
13 The Dirac Equation

A two-component spinor

χ =

(

a
b

)

transforms under rotations as
χ → e−iθn·Jχ,

with the angular momentum operators, Ji given by:

Ji =
1
2

σi,

where σ are the Pauli matrices, n is the unit vector along the axis of rotation and θ is the angle of
rotation.

For a relativistic description we must also describe Lorentz boosts generated by the operators Ki.
Together Ji and Ki form the algebra (set of commutation relations)

[

Ki,K j
]

= −iεi jkJk
[

Ji,K j
]

= iεi jkKk
[

Ji,J j
]

= iεi jkJk

For a spin-1
2 particle Ki are represented as

Ki = ± i
2σi,

giving us two inequivalent representations.

Starting with a spin-1
2 particle at rest, described by a spinor χ(0), we can boost to give two possible

spinors
χR(p) = eα/2n·σχ(0) = (cosh(α/2)+n ·σsinh(α/2))χ(0)

or
χL(p) = e−α/2n·σχ(0) = (cosh(α/2)−n ·σsinh(α/2))χ(0)

where
sinh(α) =

|p|
m

and
cosh(α) =

Ep

m
so that

χR(p) =
(Ep +m+σ ·p)
√

2m(Ep +m)
χ(0)

χL(p) =
(Ep +m−σ ·p)
√

2m(Ep +m)
χ(0)

57



Under the parity operator the three-moment is reversed p ↔ −p so that χL ↔ χR. Therefore if we
require a Lorentz description of a spin- 1

2 particles to be a proper representation of parity, we must
include both χL and χR in one spinor (note that for massive particles the transformation p ↔ −p
can be achieved by a Lorentz boost). This we define a 4-component spinor

uα(p,λ) ∼
(

χλ
R

χλ
L

)

, (α = 1 · · ·4).

Here λ =±1 is the helicity of the particle.

Using

(Ep +m−σ ·p)(Ep +m+σ ·p) = E2
p +m2−2mEp−|p|2 = 2m(Ep +m)

we can invert the expressions for χL(R) to get

χ(0) =
(Ep +m−σ ·p)
√

2m(Ep +m)
χR(p)

and using

(Ep +m−σ ·p)2 = E2
p +m2 + p2 +2mEp−2(Ep +m)σ ·p = 2(Ep +m)(Ep−σ ·p)

we also have
χL(p) =

(Ep−σ ·p)

m
χR(p)

and
χR(p) =

(Ep +σ ·p)

m
χL(p)

13.1 Dirac (γ)- Matrices

Define a set of four 4×4 γ-matrices

γ0 =

(

0 1
1 0

)

, γi =

(

0 −σi

σi 0

)

In terms of these matrices the above equations relating χL to χR may be expressed as
(

γ0Ep− γ ·p)
)β

α uβ(p,λ) = muα(p,λ)

or in manifestly Lorentz invariant form
(

γµ pµ−m
)β

α uβ(p,λ) = 0,

(Note that there is an implied 4×4 unit matrix in front of the m inside the parenthesis)
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The γ-matrices obey the anti-commutation relations

{γµ,γν} ≡ γµγν + γνγµ = 2gµν I,

where I indicates the 4×4 unit matrix (we suppress this henceforth).

This is known as a “Clifford Algebra”.

This set of anti-commutation relations implies that
(

γµ pµ +m
)

(γν pν−m) = gµν pµ pν−m2 = p2−m2.

So that the equation obeys by the 4-component spinor uα(p,λ) describes a particle which is “on-
shell” i.e. p2 = m2.

The Dirac equation for the wave-function of a relativistic moving spin- 1
2 particle is obtained by

making the replacing pµ by the operator i∂µ giving

(

iγµ∂µ−m
)β

α Ψβ(x) = 0,

which has solution
Ψα(x) = e−ip·xuα(p,λ)

with p2 = m2.

There is a minor problem in attempting to write the Hermitian conjugate of this equation since the
matrix γ0 is Hermitian whereas the space-like matrices, γi, are anti-Hermitian.

The Hermitian conjugate of the Dirac equation is

Ψ†(x)
(

−iγ0 ←∂ 0 −iγ j
←
∂ j −m

)

= 0,

which cannot be expressed in manifestly Lorentz invariant form. However, if we multiply on the
right by γ0 and then anti-commute γ0 through the other γ-matrices so that

γiγ0 = −γ0γi,

we get
Ψ†(x)γ0

(

−iγ0 ←∂ 0 +iγ j
←
∂ j −m

)

= 0.

