Integrated Circuit Design t<mark>ed Circuit L</mark>
Iain McNally

$\ln \text{McNal}$
 \approx 12 lectures

\approx 12 lectures
Koushik Maharatna \approx 12 lectures
1
ik Maha
 \approx 12 lectures

100 $\frac{1}{1}$

Integrated Circuit Design

Iain McNally

Content

- Introduction
- **Content**
- Introduction
- Overview of Technologies
-
- Introduction
- Overview of Technologies
- Layout
- Design Rules and Abstraction – Layout
– Design Rules and Abstraction
– Cell Design and Euler Paths
-
- Design Rules and Abstraction
- Cell Design and Euler Paths
- System Design using Standard Cells – Cell Design and Euler F
– System Design using St
– Pass Transistor Circuits
- System
– Pass Tra
– Storage – Pass Transis
– Storage
– PLAs
– Wider View
-
-
-

Assessment 0% 1ted Circuit Design
Informal Coursework (L-Edit Gate Layout)
% Informal Coursework (L-Edit Gate Layout) $_{100}$ Exament
Exament
Examination
Examination Books 100% Examination
DOKS
Digital Integrated Circuits r<mark>ated Circ</mark>u
Jan Rabaey Jan Rabaey
Prentice-Hall Principles of CMOS VLSI Design A Circuits and Systems Perspective Neil Weste & David Harris d Systems Perspectiv
Neil Weste & David
Addison-Wesley 200 "
F
4 • Notes & Resources http://users.ecs.soton.ac.uk/bim/notes/icd
http://users.ecs.soton.ac.uk/bim/notes/icd

.
3
3

100

History

History

Moore's Law

Predicts exponential growth in the number of components per chip

Moore'
Predicts exponential growth in the numbe
1965-1975 Doubling Every Year

licts exponential growth in the number of components per chip.
5- 1975 Doubling Every Year
In 1965 Gordon Moore observed that the number of components per chip had 5-1975 Doubling Every Year
In 1965 Gordon Moore observed that the number of components per chip had
doubled every year since 1959 and predicted that the trend would continue In 1965 Gordon
doubled every y
through to 1975. doubled every year since 1959 and predicted that the trend would continue through to 1975.
Moore describes his initial growth predictions as "ridiculously precise". aoubled every year since 1959 and predicted
through to 1975.
Moore describes his initial growth predictions
1975-2010 Doubling Every Two Years through to 1975.

moore describes his initial growth predictions as "ridictiously precise"
5- 2010 Doubling Every Two Years
In 1975 Moore revised growth predictions to doubling every two years.

Growth would now depend only on process improvements rather than on more ry
In 1975 Moore revised growth pr
Growth would now depend only
efficient packing of components.

In 1990 Moore revised growth predictions to dodoling every two years.
Growth would now depend only on process improvements rather than on more
fricient packing of components.
In 2000 he predicted that the growth would cont "
5

100

Moore's Law at Intel^l

History

Moore's Law; a Self-fulfilling Prophesy

Moore's Law; a Self-fulfilling Prophesy
The whole industry uses the Moore's Law curve to plan new fabrication facilities.

The whole industry uses the Moo1
Slower - wasted investment

Must keep up with the Joneses².
ter - too costly

Faster - too costly

Cost of capital equipment to build ICs doubles approximately ev-Cost of cap
ery 4 years. ery 4 years.
 $\frac{2}{3}$ or the Intels

1007

History

ri
6

Overview of Technologies

Overview of Technologies

All functions can be realized with a single NOR base gate.¹

Overview of Technologies

RTL Inverter and NOR gate

Overview of Technologies

- characteristic multiple multiple multiple transistor of the orient of the orient of the orient ouriently?
Characteristic multi-emitter transistor reduces the overall component count. • **TTL** gives faster switching than RTL at the expense of greater com characteristic multi-emitter transistor reduces the overall compon
• **ECL** is a very high speed, high power, non-saturating technology.
- Most TTL families are more complex than the basic version shown here

Overview of Technologies

NMOS - a VLSI technology.

- \bullet Circuit function determined by series/parallel combination of devices.
- \bullet Depletion transistor acts as non-linear load resistor.

