
VLSI Systems Design Coursework

Bitslice Datapath Design

• Working individually.

• Implement an 8 bit divider datapath using bitslice techniques.

• Implement a synthesizable SystemVerilog control unit for your datapath.

Three options:

1. Datapath Architecture and Algorithm Provided, Control Signals Specified

2. Datapath Architecture and Algorithm Provided

3. Nothing Provided

For extra credit:

• Create a complete IC around your datapath and control unit.

1

Bitslice Datapath Design

Cell library1

HA SB

A
C

FA SB

A
Cout

Cin
1

0

D Q D Q

Load

• Combinational Cells mux2 fulladder halfadder inv

and2 or2 nand2 nor2 xor2

nand3 nor3 nand4

buffer trisbuf

• Sequential Cells scandtype scanreg

1Please use the symbols shown when representing these cells in gate level schematics. Test and
SDI connections have been intentionally omitted.

2

Bitslice Datapath Design

8 bit Divider Datapath - TYPE#1

DivisorLoadD

EnableD

8

RemainderLoadR

Remainder

0 1

+1

CountLoadC

0

Overflow

Increment

QuotientLoadQ

Quotient

EnableOp1

Operand1

EnableOp2

01Subtract

LoadACC

EnableACC

ACC

Databus

Operand2

nBorrow

Datapath Architecture

3

Bitslice Datapath Design

Division Algorithm - TYPE#1

• The datapath has been designed to implement the following simple division
algorithm:

Count = 0;
ACC = Operand1;
Divisor = Operand2;

while (ACC >= Divisor)
begin

Count = Count + 1;
ACC = ACC - Divisor;

end

Remainder = ACC;
Quotient = Count;

4

Bitslice Datapath Design

Implementaion of Blocks

DivisorLoadD

EnableD

8

RemainderLoadR

Remainder

0 1

+1

CountLoadC

0

Overflow

Increment

QuotientLoadQ

Quotient

EnableOp1

Operand1

EnableOp2

01Subtract

LoadACC

EnableACC

ACC

Databus

Operand2

nBorrow

• Each 8-bit register is implemented as 8 scannable register cells. The signals
Clock, nReset, Test etc are not shown to keep the datapath diagram simple.

• The 8-bit subtractor and incrementer are implemented as ripple carry circuits
based around full adders and half adders.

5

Bitslice Datapath Design

• The subtractor and incrementer2 circuits:

FA S
B

A
Cout

Cin

FA S
B

A
Cout

Cin

FA S
B

A
Cout

Cin

1

FA S
B

A
Cout

Cin

A[2]

A[0]

A[1]

A[7]

Y[0]

Y[1]

Y[2]

Y[7]

nBorrow

B[2]

B[0]

B[1]

B[7]

HA S
B

A
C

A[2]
Y[2]

HA S
B

A
C

A[1]
Y[1]

1

HA S
B

A
C

A[0]
Y[0]

HA S
B

A
C

Overflow

A[7]
Y[7]

Note that the Overflow signal from the incrementer is not needed by the algo-
rithm but can be used to detect divide by zero.

2a half adder for the incrementer can be constructed from simpler gates (or from a fulladder
and a tielow) if no halfadder cell is available.

6

Bitslice Datapath Design

8 Identical Bitslice Cells
• all inter-bitslice wiring is by butting.

Operand1<7>

Operand1<6>

Operand1<5>

Operand1<4>

Operand1<3>

Operand1<2>

Operand1<1>

Operand1<0>

Operand2<6>

Operand2<5>

Operand2<4>

Operand2<3>

Operand2<2>

Operand2<1>

Operand2<0>

Operand2<7>

T
e

s
t

C
lo

c
k

n
R

e
s
e

t

Bitslice_6

Bitslice_5

Bitslice_4

Bitslice_3

Bitslice_2

Bitslice_1

Bitslice_0

Bitslice_7

Control and Feedback Signals

Remainder<7>

Remainder<6>

Remainder<5>

Remainder<4>

Remainder<3>

Remainder<2>

Remainder<1>

Remainder<0>

Quotient<7>

Quotient<6>

Quotient<5>

Quotient<4>

Quotient<3>

Quotient<2>

Quotient<1>

Quotient<0>

S
D

O

V
d

d
!

