VLSI Systems Design Coursework

Bitslice Datapath Design

e Working individually.
e Implement an 8 bit divider datapath using bitslice techniques.

e Implement a synthesizable SystemVerilog control unit for your datapath.

Three options:

1. Datapath Architecture and Algorithm Provided, Control Signals Specified
2. Datapath Architecture and Algorithm Provided
3. Nothing Provided

For extra credit:

e Create a complete IC around your datapath and control unit.

Bitslice Datapath Design

Cell library?

_AC(lut —[>o— _} _} —>— —%

A FA S

T —}DD“% -

| — Load

:’QHCAs— 3> jD i}“ 1 1

e Combinational Cells mux?2 fulladder halfadder inv

and? or2 nand? norZ2 XxXor?2
nand3 nor3 nand4

buffer trisbuf

e Sequential Cells scandtype scanreg

Please use the symbols shown when representing these cells in gate level schematics. Test and
SDI connections have been intentionally omitted.

2

Bitslice Datapath Design

8 bit Divider Datapath - TYPE#1

o 41 —— nBorrow 0
peran
Operand? @— Overflov
Subtract —
EnableOp1 —\/ Increment
LoadACC — ACC
EnableOp2 ——\/

LoadC Count

EnableACC N/

Databus

8
LoadD Div

EnableD

LoadQ — Quotient |

LoadR —{ Remainder |

l Quotient
Remainder

Datapath Architecture
3

Bitslice Datapath Design

Division Algorithm - TYPE#1

e The datapath has been designed to implement the following simple division
algorithm:

Count = 0;
ACC = Operandl;
Divisor = Operand?l?;

while (ACC >= Divisor)
begin
Count = Count + 1;
ACC = ACC - Divisor;
end

Remainder = ACC;
Quotient = Count;

Bitslice Datapath Design

Implementaion of Blocks

Operand1

EnableOp1 —\/

EnableOp2

Operand2

V4

Subtract —

LoadACC —

ACC

EnableACC 4Y
. 4 . 4

—— nBorrow
orro 0
— Overflov
Increment —0

LoadC —| Count

Databus

EnableD

LoadD —| Divisor

8
LoadQ
LoadR

Quotient

Remainder

e Each 8-bit register is implemented as 8 scannable register cells. The signals
Clock, nReset, Test etc are not shown to keep the datapath diagram simple.

e The 8-bit subtractor and incrementer are implemented as ripple carry circuits
based around full adders and half adders.

5

Bitslice Datapath Design

e The subtractor and incrementer? circuits:

— nBorrow — Overflow
Cout C
Al7] A A7] A
FA S Y[7] HA S Y[71]
B B B
,,,,,,,,,,,,,,,,, o
,,,,,,,,,,,,,,,, I' I
Al2] A Cout Al2] A c
o g FA'S vi2] HA s v[2]
B[2 B B
12 Cin
All] ACOUt A[1] A c
FA S Y[1] HA S Y[1]
B[1 —| >0—B B
1l Cin
A[0] A Cout AJ0] A ©
FA S Y[0] HA S Y[0]
B[O B B
o —[>os £ T
J 1
1

Note that the Overflow signal from the incrementer is not needed by the algo-
rithm but can be used to detect divide by zero.

%a half adder for the incrementer can be constructed from simpler gates (or from a fulladder
and a tielow)if no halfadder cell is available.

6

Bitslice Datapath Design

8 Identical Bitslice Cells

e all inter-bitslice wiring is by butting.

5 2388 Control and Feedback Signal e

S g°5¢% ontrol and Feedback Signals 5
Operand1<7> _I | 111 [I I I_ Quotient<7>
Operand2<7> == Bitslice 7 — Remainder<7:
Operand1<6> — Quotient<6>
Operand2<6> = Bitslice 6 — Remainder<6:
Operand1<5> . Quotient<5>
Operand2<5> — Bitslice 5 — Remainder<5:
Operand1<4> _ . Quotient<4>
Operand2<4> — Bitslice 4 — Remainder<4:
Operand1<3> . Quotient<3>
Operand2<3> — Bitslice 3 — Remainder<3:
Operand1<2> | — Quotient<2>
Operand2<2> — Bitslice_2 — Remainder<2:
Operandi<1> | L Quotient<1>
Operand2<1> = Bitslice 1 —— Remainder<1:
Operand1<0> — Quotient<0>
Operand2<0> = Bitslice 0 — Remainder<0:

