PLAs, ROMs and RAMs

PLA structures

Programmable Logic Array structures provide a logical and compact method of implementing multiple SOP (Sum of Products) or POS expressions.

Most PLA structures employ pseudo-NMOS NOR gates using a P-channel device in place of the NMOS depletion load.

9001

PLAs, ROMs and RAMs

Pseudo-NMOS NOR gate

- Unlike complementary CMOS circuits, these gates will dissipate power under static conditions (since the P device is always on).
- The P and N channel devices must be ratioed in order to create the required low output voltage.
- This ratioing results in a slower gate, although there is a trade-off between gate speed and static power dissipation.

ctures

PLAs, ROMs and RAMs

PLA structure

 A regular layout is employed, with columns for inputs and outputs and rows for intermediate expressions.

9003

PLAs, ROMs and RAMs

PLA structure

OR plane cells

Layout is simply a matter of selecting and placing rectangular cells from a limited set.

9002

PLAs, ROMs and RAMs

Conversion to sticks is straight forward with opportunities for further optimization.

9005

PLAs, ROMs and RAMs

ROMs

 A ROM may simply be a PLA with fixed decoder plane¹ and programmable data plane.

¹RAM structures can make use of the same decode plane.

9006

PLAs, ROMs and RAMs

Static RAM

- \bullet Used for high density storage on a standard CMOS process.
- \bullet Short lived conflict during write NMOS transistors offer stronger path.
- Differential amplifiers are used for speedy read.

Standard 6 transistor static RAM cell.

9007

SRAM Structure

9008