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The equations that we have derived

cannot describe liquids and solids.

So far, we have only consider ideal gases.

Let us consider deviations from the ideality of gases:

in real gases interatomic forces are present



10.1 Interatomic Forces

Interatomic forces are the forces that real atoms exert on each other

When very close they repel,
whereas at large distances the forces become weakly attractive.

A classical picture for the long-range attraction is that fluctuations in
the electron distribution give a dipole moment to an atom which
induces a similar dipole moment in another atom and the two are
attracted.

The repulsion can be viewed in terms of the electrostatic repulsion of
the nuclei in combination with the Pauli exclusion principle.



The interaction between atoms can be represented by the potential
energy @(r) between atoms separated by distancerr.

The force f between atoms is related to the potential energy

by f =-d®/dr

And f >0 is a repulsive force,

so the negative gradient at short distance corresponds to repulsion.
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| A schematic figure of the
potential energy between two
atoms as a function of distance
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separation.
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potential energy @(r) between atoms separated by distance r

force f between atoms is f = -d@®/dr



10.2 The van der Waals equation

The van der Waals equation is a modification of the ideal gas
equation of state
to approximate the effects of interatomic forces:

o the short-range repulsive force reduces the available volume

o the attractive force reduces the pressure



Consider N molecules in a volume V.

Each occupies a volume that we call b, therefore the available
volume becomes (V - Nb).

We can estimate b, considering the zone around a molecule in which
no other centres of molecules can lie.

For spherical molecules of radius r this is a sphere of radius 2r, and
volume 4m(2r)3/3.

To avoid double counting (we are counting pairs of molecules and
want to consider each pair only once), we divide this volume by 2
and obtain: b = 4v_ where v _ is the volume of one molecule. With
the correction to the volume, the ideal gas equation becomes:

P(V — Nb) = NkT

The reduced volume accounts for the short-range repulsion and
increases the pressure for a given V



The attractive forces act to reduce the pressure.

Imagine a molecule hitting the wall of its container: it feels a general
attractive force towards the rest of the molecules which will reduce
its speed as it approaches the wall.

Any forces exerted by atoms in the wall are irrelevant because if they
attract for example, then while approaching atoms are accelerated
towards the wall, an equal but opposite force is felt by the wall which
is cancelled on average by the collision of the speeded-up atoms.

The correction to P is proportional to the collision rate per unit area
which is proportional to (N/V).

The force decelerating each molecule will also depend upon the
density of molecules, N/V, and thus we end with a correction factor
of the form (N/V)%a where a is a constant.

This then leads to an equation of the form:

a
van der Waals equation (P + Nzw)(v — Nb) = NkT




The constants a and b are the van der Waal’s coefficients:

a depends upon the long-range attractive forces,
b depends upon the short-range repulsive forces which define the
“size” of an atom.

If we consider the number of moles n_,
instead of the number of molecules N and rescale a and b
accordingly:

m

(P + n? %) (V-n,b) =n,RT



Let us now consider the expression for the Helmoltz Free Energy:

F=U-TS

The potential of a molecule due to other molecules in a
small volume dV at distance ris:

du = ¢(r)n(rydV

and assuming that the number density n is constant,
except for r < D, where D is the diameter of the molecules when
n =0, then:

Uu=n f d(r)dV = —2an
JD

we set the integral to be -2a



The total change in U can thus be written as:

N Na
AU = 5(—4111_) =y

We are dividing by 2 to avoid double counting the effect of each

molecule

The total energy is: U = éNkT I
2

S = So+n,CyInT + n,,RIn(V — Nb),

The entropy is: . |
e entropy is = So+5NkInT + NkIn(V — Nb),
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Assuming a monoatomic C, = 3R/2, the Helmoltz Free Energy becomes:

F = U-TS,
N’a 3
- _NI\T—T——NATlnT+Nl\Tln(V Nb) - TS

We can thus extract the pressure considering:
~ ((’)F) N*a  NkT

— — e —
V)~ V2 ' V-Nb

-

a) (V- Nb) = NkT

2

[P+ (3)

van der Waals equation obtained via mean-field theory
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10.2.1 P-V diagrams of a van der Waals gas

let's see how the van der Waals equation differs from the ideal gas case

For one mole, the van der Waals equation becomes:

(P + %)(v _b)=RT

Note that as V — oo, this tends towards the ideal gas equation as
expected.
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Figure 10.2 Isotherms of a van der Waals gas. The plot uses values @ = 0.138 N m* and
b = 3.18 x 107> m°>, appropriate for one mole of oxygen gas (O;). The critical isotherm is
drawn dashed, corresponding to a temperature of 155 K. The other isotherms are drawn in

steps of 8 K for the temperature.
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At small volumes the curves are very steep because of the b term,
while at large volumes they tend to the ideal gas case.