T
e

s
t

C
lo

c
k

n
R

e
s
e

t

S
D

I

V
d

d
!

G
N

D
!

G
N

D
!

Datapath Cell
inputs: Clock, nReset, Test, SDI, Operand1, Operand2, Subtract, Increment, LoadC,
LoadD, LoadACC, LoadQ, LoadR, EnableOp1, EnableOp2, EnableACC, EnableD

outputs: SDO, Quotient, Remainder, nBorrow, Overflow

7

Bitslice Datapath Design – SystemVerilog

• control – synthesizable behavioural model generates control signals

• divider – structural model instances datapath and control

• divider stim – test harness.
To indicate that a new division is required, the stimulus will raise the Req sig-
nal for one clock cycle. Once the Quotient and Remainder become available,
the control module will raise the Done signal for one cycle3.

SD0

EnableOp1
EnableOp2
EnableACC

EnableD

LoadC
LoadD

LoadACC
LoadQ
LoadR

Subtract
Increment

EnableOp1
EnableOp2
EnableACC
EnableD

LoadC
LoadD
LoadACC
LoadQ
LoadR
Subtract
Increment

Overflow

Divider

DataPathControl

nResetClock

Overflow

Test SDI

0 0

Done

Done

Req

8 8

Operand1 Operand2

Operand1 Operand2

Clock

nReset

Clock nReset

8 8

RemainderQuotient

Quotient Remainder

Req

nBorrow nBorrow

3The Quotient and Remainder values must remain stable and valid between Done cycles

8

Bitslice Datapath Design

8 bit Divider Datapath - TYPE#2

The following simplified datapath4 allows the implementation of a more efficient
algorithm:

DivisorH DivisorL

>> 1 Remainder

Remainder

ACC

Quotient

Quotient

Result

0

<< 1

0

Operand1 Operand2

Check
Zero

nZ nBorrow

ShiftIn
Databus

8

You can try this alternative (TYPE#2) datapath if you want to show off your talents.
4control signals are not specified here to allow greater flexibility in the design (i/o for complete

divider will be unchanged – Req, Done, Operand1, Operand2, Quotient, Remainder, Clock, nReset)

9

Bitslice Datapath Design

Division Algorithm - TYPE#2

ACC = Operand1; Result = 0;
DivisorH = Operand2; DivisorL = 0;

for (i = 0; i < 8; i = i+1)
begin
{DivisorH,DivisorL} = {DivisorH,DivisorL} >> 1;
Result = Result << 1;
if ((DivisorH == 0) && (ACC >= DivisorL))

begin
ACC = ACC - DivisorL;
Result[0] = 1;

end
end

Remainder = ACC;
Quotient = Result;

Warning - think before making your life harder. With greater flexibility comes a greater
chance to make mistakes. – A good working implementation of a TYPE#1 system will get
more marks than an almost working implementation of a TYPE#2 system.

10

Bitslice Datapath Design

8 bit Divider Datapath - TYPE#3

Division Algorithm - TYPE#3

Other algorithms and datapaths may be acceptable but only if they are passed by
me for the use of individual students5.

5Type #3 designs will need to be presented for approval at the beginning of the upcoming laboratory
session.

11

Bitslice Datapath Design – Synthesis, Place & Route

• control – Synthesis

You should synthesize the control unit and verify that the synthesized gate-
level version works in place of the behavioural version.

• control – Place & Route

You should place and route the control unit and verify that the netlist extracted
from magic version works in place of the behavioural version.

• divider – Place & Route

As an optional extra, you can create a complete chip including the magic ver-
sion of the datapath and the synthesized, placed and routed control unit.

this option will be open to students who complete the other parts of the exercise

before 14:40 on the day of the final laboratory session.