HTTT1 i

T oOnS© fa)

S o (0] k] %] =

> TFS (§C:’ o

Datapath Cell

inputs: Clock, nReset, Test, SDI, Operand1, Operand?2, Subtract, Increment, LoadC,
LoadD, LoadACC, LoadQ, LoadR, EnableOp1, EnableOp2, Enable ACC, EnableD

outputs: SDO, Quotient, Remainder, nBorrow, Overflow

7

Bitslice Datapath Design — SystemVerilog

e control — synthesizable behavioural model generates control signals
e divider — structural model instances datapath and control

e divider stim — test harness.

To indicate that a new division is required, the stimulus will raise the Req sig-
nal for one clock cycle. Once the Quotient and Remainder become available,

the control module will raise the Done signal for one cycle’.

Req Operand1 Operand2
Clock *I ””””” ¥ T O ”””””””””””””””” !
nReset — 1 I | 8 8
! Clock nReset Req LoadC LoadC Clock nReset Test SDI Operand1 Operand?2 !
1 LoadD LoadD 1
| Loall_dAgg Il:oaggCC |
1 oal oa !
| Control LoadR LoadR DataPath |
! Subtract Subtract !
! Increment Increment !
| nBorrow EnableOp1 EnableOp1 nBorrow |
| Overflow EnableOp2 EnableOp2 Overflow w
EnableACC EnableACC
| Done EnableD EnableD SDO Quotient Remainder !
" Divider A8 ts |
********************* Yo Y o Y
Done Quotient Remainder

3The Quotient and Remainder values must remain stable and valid between Done cycles

Bitslice Datapath Design

8 bit Divider Datapath - TYPE#2

The following simplified datapath? allows the implementation of a more efficient
algorithm:

Operandi Operand2 Shiftln
Databus

8

I I I%O
|DivisorH| | DivisorL | ACC Result
<< 1

| 1 |_W

nZ Remainder nBorrow Quotient

You can try this alternative (TYPE#2) datapath if you want to show off your talents.

4control signals are not specified here to allow greater flexibility in the design (i/o for complete

divider will be unchanged — Req, Done, Operand1, Operand2, Quotient, Remainder, Clock, nReset)
9

Bitslice Datapath Design

Division Algorithm - TYPE#2

ACC = Operandl; Result = 0;
DivisorH = Operand2; DivisorL = 0;

for (1 =0; i< 8; 1 = 1i+1)
begin
{DivisorH,DivisorL} = {DivisorH,DivisorL} >> 1;
Result = Result << 1;
if ((DivisorH == 0) && (ACC >= DivisorL))
begin
ACC = ACC - DivisorlL;
Result[0] = 1;
end
end

Remainder = ACC;
Quotient = Result;

Warning - think before making your life harder. With greater flexibility comes a greater
chance to make mistakes. — A good working implementation of a TYPE#1 system will get
more marks than an almost working implementation of a TYPE#2 system.

10

Bitslice Datapath Design

8 bit Divider Datapath - TYPE#3

Division Algorithm - TYPE#3

Other algorithms and datapaths may be acceptable but only if they are passed by
me for the use of individual students®.

>Type #3 designs will need to be presented for approval at the beginning of the upcoming laboratory
session.

11

Bitslice Datapath Design — Synthesis, Place & Route

e control — Synthesis

You should synthesize the control unit and verity that the synthesized gate-
level version works in place of the behavioural version.

e control — Place & Route

You should place and route the control unit and verify that the netlist extracted
from magic version works in place of the behavioural version.

e divider — Place & Route

As an optional extra, you can create a complete chip including the magic ver-
sion of the datapath and the synthesized, placed and routed control unit.

this option will be open to students who complete the other parts of the exercise
before 14:40 on the day of the final laboratory session.

