
VLSI Systems Design Coursework

Bitslice Datapath Design

• Working individually.

• Implement an 8 bit divider datapath using bitslice techniques.

• Implement a synthesizable SystemVerilog control unit for your datapath.

Three options:

1. Datapath Architecture and Algorithm Provided, Control Signals Specified

2. Datapath Architecture and Algorithm Provided

3. Nothing Provided

For extra credit:

• Create a complete IC around your datapath and control unit.
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Bitslice Datapath Design
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1Please use the symbols shown when representing these cells in gate level schematics. Test and
SDI connections have been intentionally omitted.
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Bitslice Datapath Design

8 bit Divider Datapath - TYPE#1
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Bitslice Datapath Design

Division Algorithm - TYPE#1

• The datapath has been designed to implement the following simple division
algorithm:

Count = 0;
ACC = Operand1;
Divisor = Operand2;

while ( ACC >= Divisor )
begin

Count = Count + 1;
ACC = ACC - Divisor;

end

Remainder = ACC;
Quotient = Count;
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Bitslice Datapath Design

Implementaion of Blocks
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• Each 8-bit register is implemented as 8 scannable register cells. The signals
Clock, nReset, Test etc are not shown to keep the datapath diagram simple.

• The 8-bit subtractor and incrementer are implemented as ripple carry circuits
based around full adders and half adders.
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Bitslice Datapath Design

• The subtractor and incrementer2 circuits:
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Note that the Overflow signal from the incrementer is not needed by the algo-
rithm but can be used to detect divide by zero.

2a half adder for the incrementer can be constructed from simpler gates (or from a fulladder
and a tielow) if no halfadder cell is available.
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Bitslice Datapath Design

8 Identical Bitslice Cells
• all inter-bitslice wiring is by butting.
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Datapath Cell
inputs: Clock, nReset, Test, SDI, Operand1, Operand2, Subtract, Increment, LoadC,
LoadD, LoadACC, LoadQ, LoadR, EnableOp1, EnableOp2, EnableACC, EnableD

outputs: SDO, Quotient, Remainder, nBorrow, Overflow
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Bitslice Datapath Design – SystemVerilog

• control – synthesizable behavioural model generates control signals

• divider – structural model instances datapath and control

• divider stim – test harness.
To indicate that a new division is required, the stimulus will raise the Req sig-
nal for one clock cycle. Once the Quotient and Remainder become available,
the control module will raise the Done signal for one cycle3.
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3The Quotient and Remainder values must remain stable and valid between Done cycles
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Bitslice Datapath Design

8 bit Divider Datapath - TYPE#2

The following simplified datapath4 allows the implementation of a more efficient
algorithm:
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You can try this alternative (TYPE#2) datapath if you want to show off your talents.
4control signals are not specified here to allow greater flexibility in the design (i/o for complete

divider will be unchanged – Req, Done, Operand1, Operand2, Quotient, Remainder, Clock, nReset)

9



Bitslice Datapath Design

Division Algorithm - TYPE#2

ACC = Operand1; Result = 0;
DivisorH = Operand2; DivisorL = 0;

for ( i = 0; i < 8; i = i+1 )
begin
{DivisorH,DivisorL} = {DivisorH,DivisorL} >> 1;
Result = Result << 1;
if ( (DivisorH == 0) && ( ACC >= DivisorL) )

begin
ACC = ACC - DivisorL;
Result[0] = 1;

end
end

Remainder = ACC;
Quotient = Result;

Warning - think before making your life harder. With greater flexibility comes a greater
chance to make mistakes. – A good working implementation of a TYPE#1 system will get
more marks than an almost working implementation of a TYPE#2 system.
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Bitslice Datapath Design

8 bit Divider Datapath - TYPE#3

Division Algorithm - TYPE#3

Other algorithms and datapaths may be acceptable but only if they are passed by
me for the use of individual students5.

5Type #3 designs will need to be presented for approval at the beginning of the upcoming laboratory
session.
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Bitslice Datapath Design – Synthesis, Place & Route

• control – Synthesis

You should synthesize the control unit and verify that the synthesized gate-
level version works in place of the behavioural version.

• control – Place & Route

You should place and route the control unit and verify that the netlist extracted
from magic version works in place of the behavioural version.

