Components for Digital IC Design

Diodes and Bipolar Transistors

Diode

- Ideal structure 1D
- Real structure 3D
- Depth controlled implants.

3001

Components for Digital IC Design

Diodes and Bipolar Transistors

NPN Transistor

Two n-type implants.

3002

Components for Digital IC Design

MOS Transistors

Simple NMOS Transistor

Components for Digital IC Design

3003

Simple NMOS Transistor

- Active Area mask defines extent of *Thick Oxide*.
- Polysilicon mask also controls extent of *Thin Oxide* (alias *Gate Oxide*).
- N-type implant has no extra mask.
- It is blocked by thick oxide and by polysilicon.
- The implant is Self Aligned.
- Substrate connection is to bottom of wafer.
- All substrates to ground.
- Gate connection not above transistor area.
- Design Rule.

Components for Digital IC Design

MOS Transistors

NMOS Transistor

Components for Digital IC Design

NMOS Transistor

Where it is not suitable for substrate connections to be shared, a more complex process is used.

- Five masks must be used to define the transistor:
- P Well
- Active Area
- Polysilicon
- N+ implant
- P+ implant
- P Well, for isolation.
- ullet Top substrate connection.
- P+/N+ implants produce good *ohmic* contacts.

3006

3008

CMOS Process

CMOS Process

CMOS Inverter

- The process described here is an *N Well process* since it has only an *N Well.*P Well and Twin Tub processes also exist.
- Note that the P-N junction between chip substrate and N Well will remain reverse biased.

Thus the transistors remain isolated.

- \bullet N implant defines NMOS source/drain and PMOS substrate contact.
- P implant defines PMOS source/drain and NMOS substrate contact.