Now we define Ψ to be
Ψ = Ψ†γ0

and we can write the conjugate equation in manifestly Lorentz invariant from as

Ψ
(

iγ·
←
∂ +m

)

= 0.
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By multiplying on the left by γ0 we can write the Dirac equation in a from similar to the Schrödinger
equation namely:

i
∂Ψ
∂t

=
(

iα j∂ j +mγ0)Ψ

with the Hermitian matrices α j given by

α j = γ0γi ( j = 1 · · ·3).

We can then identify the Hamiltonian for a relativistic spin- 1
2 as

H = iα j∂ j +mγ0.

The transformation of the four-component spinor uα under general Lorentz transformations (rota-
tions and boosts) can be treated by defining the antisymmetric tensor matrices

(σµν)
β
α ≡

i
2 [γµ,γν]

β
α .

Using the commutation relations between Pauli matrices
[

σi,σ j] = 2iεi jkσk,

we have

σi j = εi jk

(

σk 0
0 σk

)

σ0 j =

(

iσ j 0
0 −iσ j

)

Under a general Lorentz transformation

u → e
1
2 iωµνσµν

u.

For µ,ν = i, j this is a rotation. If µ = 0 then

u =
√

2m

(

χL

χR

)

→
√

2m

(

e−
1
2 ωo jσ j χL

e+ 1
2 ωo jσ j χR

)

,

as required for a boost in direction j with velocity v, given by ωo j = tanhv.

13.2 Negative Energy States

The solution to the Dirac equation is

Ψα(x) = e−ip·xuα(p,λ), (λ =±1)
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where the four-component spinor uα obeys

(γ · p−m)uα = 0,

gives us two allowed solutions. Since the γ matrices are 4× 4 matrices, we expect two more
solutions. These are

Ψα(x) = eip·xvα(p,λ),

where the spinor vα obeys the equation

(γ · p+m)vα = 0.

In terms of the left- and right- two-component spinors χL(R)(p,λ), vα may be expressed as

vα(p,λ) =
√

2m

(

χR(p,λ)
−χL(p,λ)

)

.

The spinors uα and vα transform into each other by the “charge-conjugation” operator C:

u = CvT ,

where the superscript T indicates the transpose (u, v are considered to be column spinors, whereas
uv are row spinors).

This means that the equation for u may be written

γ · pCvT = mCvT

and the equation for v may be written

−vγ · p = mv

Taking the transpose of this gives
−γT · pvT = mvT

and multiplying the equation for u = CvT by C−1 we have
(

C−1γC
)

· pvT = mvT .

These relations have to hold for any momentum , p, so that we must have

C−1γµC = −γµT .

This is a general property of the charge conjugation matrix C. In the representation for the γ-
matrices considered so far, namely

γ0 =

(

0 1
1 0

)

, γ j =

(

0 −σ j

σ j 0

)

,
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we may write C as
C = iγ2γ0,

but as we shall see there are other representations for the γ-matrices, for which this may be differ-
ent.

These solutions with spinor v have negative energy −Ep. The existence of negative energy solu-
tions would normally cause difficulty since energies would then be unbounded from below and
all particles would “fall” into the Ep → −∞ states. But for fermions this is not the case if all the
negative energy states are filled. This was Dirac’s picture of the vacuum, called the “sea”. All
negative states are filled (two particles in each energy-level with opposite helicities), and all of the
positive energy states are empty

E = 0
m

x
x
x
x
x

x
x
x
x
x

vacuum

E = 0
m

x
x
x
x
x

x
x
x
x

x

particle-antiparticle state

A one-particle state has one of the positive energy-levels filled and is prevented from “falling” into
a negative energy state by the Pauli exclusion principle, since all these states are filled. A “hole”
in a negative energy state is interpreted as an antiparticle. Thus if a particle in a negative energy
state is promoted to a positive energy state, leaving a hole in a negative energy level, this is equiv-
alent to the creation of a particle-antiparticle pair. Note that the gap between the lowest positive
energy state and the highest negative energy state is 2m, which is the minimum energy required
to produce such a particle-antiparticle pair. If the positive energy particle falls back into the hole
in the negative energy levels then this represents the annihilation of the particle and antiparticle,
releasing energy in excess of 2m.