12

Bitslice Datapath Design

Location of magic files

e Cell Library Directory

All magic leaf cells (l1eftbuf.mag, rightend.mag, fulladder.mag ...)
should exist only in the cell library directory:

“/design/magic/tsmcl80/cell_1lib

e Bitslice Directory

The magic hierarchical cells (bitslice.mag, datapath.mag, control.mag,
divider.mag) should exist only in the bitslice directory:

“/design/magic/tsmcl80/bitslice

To enable access to the leaf cells when creating a hierachical cell you will need to
use the magic addpath command:
:addpath /home/<username>/design/magic/tsmcl80/cell_1lib
before using the : getcell command.
The easiest way to do this is to include the appropriate addpath command in a
”.magicrc” file in the bitslice directory. This is done automatically by the script:
init_bitslice_directories

13

Bitslice Datapath Design

Location of SystemVerilog files

e Behavioural Directory

— control.sv control stim.sv

— divider.sv divider_stim.sv divider.tcl
“/design/magic/tsmcl80/bitslice/behavioural
e Gate Level Directory
— control.sv
“/design/magic/tsmcl80/bitslice/gate_level
e Extracted Directory

— control.vnet control.sv
— bitslice.vnet bitslice.sv bitslice stim.sv
— datapath.vnet datapath.sv datapath stim.sv

— divider.vnet divider.sv

“/design/magic/tsmcl80/bitslice/extracted

14

Bitslice Datapath Design

Control Unit Simulation with Different Models®

e Behavioural

xmverilog behavioural/control_stim.sv \
behavioural/control.sv \
+access+r +gui

e Post-synthesis

xmverilog Dbehavioural/control_stim.sv \
gate_level/control.sv -v fcdeCells.sv \
+access+r +gul +xmtimescale+lns/10ps

e Post-layout

xmverilog behavioural/control_stim.sv \
extracted/control.sv +incdirt+extracted \
+define+SCANPORTS +access+r +gui

6The SCANPORTS macro tells behavioural/control_stim.sv that the control module
has scan ports.

15

Bitslice Datapath Design

Divider Simulation with Different Models’”

xmverilog behavioural/divider_stim.sv behavioural/divider.sv \
behavioural/control.sv \
extracted/datapath.sv +incdir+extracted \
+access+r +gui +tcl+behavioural/divider.tcl

xmverilog Dbehavioural/divider_stim.sv behavioural/divider.sv \
gate_level/control.sv -v fcdeCells.sv \
extracted/datapath.sv +incdir+extracted \
+access+r +gul +xmtimescale+lns/10ps

xmverilog behavioural/divider_stim.sv behavioural/divider.sv \
extracted/control.sv extracted/datapath.sv +incdir+extracted \
+define+SCANPORTS +access+r +guil

xmverilog behavioural/divider_stim.sv \
extracted/divider.sv +incdir+extracted \
+define+SCANPORTS +access+r +guil

’The SCANPORTS macro tells behavioural/divider stim.sv that the divider module
has scan ports and it tells behavioural/divider. sv that the control module has scan ports.

16

Bitslice Datapath Design

Submission — Files

Prepare script (prepare_vlsi desex4)will collect the magic and SystemVerilog
files into a single handin.tar file.
The script will also run a number of simple simulations.

Deadline for file submission is 16:00 on Friday 10th January.

Submission — Supporting Figures
System design diagrams (in each case all control signals must be shown):

e Datapath Architecture Diagram single A4 page PDF document readable at A5 size
e Bitslice Gate Level Schematic single A4 page PDF document readable at A5 size
e ASM Chart single A4 page PDF document readable at A5 size

e All 3 figures combined on one page single A4 page PDF document

Deadline for figure submissions is 16:00 on Friday 17th January.

17

Bitslice Datapath Design

Proposed Marking Scheme

Marks for different design types:

o TYPE#1 Max 78 marks
e TYPE#2 Max 92 marks
e TYPE#3 Max 100 marks

Two marks will be awarded:
e Based on submitted files Weighted 0.75
e Based on submitted figures Weighted 0.25

In addition, a bonus of 10 marks® will be awarded for students who successfully
create a complete IC.

8note that the total mark with bonus will not exceed 100

18

