unit volume is:
n = P/kTj

the quantities ¢ and p are both proportional to n and hence
decrease with T,

However, this is compensated by a matching increase of

Ao 1/n



Overall all transport coefficients of gases are expected to
increase with temperature.

This is observed, although not necessarily in good
agreement with T2 (or T3/2 for diffusion) because of the
inaccuracy of the hard sphere approximation.

By contrast, the viscosity of liquids decreases with T.
This is just another example of the inapplicability of kinetic
theory to liquids and solids.

38



Temperature n K K/n
K [0°Nm™2s 10°Wm 'K m?s2K!
100 7.400 8.960 1211
150 11.18 13.85 1237
200 14.65 18.35 1253
250 17.80 22.49 1263
300 20.68 26.38 1276
350 23.34 30.10 1289
400 25.83 33.79 1308
500 30.41 41.13 1352

1000 49.05 74.32 1515

Experimental measurements of the thermal conductivity and viscosity
of oxygen as a function of temperature

they increase with temperature
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n/100°*Nm=2s -

llIIII

Korn

10 - -

| 1 1 1 1 1 1 1 T
100 1000
T'/K

Thermal conductivity and viscosity of oxygen as a function of
temperature. This is a log-log plot, so both lines should be
straight with the same slope if the kinetic theory prediction
that K and n are proportional to T2 holds.
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Remembering the formulae:
K = AonC,,/3 n = Avnm/3

where C_ and m are the heat capacity and mass per molecule, then
we expect

K C, 5k
n m 2m
for a diatomic molecule.

We therefore expect from kinetic theory that the ratio of thermal
conductivity to viscosity should be independent of temperature.

41



Temperature n K K/n
K 10°Nm=2s 103Wm'K! | m?s2K"!

100 7.400 8.960 1211
150 11.18 13.85 1237
200 14.65 18.35 1253
250 17.80 22.49 1263
300 20.68 26.38 1276
350 23.34 30.10 1289
400 25.83 33.79 1308
500 30.41 41.13 1352
1000 49.05 74.32 1515

K Cn 5k

1 m 2m

it does rise, partly as a result of the excitation of vibrations in the
oxygen molecule.

For molecular oxygen, m = 32 u, and the ratio is expected to be 650.
This Is too low, but is at least the correct order of magnitude, which is

all one can expect given the simple assumptions made.
42



1500 o |
T . g ¢ ¢ ¢ ° :
e i i
1000 -
500 | i
100 1000

T/K

Ratio of thermal conductivity and viscosity of oxygen as a function
of temperature.

This should be a constant if the kinetic theory prediction that K
and are both proportional to T,/? holds.
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3.2.6 Pressure dependence of
transport coefficients

The viscosity and thermal conductivity coefficients:

I
n = =Abp,

(

P—

both p and Cscale with n, while A o n_l

Therefore:

kinetic theory predicts that n and K are
independent of pressure!
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Pressure K
atm 10 3WmK!

1 26.2
5 26.6
10 27.0
20 27.8 50 ————— 2
40 29.4 ! ]
60 31.0 10 L _
100 34.3 -
M [ ]
301 . -
B - -
L 20 -
E - -
10 - _
O | 1 1 1 IR R R S |
1 10 100
P/ Patm

Thermal conductivity of oxygen as a function of pressure at 300K
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o At low pressures, the mean free path does get larger, but
eventually it will become similar in size to the dimensions of the
apparatus.

It then ceases to increase and the transport coefficients start to
drop. This is known as the Knudsen regime of pressures, and is
difficult to treat accurately since results start to depend upon
details of the apparatus.

o At high pressures, other problems set in as interatomic forces
becomes significant.
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Example 3.5 Estimate the power per unit area carried by conduction between two
plates differing in temperature by 10K and separated by a I mm thick air gap at
pressures of 10° Nm=2 and 0.1 Nm2 at T = 298 K.

Answer 3.5 ForP = 10° Nm2 (1 bar), A = 107" m < d, SO we use

l
K = ?-wc. (3.39)

-~

with # = 500ms~!. Estimate ¢, the heat capacity per unit volume, using the
equipartition theorem for a diatomic gas with no vibrations:

c= §krz. = gﬁ, (3.40)
2 2 Ty
Hence,
1077 x 500 x 5 x 10°
K = = 0.014Wm 'K, (3.41)

33X 2% 2098

For AT = 10K, Ax = 0.00l m, dT'/dx = 10* K m~! and so the conduction rate
is 140W m~2.

For P = 0.INm™2, 1 = 0.1 m > d, where d is the thickness of the air gap, so
we expect the rate to be d/A = 150 times smaller, very roughly.



3.2.7 Variation with nature of gas

large mean free paths will lead to good conduction
small molecules will conduct better
small molecules are often low mass molecules
they move faster at a given temperature

higher conductivity

Therefore we expect hydrogen and helium to be better heat
conductors than carbon dioxide for instance.

Remember: for fixed P and T, n is the same for all ideal gases!



3.3 Limitations of kinetic theory

Kinetic theory is successful in explaining, for instance, the pressure
exerted by a gas, but it fails to describe:

e phase changes (boiling, melting),
e the existence of liquids and solids,
e deviations from the ideal gas law.

It is the neglect of interatomic forces which is most important
(without them there could be no liquids).

We will now follow a more utilitarian approach in which we take some
measured (macroscopic) properties and try to extrapolate physical
(microscopic) theories from these.

This is the subject of classical thermodynamics. .