Circuit function determined by series/parallel combination of devices.
Depletion transistor acts as non-linear load resistor.
Resistance increases as the enhancement device turns on, thus reducing power Resistance in<mark>c</mark>
consumption. The low output voltage is determined by the size ratio of the devices.
The low output voltage is determined by the size ratio of the devices.

ed b
2005

Digital CMOS Circuits

Alternative representations for CMOS transistors

- In the substrate connections are used for simplifying CMOS circuit diagrams.
In general substrate connections are not drawn where they connect to Vdd ous shorthands are used fo
In general substrate conne
(PMOS) and Gnd (NMOS). • In general substrate connections are not
(PMOS) and Gnd (NMOS).
• All CMOS devices are enhancement mode. % (PMOS) and Gnd (NMOS).
• All CMOS devices are enhancement mode.
• Transistors act as simple digitally controlled switches.
-
-

2007

Overview of Technologies

n active PMOS device complements th
- rail to rail output swing.
- negligible static power consumption.

- rail to rail output swing.
- ption
2006

Digital CMOS Circuits

Static CMOS complementary gates

Digital CMOS Circuits

All compoun^d gates are inverting

• All compound gates are inverting.
• Realisable functions are arbitrary AND/OR expressions with inverted output. ND,
2009

Digital CMOS Circuits

Components for Digital IC Design

Components for Digital IC Design

Diodes and Bipolar Transistors

NPN Transistor

NPN

• Two n-type implants.

Components for Digital IC Design

Components for Digital IC Design

Simple NMOS Transistor

- \bullet Active Area mask defines extent of Thick Oxide.
- Active Area mask defines extent of *Thick Oxide .*
• Polysilicon mask also controls extent of *Thin Oxide* (alias *Gate Oxide)* . • Active Area mask defines extent of
• Polysilicon mask also controls exte
• N-type implant has no extra mask.
-
- N-type implant has no extra mask.
– It is blocked by thick oxide and by polysilicon.
– The implant is *Self Aligned*. - It is blocked by thick oxide and by polysi
- The implant is *Self Aligned*.
• Substrate connection is to bottom of wafer.
-
- Substrate connection is to bottom of wafer
— All substrates to ground.
• Gate connection not above transistor area.
-
- Gate connection not above transistor area.
- Design Rule.
	-

CMOS Process

Components for Digital IC Design

NMOS Transistor

Where it is not suitable for substrate connections to be shared, a more complex process is used here it is not suitable for substrate connections to
ocess is used.
• Five masks must be used to define the transistor:

- ive mask
- P Well ive masks mu<mark>s</mark>
- P Well
- Active Area
	-
	- P Well
– Active Area
– Polysilicon
	-
	- $N + *implant*$
	- $-P+$ implant
- P Well, for isolation.
- Top substrate connection.
- P Well, for isolation.
• Top *substrate* connection.
• P+/N+ implants produce good *ohmic* contacts. с се
006

CMOS Process

CMOS Inverter

- \bullet The process described here is an N Well process since it has only an N Well. The process described here is an N Well p
P Well and Twin Tub processes also exist. • The process described here is an *N Well process* since it has only an *N Well*.

P Well and Twin Tub processes also exist.

• Note that the P-N junction between chip substrate and *N* Well will remain reverse biased.
- verse biased.
Thus the transistors remain isolated.
-
- \bullet N implant defines NMOS source/drain and PMOS substrate contact.
- \bullet P implant defines PMOS source/drain and NMOS substrate contact.

Photolithography

4001

Design Rules

4003

Mask Making

line
4002

Derivation of Design Rules

Design Rules

4005

Abstraction - Stick Diagrams

-
- ick diagrams give us many of the benefits of abstracti
• Much easier/faster than full mask specification.
• Process independent (valid for any CMOS process). • Much easier/fa
• Process indeper
• Easy to change.
-
- Easy to change.
while avoiding some of the problems:
- Much easier/faster than full mask specification.
• Process independent (valid for any CMOS process).
• Easy to change.
hile avoiding some of the problems:
• Optimized layout may be generated much more easily from a stick le avoiding some of the problems:
Optimized layout may be generated muc
than from transistor or gate level designs.¹

than from transistor or gate level designs.
Inote that all IC designs must end at the mask level.
4007

Digital CMOS Design

Abstraction

- Mask Level Design
- Mask Level Design
– Laborious Technology/Process dependent
– Design rules may change during a design!
-
- Mask Level Design
- Laborious Technology
- Design rules may char
- Transistor Level Design Gate Level D
- Process independ
- Gate Level Design
- ═ Design rules may change during a design!
ansistor Level Design
Process independent, Technology dependent. Process independent, Technology
ate Level Design
Process/Technology independent.
-
- Process/Technology independent.