13.3 Weyl and Dirac Representations

The matrices γµ are defined by their anti-commutation relations (the Clifford algebra). So far we
have considered only one representation of these matrices and in this representation the u and v
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spinors are written

u(p,λ) =
1

√

2(Ep +m)

(

(Ep +m+σ ·p)χ(0)
(Ep +m−σ ·p)χ(0)

)

and
v(p,λ) =

1
√

2(Ep +m)

(

(Ep +m+σ ·p)χ(0)
−(Ep +m−σ ·p)χ(0)

)

.

This is a useful representation (called the “Weyl representation” or “chiral representation”) for the
case massless particles for which m = 0 and Ep = |p| ≡ E. In this case the spinors simplify to

u =
√

2E

(

(1+σ·p̂)
2 χ(0)

(1−σ·p̂)
2 χ(0)

)

=
√

2E

(

χR

χL

)

,

p̂ is the unit vector in the direction of momentum and we have

σ · p̂χR = χR

σ · p̂χL = −χL

χR(L) are eigenstates of helicity σ · p̂ with eigenvalues ±1. Although the parity operator takes us
from positive to negative helicity (p ↔ −p under parity, but the spin operators σi are unchanged
as they are axial vectors), there can be no Lorentz transformation from one to the other in the case
of massless particles. We cannot move into a frame in which the particle appears to be moving
backwards, since the massless particle is moving with the speed of light.

Furthermore u and v both obey the equation

/pu = 0,

/pv = 0,

in the massless case.

Note that we have introduced the “slash” notation /p to mean γ · p.

χL and χR are called “Weyl spinors” or “chiral spinors”

Since we now know that the neutrino has a mass there are no known massless spin- 1
2 particles.

Nevertheless for experiments carried out at sufficiently large energies the masses can usually be
neglected and this Weyl representation is therefore useful for treating such high-energy processes.

For massive particles (or where the energies is too low for the particle masses to be neglected), it
is more convenient to use the “Dirac representation”, with γ-matrices related to the Weyl represen-
tation by a unitary transformation

γµ
Dirac = Sγµ

weylS
−1,
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where
S =

1√
2

(

1 1
1 −1

)

The Clifford algebra is not affected by this transformation. In the Dirac representation we have

γ0 =

(

1 0
0 −1

)

, γ j =

(

0 σ j

−σ j 0

)

,

and the spinors u and v are given by

uDirac = SuWeyl =
√

(Ep +m)

(

χ(0)
σ·p

Ep+mχ(0)

)

vDirac = SvWeyl =
√

(Ep +m)

( σ·p
Ep+mχ(0)

χ(0)

)

.

In the rest-frame of the particle, the positive energy solutions are

u =









√
2m
0
0
0









and









0√
2m
0
0









and the negative energy solutions are

v =









0
0√
2m
0









and









0
0
0√
2m









.

In this representation

/p ≡ γ · p =

(

Ep −σ ·p
σ ·p −Ep

)

,

so that (using (σ ·p)2 = |p|2)

/pu =
√

Ep +m





(

Ep− σ·p2

Ep+m

)

χ
(

1− Ep
Ep+m

)

σ ·pχ



 =
1

√

Ep +m

( (

E2
p−|p|2 +mEp

)

χ
mσ ·pχ

)

= m
√

Ep +m

(

χ
σ·p

Ep+mχ

)

= mu

Similarly it may be shown that v obeys the equation

/pv = −mv.
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We now define a fifth γ-matrix
γ5 ≡ iγ0γ1γ2γ3.

In the Dirac representation we have

γ5 =

(

0 1
1 0

)

,

whereas in the Weyl representation, we have

γ5 =

(

1 0
0 −1

)

.

Note that γ5 anti-commutes with all the other γ-matrices.
{

γ5,γµ
}

= 0

The helicity eigenstates can be projected out using the projection operators
(

1± γ5)

2
.

In the Weyl representation, these projection operators are simply
(

1+ γ5)

2 =

(

1 0
0 0

)

,

(

1− γ5)

2 =

(

0 0
0 1

)

Since γ5γ5 = 1 these are projection operators in the sense that
(

1± γ5)

2

(

1± γ5)

2 =

(

1± γ5)

2
and

(

1+ γ5)

2

(

1− γ5)

2 = 0.

