Static CMOS Complementary Gates

After the appropriate propagation delay the ouput becomes valid and remains valid. $^{\rm I}$

Complementary

gates make use of these possibilities. conflict in which the strongest path succeeds. Static CMOS Non-complementary Where this condition is not met we have either a high impedence output or a For any set of inputs there will exist either a path to Vdd or a path to GND.

¹c.f. Dynamic logic which uses circuit capicitance to store state for a short time.

Pass Transistor Circuits

Pass Transistor

- Provides very compact circuits.
- Good transmission of logic '0'.
- Poor transmission of logic '1'.
- - slow rise time
- -- degradation of logic value

The pass transistor is used in many dynamic CMOS circuits².

²where pull-up is performed by an alternative method

Pass Transistor Circuits

Transmission Gate

For static circuits we would normally use a CMOS transmission gates:

z

- - balanced n and p pass transistors
- - faster pull-up
- - slower pull-down

7003

Pass Transistor Circuits

Transmission Gate Layout

– note that these circuits are not fully complementary 3 hence they do not immediately lend themselves to a *line of diffusion* implementation.

³since there are sets of inputs for which the output is neither pulled low nor high

Pass Transistor Circuits

• Transmission Gate Multiplexor

- very few transistors 4 (+2 for inverter)
- difficult layout may offset this advantage
- - prime candidate for 2 level metal

7005

Pass Transistor Circuits

- distributed multiplexing⁴
- only one inverter required per bank of transmission gates
- greatly simplifies global wiring

7006

Bus Distributed Multiplexing

Ideal for signals with many drivers from different modules.

7007

Bus Distributed Multiplexing

- Separate circuit for each function
- Connected via distributed multiplexor

7008

 $^{^{4} \}mathrm{internal}$ chip bus should never be allowed to float high impedance

 $^{^5{\}rm Note}$ that transmission gates have no drive capability in themselves. Here a good drive is ensured by providing buffers.

Bus Distributed Multiplexing

- \bullet Single optimized ALU module
- Multiplexing is not distributed
- Multiplexor implementation may use transmission gates

7009

/0/

Pass Transistor Circuits

Tristate Inverter

– Any gate may have a tri-state output by combining it with a transmission gate.

Pass Transistor Circuits

Tristate Inverter

- Alternatively the transmission gate may be incorporated into the gate.
- -- one connection is removed easier to layout
- - also easier to simulate!

7011

Pass Transistor Circuits

• Tristate Inverter Layout

Pass Transistor Circuits

Tristate Inverter Bus Driver

- a tristate inverting buffer is often used to drive high capacitance bus signals
- transistors may be sized as required