4009

Sticks and CAD - Symbolic Capture

- components are joined with zero width wires
-
- A semi-automatic compaction process will create DRC correct layout.

4011

Sticks and CAD - Magic

- and a gain contacts are automatically selected as required.
A gain contacts are automatically selected as required. • Log style design (sticks with width) - DRC errors are flag
- again contacts are automatically selected as required.
• On-line DRC leads to rapid generation of correct designs. - again contacts are automatically selected as required.
• On-line DRC leads to rapid generation of correct designs.
- symbolic capture style compaction is available if desired.
-
-

Digital CMOS Design

Stick Diagrams

- Explore your Design Space
- *xplore your Design Space.*
- Implications of crossovers. - Implications of cross
- Number of contacts.
	-
	- Number of contacts.
- Arrangement of devices and connections.
- Process independent layout.
- Easy to expan^d to ^a full layout for ^a particular process

^A logical approac^h to gate layout

A lOgical approacn to gate layout.
• All complementary gates may be designed using a single row of n-transistors above or below a single row of p-transistors, aligned at common gate connections.

5001

Digital CMOS Design

Euler Path

- Fuler Path
For the majority of these gates we can find an arrangement of transistors such
For the majority of these gates we can find an arrangement of transistors such tuler
For the majority of these gates we can
that we can butt adjoining transistors. or the majority of these gates we can find
at we can butt adjoining transistors.
- Careful selection of transistor ordering. that we can butt adjoining transistors.
- Careful selection of transistor ordering.
- Careful orientation of transistor source and drain.
	-
	-
- \bullet Referred to as line of diffusion.

Digital CMOS Design

Finding an Euler Path

Computer Algorithms

It is relatively easy for a computer to consider all possible arrangements of \bullet It is relatively easy for a computer to consider all possible arrangements of 1puter Algorithms
It is relatively easy for a computer to cons
transistors in search of a suitable Euler path. • It is relatively easy for a computer to computer the function of a suitable Euler path This is not so easy for the human designer.
One Human Algorithm

- ne Human Algorithm
• Find a path which passes through all n-transistors exactly once.
- e
Find a path which passes through all n-transistors •
Express the path in terms of the gate connections.
- Find a path which passes through all n-transistors exactly once.
• Express the path in terms of the gate connections.
• Is it possible to follow a similarly labelled path through the p-transistors? it possible to follow a similarly labelled path through the p-
- Yes – you've succeeded.
- No – try again (you may like to try a p path first this time).
	- xpress the path in terms o
it possible to follow a sin
- Yes you've succeeded.
	- try a
5003

Digital CMOS Design

Here there are four possible Euler paths.

5005

Digital CMOS Design

thro
5007

Digital CMOS Design

1. Find Euler path 2. Label poly columns 4. Route output node 6. Add taps¹ for PMOS and NMOS A combined contact and the contact and the contact and tap all of the contact and tap all contact and tap all contact and tap may be used only where a power contact exists at the end A combined contact and tap, \blacksquare , m E. Label poly columns 4. Route output node 6. Add taps for PMOS at a combined contact and tap, \blacksquare , may be used only where a power contact exists a of a line of diffusion. Where this is not the case a simple tap, \blacksquare

Digital CMOS Design

 \mathbb{C}^1

 B

 $A -$

 $\frac{1}{1}$ tap is good for about 6 transistors - insufficient taps may leave a chip vulnerable to latch-up

6001

Digital CMOS Design

Most modern VLSI processes support two or more metal layers. The norm is to
use only metal for inter-cell routing. Usually Metal1 horizontally (and for power Most modern VLSI processes support two or more metal la
use only metal for inter-cell routing. Usually Metal1 horizo
rails) and Metal2 vertically (and for cell inputs and outputs). Jsual
I inp
6003

Digital CMOS Design

Multiple gates

- Gates should all be of same height
	- Power and ground rails will then line up when butted.
- Power and ground rails will then line up when butted.
• All gate inputs and outputs are available at top and bottom. .
Il gate inputs and outputs
- All routing is external to cells. Il gate inputs and outputs are
- All routing is external to cells.
- Preserves the benefits of hierarchy.
	-
	-
- All routing is external to cells.

 Preserves the benefits of hierarchy.