• divider – Place & Route

As an optional extra, you can create a complete chip including the magic ver-
sion of the datapath and the synthesized, placed and routed control unit.

this option will be open to students who complete the other parts of the exercise

before 14:40 on the day of the final laboratory session.
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Bitslice Datapath Design

Location of magic files
• Cell Library Directory

All magic leaf cells (leftbuf.mag, rightend.mag, fulladder.mag . . . )
should exist only in the cell library directory:

˜/design/magic/tsmc180/cell_lib

• Bitslice Directory

The magic hierarchical cells (bitslice.mag, datapath.mag, control.mag,
divider.mag) should exist only in the bitslice directory:

˜/design/magic/tsmc180/bitslice

To enable access to the leaf cells when creating a hierachical cell you will need to
use the magic addpath command:

:addpath /home/<username>/design/magic/tsmc180/cell_lib
before using the :getcell command.
The easiest way to do this is to include the appropriate addpath command in a
”.magicrc” file in the bitslice directory. This is done automatically by the script:

init_bitslice_directories
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Bitslice Datapath Design

Location of SystemVerilog files
• Behavioural Directory

– control.sv control stim.sv

– divider.sv divider stim.sv divider.tcl

˜/design/magic/tsmc180/bitslice/behavioural

• Gate Level Directory

– control.sv

˜/design/magic/tsmc180/bitslice/gate_level

• Extracted Directory

– control.vnet control.sv

– bitslice.vnet bitslice.sv bitslice stim.sv

– datapath.vnet datapath.sv datapath stim.sv

– divider.vnet divider.sv

˜/design/magic/tsmc180/bitslice/extracted
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Bitslice Datapath Design

Control Unit Simulation with Different Models6

• Behavioural

xmverilog behavioural/control_stim.sv \
behavioural/control.sv \
+access+r +gui

• Post-synthesis

xmverilog behavioural/control_stim.sv \
gate_level/control.sv -v fcdeCells.sv \
+access+r +gui +xmtimescale+1ns/10ps

• Post-layout

xmverilog behavioural/control_stim.sv \
extracted/control.sv +incdir+extracted \
+define+SCANPORTS +access+r +gui

6The SCANPORTS macro tells behavioural/control stim.sv that the control module
has scan ports.
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Bitslice Datapath Design

Divider Simulation with Different Models7

xmverilog behavioural/divider_stim.sv behavioural/divider.sv \
behavioural/control.sv \
extracted/datapath.sv +incdir+extracted \
+access+r +gui +tcl+behavioural/divider.tcl

xmverilog behavioural/divider_stim.sv behavioural/divider.sv \
gate_level/control.sv -v fcdeCells.sv \
extracted/datapath.sv +incdir+extracted \
+access+r +gui +xmtimescale+1ns/10ps

xmverilog behavioural/divider_stim.sv behavioural/divider.sv \
extracted/control.sv extracted/datapath.sv +incdir+extracted \
+define+SCANPORTS +access+r +gui

xmverilog behavioural/divider_stim.sv \
extracted/divider.sv +incdir+extracted \
+define+SCANPORTS +access+r +gui

7The SCANPORTS macro tells behavioural/divider stim.sv that the divider module
has scan ports and it tells behavioural/divider.sv that the control module has scan ports.
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Bitslice Datapath Design

Submission – Files
Prepare script (prepare_vlsi desex4) will collect the magic and SystemVerilog
files into a single handin.tar file.
The script will also run a number of simple simulations.

Deadline for file submission is 16:00 on Friday 10th January.

Submission – Supporting Figures
System design diagrams (in each case all control signals must be shown):

• Datapath Architecture Diagram single A4 page PDF document readable at A5 size

• Bitslice Gate Level Schematic single A4 page PDF document readable at A5 size

• ASM Chart single A4 page PDF document readable at A5 size

• All 3 figures combined on one page single A4 page PDF document

Deadline for figure submissions is 16:00 on Friday 17th January.
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Bitslice Datapath Design

Proposed Marking Scheme
Marks for different design types:

• TYPE#1 Max 78 marks

• TYPE#2 Max 92 marks

• TYPE#3 Max 100 marks

Two marks will be awarded:

• Based on submitted files Weighted 0.75

• Based on submitted figures Weighted 0.25

In addition, a bonus of 10 marks8 will be awarded for students who successfully
create a complete IC.

8note that the total mark with bonus will not exceed 100
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