13.4 Normalisation of States

The spinors respect relativistic normalisation,
u†

α(p,λ)uα(p,λ′) = 2Epδλλ′

v†
α(p,λ)vα(p,λ′) = 2Epδλλ′

u†
α(p,λ)vα(p,λ′) = 0

In terms of u and v these become
u(p,λ)u(p,λ′) = 2mδλλ′

v(p,λ)v(p,λ′) = −2mδλλ′

65



13.5 Projection Operators

(P+)αβ ≡ ∑
λ=±1

uα(p,λ)uβ(p,λ)

2m

This is a projection operator because

(P+)αβ (P+)βγ = ∑
λ,λ′=±1

uα(p,λ)uβ(p,λ)

2m

uβ(p,λ′)uγ(p,λ′)
2m

= ∑
λ,λ′=±1

uα(p,λ)uγ(p,λ′)
4m2 2mδλλ′

= ∑
λ=±1

uα(p,λ)uγ(p,λ)

2m

Moreover, from (/p−m)u = 0, we have

(/p−m)αβ (P+)βγ = 0.

We must be able to construct P+ from the γ-matrices. This leads to the solution

P+ =
(/p+m)

2m

Using
/p/p = p2,

we see that
(/p+m)

2m
(/p+m)

2m
=

p2 +m2 +2m/p
4m2 =

(/p+m)

2m

Likewise it may be shown that

(P−)αβ ≡ ∑
λ=±1

vα(p,λ)vβ(p,λ)

2m
=

(/p−m)αβ

2m

13.6 Dirac Equation in an Electromagnetic Field

The coupling of a spin- 1
2 with electric charge e to an electromagnetic field is achieved by the

minimal coupling
∂µ → ∂µ + ieAµ.

so that the Dirac equation becomes
(

iγµ(∂µ + ieAµ)−m
)

Ψ = 0
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Write the spinor Ψ in terms of two-component spinors as

Ψ =

(

χ
Φ

)

In terms of these component and in the Dirac representation for the γ-matrices, the Dirac equation
becomes

iχ̇ = eA0χ+mχ+ iσ j∂ jΦ− eσ ·AΦ
−iΦ̇ = −eA0χ+mΦ− iσ j∂ jχ+ eσ ·Aχ

In the non-relativistic limit, we consider the positive energy solutions and define

χ = e−imt χ̃

Φ = e−imtΦ̃,

where χ̃, Φ̃ are slowly varying functions of time. The Dirac equation becomes

i
dχ̃
dt

= eA0χ̃+ iσ j∂ jΦ̃− eσ ·Aφ̃

−i
dΦ̃
dt

= −eA0Φ̃+2mΦ̃− iσ j∂ jχ̃+ eσ ·Aχ̃

If A0 � 2m the second of these equations is approximately solved by

Φ̃ =
iσ j
(

∂ j + ieA j
)

χ̃
2m

,

and inserting this into the first equation gives

i
dχ̃
dt

= eA0χ̃− 1
2m

σ j (∂ j + ieA j
)

σk (∂k + ieAk) χ̃

Using

σ ·aσ ·b ==

(

1
2

{

σ j,σk
}

+
1
2

[

σ j,σk
]

)

a jbk = a ·b+ iεi jkaib jσk

and
[

∂ j + ieA j,∂k + ieAk
]

= ie
(

∂ jAk−∂kA j
)

= ieFjk =−ieε jklB
l

gives
σ j (∂ j + ieA j

)

σk (∂k + ieAk) = (∂+ ieA)2−σ ·B
so that the equation for χ̃ becomes

i
dχ̃
dt

= eA0χ̃− 1
2m

(∂+ ieA)2 χ̃+ e
σ ·B
2m

χ̃.
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The first two terms give the usual electromagnetic potential terms for a charged particle moving in
an electromagnetic field.

The last term may be written as µ ·B, where µ is the magnetic moment associated with the spin of
the particle.

µ = gsµBS

where µB is the “Bohr magneton”
µB ≡

e
2m

S j =
1
2σ j

This gives the value gs = 2 for the gyromagnetic ratio gs associated with the spin of a fermion, in
contrast with the value gl = 1 for the contribution to the magnetic moment of a charged particle
due to its orbital angular momentum
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