 Interconnect is via *two conductor routing*.
	- In this case Polysilicon vertically and Metal horizontally.

Standard Cell Design

Many ICs are designed using the standard cell method Cell Library Creation

ıy ICs are designed using the standard cell method.
Cell Library Creation
A cell library, containing commonly used logic gates, is created for a process. • Cell Library Creation

A cell library, containing commonly used logic gates,

This is often carried out by or on behalf of the foundry.

• ASIC¹ Design

This is shen carried out by or on behan or are roundry.
ASIC¹ Design
The ASIC designer must design a circuit using the logic gates available in the The ASIC designer must design a circuit using the logic gates available in the
library.
The ASIC designer usually has no access to the full layout of the standard cells

1 ne ASIC designer must design a circuit using
library.
The ASIC designer usually has no access to the
and doesn't create any new cells for the library. norary.
The ASIC designer usually has no access to the full layout of the standarc
and doesn't create any new cells for the library.
Layout work performed by the ASIC designer is divided into two stages: and doesn't create any new cells for the library.
Layout work performed by the ASIC designer i
- Placement

Layout work performed by the ASIC designer is divided into two stages:
 – Placement
 – Routing

-
-

¹Application Specific Integrated Circuit

Placement & Routing

Cells are plac
ground rails. leng
6005

Placement & Routing

In the routing channels between the cells w
vertically.
6006

Placement & Routing

Two conductor routing

TWO CONCLUCIOT TOULING
• This logical approach means that we should never have to worry about signals This logical approach means that we should never have to worry about signals
crossing.
This makes life considerably easier for a computer (or even a human) to com-

crossing.
This makes life considerably easier for a computer (or even a human) to complete the routing. This makes life considerably easier for a computer (or even a human) to complete the routing.
• We must only ensure that two signals will not meet in the same horizontal or vertical channel.

- We must only ensure that two signals will not meet in the same horizontal or
vertical channel.
• Computer algorithms can be used to ensure placement of cells such that wires
- we mast
vertical ch
Computer
are short.² For Computer algorithms can be used to ensure placement of cells such that are short.²
Further computer algorithms can be used to optimize the routing itself.
-

In VLSI circuits we often nd that inter-cell wiring occupies more area than the cells themselves er-cel
6007

Standard Cell Design

More Metal Layers

 $\frac{1}{2}$ More Metal Layers
With three or more metal layers it is possible to take a different approach. More Metal 1
With three or more metal layers it is possible t
The simplest example uses three metal layers. ith three or more
ne simplest exam
• Standard Cells simplest example uses three metal layers.
Standard Cells
Use only metal1 except for I/O which is in metal2

• Standard Cells
Use only metal1 except f
• Two Conductor Routing Use only metal1 excep<mark>t</mark>
Two Conductor Routing
Uses metal2 and metal3

Standard Cell Design

With this approach we can route safely
to much smaller gaps between cell rows. ⁷ ove
s.
6009

Standard Cell Design

Alternative Placement Style

Next are merged and power or ground rails are shared.
By flipping every second row it may be possible to elimina
N-wells are merged and power or ground rails are shared.

This approach is normally associated with sparse rows and non channel based routing algorithms. By flipping every se
N-wells are merged
This approach is n
routing algorithms.

Static CMOS Complementary Gates

Static

After the appropriate propagation delay the ouput becomes valid and remains valid.¹
valid.¹
Complementary

For any set of inputs there will exist either a path to Vdd or a path to GND

Complementary
For any set of inputs there will exist either a path to Vdd or a path to GND.
Where this condition is not met we have either a high impedence output or a
conflict in which the strongest path succeeds. Stati conflict in which the strongest path succeeds. Static CMOS Non-complementary gates make use of these possibilities.

gates make use of these possibilities.
 $\frac{1}{c.f.}$ Dynamic logic which uses circuit capicitance to store state for a short time.
7001

7001

Pass Transistor Circuits Transmission Gate

-
- Transmission Gate $-$ For static circuits we would normally use a CMOS transmission gates:

-- faster pull-up - - balanced *n* and *p* _]
- - faster pull-up
- - slower pull-down

7003

Pass Transistor Circuits

Pass Transistor

OUT ENABLE

- <mark>EN</mark>
- Provides very compact circuits. - Provides very compact circuits
- Good transmission of logic '0'.
- $-$ Good transmission of logic $0'$.
- Good transmissie
Poor transmissio
- slow rise time Poor transmission of logic <mark>*1*</mark>
- - slow rise time
- - degradation of logic value
-
-