In between, a kink develops and there are negative values of pressure.
Liquids are in fact able to support a certain level of negative pressure,
they can be in tension rather than compression.
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Figure 10.3 Isotherm of a van der Waals gas. The plot shows the T = 135 K isotherm for

one mole of oxygen (O) with @ = 0.138 Nm* and b = 3.18 x 10> m>. The equal-areas
construction gives Py = Pg = 2.83 X 106 Pa, with V4 = 0.055 litre and Vg = 0.265 litre.
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Eventually once points B and D have been passed,

the normal P-V behaviour would return

We would expect equilibrium to be reached with two fluids, one
dense and one light, that is a liquid and a gas!

(at A and E)
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In the region BCD the pressure increases with increasing volume.
This is unstable:

consider the two halves of a box filled by such a fluid,

the slightest perturbation, which say caused the left-half to compress
while the right-half expanded, would run away because as the left-half
compressed its pressure would drop while the pressure in the right-

half increased, so driving the process further still.
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Points A and E must have the same temperature and pressure,
we also have g, = g, the condition for phase equilibrium

We know that: dg = —sdT +vdP

Given the isotherm conditions, dT =0, so:

E E
gE:gA+f vdP f vdP =0
A A
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For this reason, the shaded areas ABC and CDE are equal.

This construction (usually known as the Maxwell construction)

can be used to define the region where the liquid gas/separation is
expected to occur.

19



T T T T T T —

(P+%)(V—b):RT |

0.05 0.1 0.15 0.2 0.25 0.3 0.35
volume/litre

pressure/ 106N m™>

there comes a point when there is no longer any kink (dashed line and
lines above):

at this point there will only be a single phase, and there will be no
distinction between a liquid and a gas.

This is known as the critical point: there is a certain temperature above
which no matter the pressure, you will not see the formation of a
separate liquid phase, the gradient of pressure with respect to volume
at constant temperature tends to zero. ((’)p
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This means that huge density fluctuations occur and that one can
see significant density gradients develop due to gravity even in a
small container.

The density fluctuations scatter light and the gas becomes milky
white, a phenomenon known as critical opalescence.
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10.3 Phase diagrams

Given that P and T are the variables in G, it is useful to plot P-T diagrams

P |

liquid

critical point

triple point

vapour

T. T
The lines indicate the values of pressure and temperature for
which the various phases are in equilibrium.
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o Solid-liquid equilibrium is reached along the so-called “melting line’

)
)

where g = g,

o Liquid-vapour equilibrium along the “vaporisation line”

o Solid-vapour equilibrium along the “sublimation line”
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When all three phases are in equilibrium theng. =g, =g,

there are no degrees of freedom

at the triple point

the triple point occurs at a unigue temperature and pressure,
which is why it makes a good temperature reference.
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The key features of phase diagrams:

The slopes of the lines come from the Clausius-Clapeyron equation:

dP L
dT  T(vy—uvy)

The water/ice slope is negative: can “squeeze’ ice into water

The liquid/vapour line stops at the critical point: there 1s no continuation.
There is no equivalent point for the solid/liquid line; solids and liquids appear
to be intrinsically different and there is no way to make a smooth transition
between them.

The solid/vapour transition is called sublimation; iodine gives a nice example of
this, subliming as a purple gas when heated in its solid form.

The three lines meet at the triple point.
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10.3.1 P-V-T surfaces

Solidand
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Pressure P

Constant-temperature line

P-V-T surface for water
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10.4 Summary

Classical thermodynamics can explain some of the features of phase
diagrams, however, to understand the existence of phases we need to
delve down to the microscopic level with the inclusion of interactions

amongst atoms and molecules.
The van der Waals equations shows how even the simplest inclusion of
the effects of interactions introduces features that can be identified

with phase changes.

To explain the properties of liquids and solids, more sophisticated
models are needed.
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