12

Bitslice Datapath Design

Location of magic files
• Cell Library Directory

All magic leaf cells (leftbuf.mag, rightend.mag, fulladder.mag . . .)
should exist only in the cell library directory:

˜/design/magic/tsmc180/cell_lib

• Bitslice Directory

The magic hierarchical cells (bitslice.mag, datapath.mag, control.mag,
divider.mag) should exist only in the bitslice directory:

˜/design/magic/tsmc180/bitslice

To enable access to the leaf cells when creating a hierachical cell you will need to
use the magic addpath command:

:addpath /home/<username>/design/magic/tsmc180/cell_lib
before using the :getcell command.
The easiest way to do this is to include the appropriate addpath command in a
”.magicrc” file in the bitslice directory. This is done automatically by the script:

init_bitslice_directories

13

Bitslice Datapath Design

Location of SystemVerilog files
• Behavioural Directory

– control.sv control stim.sv

– divider.sv divider stim.sv divider.tcl

˜/design/magic/tsmc180/bitslice/behavioural

• Gate Level Directory

– control.sv

˜/design/magic/tsmc180/bitslice/gate_level

• Extracted Directory

– control.vnet control.sv

– bitslice.vnet bitslice.sv bitslice stim.sv

– datapath.vnet datapath.sv datapath stim.sv

– divider.vnet divider.sv

˜/design/magic/tsmc180/bitslice/extracted

14

Bitslice Datapath Design

Control Unit Simulation with Different Models6

• Behavioural

xmverilog behavioural/control_stim.sv \
behavioural/control.sv \
+access+r +gui

• Post-synthesis

xmverilog behavioural/control_stim.sv \
gate_level/control.sv -v fcdeCells.sv \
+access+r +gui +xmtimescale+1ns/10ps

• Post-layout

xmverilog behavioural/control_stim.sv \
extracted/control.sv +incdir+extracted \
+define+SCANPORTS +access+r +gui

6The SCANPORTS macro tells behavioural/control stim.sv that the control module
has scan ports.

15

Bitslice Datapath Design

Divider Simulation with Different Models7

xmverilog behavioural/divider_stim.sv behavioural/divider.sv \
behavioural/control.sv \
extracted/datapath.sv +incdir+extracted \
+access+r +gui +tcl+behavioural/divider.tcl

xmverilog behavioural/divider_stim.sv behavioural/divider.sv \
gate_level/control.sv -v fcdeCells.sv \
extracted/datapath.sv +incdir+extracted \
+access+r +gui +xmtimescale+1ns/10ps

xmverilog behavioural/divider_stim.sv behavioural/divider.sv \
extracted/control.sv extracted/datapath.sv +incdir+extracted \
+define+SCANPORTS +access+r +gui

xmverilog behavioural/divider_stim.sv \
extracted/divider.sv +incdir+extracted \
+define+SCANPORTS +access+r +gui

7The SCANPORTS macro tells behavioural/divider stim.sv that the divider module
has scan ports and it tells behavioural/divider.sv that the control module has scan ports.

16

Bitslice Datapath Design

Submission – Files
Prepare script (prepare_vlsi desex4) will collect the magic and SystemVerilog
files into a single handin.tar file.
The script will also run a number of simple simulations.

Deadline for file submission is 16:00 on Friday 10th January.

Submission – Supporting Figures
System design diagrams (in each case all control signals must be shown):

• Datapath Architecture Diagram single A4 page PDF document readable at A5 size

• Bitslice Gate Level Schematic single A4 page PDF document readable at A5 size

• ASM Chart single A4 page PDF document readable at A5 size

• All 3 figures combined on one page single A4 page PDF document

Deadline for figure submissions is 16:00 on Friday 17th January.

17

Bitslice Datapath Design

Proposed Marking Scheme
Marks for different design types:

• TYPE#1 Max 78 marks

• TYPE#2 Max 92 marks

• TYPE#3 Max 100 marks

Two marks will be awarded:

• Based on submitted files Weighted 0.75

• Based on submitted figures Weighted 0.25

In addition, a bonus of 10 marks8 will be awarded for students who successfully
create a complete IC.

8note that the total mark with bonus will not exceed 100

18