The pass transistor is used in many dynamic CMOS circuits².
²where pull-up is performed by an alternative method

Pass Transistor Circuits

Transmission Gate Layout

mediately lend themselves to a line of diffusion implementation. mediately lend themselves to a *line of diffusion* implementation.
³since there are sets of inputs for which the output is neither pulled low nor high

²where pull-up is performed by an alternative method

Pass Transistor Circuits

Transmission Gate Multiplexor

-
- difficult layout may offset this adva<mark>i</mark>
- prime candidate for 2 level metal etal
005

7005

Bus Distributed Multiplexing

Ideal for signals with many drivers from different modules

7007

Pass Transistor Circuits ass Transis
• Bus Wiring

- distributed multiplexing⁴
- AS AS BS BS
- distributed multiplexing⁴
- only one inverter required per bank of transmission gates - distributed multiplexing⁴
- only one inverter required per l
- greatly simplifies global wiring
-

Bus Distributed Multiplexing

- Separate circuit for each function
- Connected via distributed multiplexor

preatly simplifies global wiring
internal chip bus should never be allowed to float high impedance
7006

 $\overline{}$ ⁵Note that transmission gates have no drive capability in themselves. Here a good drive is ensured by providing buffers

Bus Distributed Multiplexing

7009

Pass Transistor Circuits

Tristate Inverter

- Alternatively the transmission gate may be incorporated into the gate Alternatively the transmission gate may be inc<mark>e</mark>
- - one connection is removed - easier to layout
	- - one connection is re<mark>m</mark>c
- also easier to simulate!
	-

-
7011

Pass Transistor Circuits

Tristate Inverter

- Any gate may have a tri-state output by combining it with a transmission gate

Pass Transistor Circuits

Tristate Inverter Layout

Pass Transistor Circuits

Tristate Inverter Bus Driver

-
-

Latches and Flip-Flops

CMOS transmission gate latch

-
-
- transparent when load is high
- latched when load is low
- two inverters are required since the transmission gate cannot drive itself

8001

Latches and Flip-Flops

Transmission gate latch layout

- a compact layout is possible using 2 layer metal

Latches and Flip-Flops

^A simpler layout may be achieved using tristate inverters

this <mark>e</mark>
pact.

8003

Latches and Flip-Flops

atcnes and F11p-F10ps
• For use in simple synchronous circuits we use a pair of latches in a master slave For use in sim
configuration.

- this avoids the race condition in which a transparent latch drives a second transparent latch operating on the same clock phase
- $-$ the circuit behaves as a rising edge triggered D type flip-flop.

.
Latches and Flip-Flops atches and Flip-Flops
• Transmission gate implementation

Tristate inverter implementation

8005

Latches and Flip-Flops

Layout of master slave ^D type

- very compact using alternative configuration.

8007

.
Latches and Flip-Flops atches and Flip-Flo
• Alternative configuration

Latches and Flip-Flops

simpler clock distribution

Register File

Keg1Ster F11e
Where we have large amounts of storage the use of individual latches can lead to Where we ha
space saving.

Load signals must be ^glitch free with tightly controlled timing

PLA structures

Programmable Logic Array structures provide a logical and compac^t method of .
Programmable Logic Array structures provide a logical and com_l
implementing multiple SOP (Sum of Products) or POS expressions.

.
Most PLA structures employ pseudo
in place of the NMOS depletion load.

9001

PLAs, ROMs and RAMs

I3 I4 I5 I6 I7

- لَے لَـٰ لَـِ لَـٰ لَـِ لَـٰ لَـٰ
Unlike complementary CMOS circuits, these gates will dissipate power under .
Unlike complementary CMOS circuits, these gate
static conditions (since the P device is always on). The P and N complementary CMOS circuits, these gates will dissipate power under static conditions (since the P device is always on).
• The P and N channel devices must be ratioed in order to create the required
- nd N chann)
Iow output voltage.
Iow output voltage. The P and N channel devices must be ratioed in order to create the required
low output voltage.
• This ratioing results in a slower gate, although there is a trade-off between gate
- د
This ratioing results in a slower gate
speed and static power dissipation. speed and static power dissipation.
9002

PLAs, ROMs and RAMs

for intermediate expressions-

9003

PLAs, ROMs and RAMs

PLAs, ROMs and RAMs

mization-

9005

PLAs, ROMs and RAMs

Static RAM

Used for high density storage on ^a standard CMOS process-

StatIC KAM
• Used for high density storage on a standard CMOS process.
• Short lived conflict during write - NMOS transistors offer stronger path.

