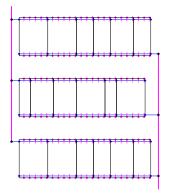
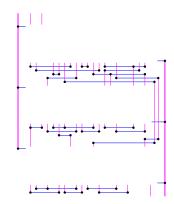

Placement & Routing

Inter-Digitated Power and Ground


Inter-digitated power and ground rails can be routed using only one metal layer.¹

¹note – poly may not be used in power routing - see latch-up rules

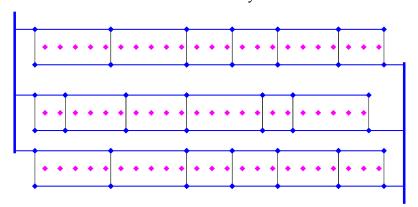
6005


Placement & Routing

Routing

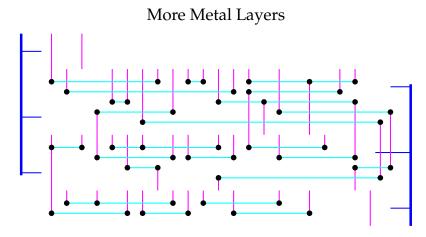
In the routing channels between the cells we route metal1 horizontally and metal2 vertically.

Routing



In the routing channels between the cells we route metal1 horizontally and metal2 vertically.

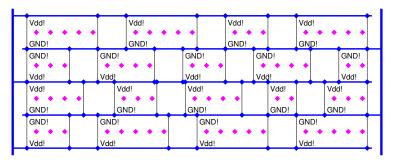
6006


Standard Cell Design

More Metal Layers

With this approach we can route safely over the cell to the specified pins leading to much smaller gaps between cell rows.

Standard Cell Design

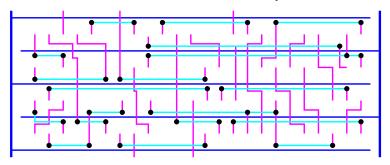


With this approach we can route safely over the cell to the specified pins leading to much smaller gaps between cell rows.

6009

Standard Cell Design

Alternative Placement Style


By flipping every second row it may be possible to eliminate gaps between rows. N-wells are merged and power or ground rails are shared.

This approach is normally associated with sparse rows and non channel based routing algorithms.

6010

Standard Cell Design

Alternative Placement Style

By flipping every second row it may be possible to eliminate gaps between rows. N-wells are merged and power or ground rails are shared.

This approach is normally associated with sparse rows and non channel based routing algorithms.

6010