• Differential amplifiers are used for speedy read.

PLAs, ROMs and RAMs

ROMs ROMS
A ROM may simply be a PLA with fixed decoder plane¹ and programmable

SRAM Structure

9008

System Design Choices

Programmable Logic
Programmable Logic
PLD

-
- PLD
e.g. PAL 22V10, ICT PEEL22CV10, Lattice ispGAL22V1 $\frac{1}{2}$ - PLD
e.g. PAL 22V10, ICT PEEL22CV10, Lat
- Field Programmable Gate Array (FPGA) $\frac{1}{2}$
- Field Programmable Gate Array (FPGA)
e.g. Xilinx XC4013, Altera Cyclone EP1C1

• Semi-Custom Design

- Mask Programmable Gate Array
- e.g. ECS CMOS Gate Array
- Altera HardCopy II structured ASICs
- Standard Cell Design
- e.g. Alcatel Mietec MTC45000 0.35 μ m cell library

Full Custom Design

10001

Programmable Logic

programmable.
UV/Electrically Erasable.
10003

10003

System Design Choices ystem Design Choices
• Programmable Logic START HERE

- rogrammable Logic
- Best possible design turnaround time rogrammable Logic
- Best possible design turna
- Cheapest for prototyping - Best possible design tur:
- Cheapest for prototypin
- Best time to market
- Minimum skill required
-
-
- Cheapest for prototyping
- Best time to market
- Minimum skill required
• Semi-Custom Design
- Best time to market
– Minimum skill requi
• Semi-Custom Design
• Full Custom Design
- ull Cus<mark>t</mark>
- Cheape
- Fastest
- emi-Custom Desig<mark>n</mark>
ull Custom Design
- Cheapest for mass production - Cheapest for <mark>n</mark>
- Fastest
- Lowest Power
	-
	- Fastest
– Lowest Power
– Highest Density¹
	-
	- Most skill required

Field Programmable Gate Array - Xilinx XC4000

- hble Logic Blocks
nable Interconne
13 has 576 (24 × 24)
- Programmable Interconnect

& I/O Blocks²
ct
CLBs and up to 192 (4 \times 48) user I/O pins.

[–] Highest Density
– Most skill required
 $\frac{1}{\pi}$ optimization limited by speed/power/area trade off trade
0002

Field Programmable Gate Array - Altera Cyclone

- Logic Array Blocks, M4K Ram Blocks & I/O Elements³ • Logic Array Blocks, M4K Ra
• Programmable Interconnect
-

Programmable Interconnect
Paltera Cyclone EP1C12 has 12060 Logic Elements (arranged as 1206 Logic Array Blocks) and Programmable Interconne
Altera Cyclone EP1C12 has 120 and up to 249 user I/O pins. emen
0004

10004

Field Programmable Gate Array - Altera Cyclone LE

Field Programmable Gate Array - Xilinx XC4000 CLB

Mask Programmable Gate Array

Mask Programmable Gate Array

l<mark>ow r</mark>
0007

10007

Standard Cell Design t<mark>andard Cell</mark>
• Logic Functions

- Auto Generated Macro Blocks PLA uto Ger
- PLA
- ROM uto Ger
- PLA
- ROM
- RAM
	-
	-
	-
- RAM
• System Level Blocks

- Microprocessor core⁴

Will suppor^t System On Chip applications

Full Custom

All design styles need full custom designers ll design styles need full custom desig<mark>r</mark>
• to design the base programmable logic chips m desi
ogic chi
custom

- to design the base programmable logic chips
- to design building blocks for semi-custom
-

Where large ASICs use full custom techniques they are likely to be Where large ASICs use full custom tech
used alongside semi-custom techniques.
e.g. Hand-held computer game chip sed alongside semi-custon
3. Hand-held computer game o
• Full custom bitslice datapath

- e.g. Hand-
- Full custom bitslice dat
hand crafted for optime
Standard cell controller g. Hand-held computer gan
• Full custom bitslice datap
hand crafted for optimur
• Standard cell controller
• Macro block RAM, ROM
- Hand-held computer game chip
Full custom bitslice datapath
hand crafted for optimum area efficiency and low power consumption
-
-

10009