Components for IC Design

Diodes and Bipolar Transistors

Diode

- Ideal structure 1D
- Real structure 3D
- Depth controlled implants.

3001

Components for IC Design

Diodes and Bipolar Transistors

NPN Transistor

• Two n-type implants.

Components for IC Design

MOS Transistors

Simple NMOS Transistor

3003

Components for IC Design

Simple NMOS Transistor

- Active Area mask defines extent of *Thick Oxide*.
- Polysilicon mask also controls extent of *Thin Oxide* (alias *Gate Oxide*).
- N-type implant has no extra mask.
- It is blocked by thick oxide and by polysilicon.
- The implant is *Self Aligned*.
- Substrate connection is to bottom of wafer.
- All substrates to ground.
- Gate connection not above transistor area.
 - Design Rule.

Interconnect

- Crossing conductors on different masks do not interact¹.
- Explicit contact/via is required for connection.
- Crossing conductors on the same mask are always connected.

 1 the exception to this rule is that polysilicon crossing diffusion gives us a transistor 3005

Interconnect

Resistance

$$R = \left(\frac{\rho}{t}\right) \left(\frac{l}{w}\right)$$

where ρ is the resistivity constant $3.2\times 10^{-8}\Omega m \ \ {\rm for\ aluminium}$ $1.7\times 10^{-8}\Omega m \ \ {\rm for\ copper}$

Since t and ρ are fixed for a paricular mask layer, the value that is normally used is the sheet resistance: $R_s = \binom{\rho}{t}$.

$$R = R_s \left(\frac{l}{w}\right)$$

where R_s is sheet resistance $0.1\Omega/\Box$ for 170nm thick copper

 $R_s=$ resistance of a square (i.e. w=l) so the units for R_s are Ω/\square (ohms per square).

Components for IC Design

- for larger resistances we need minimum width poly (often combined with a *serpantine* shape) to save on area
- corner squares count as half² squares
- for predicatability and matching we may need wider tracks without corners

3007

Components for IC Design

Capacitors

- Capacitance to underlying conductor $C = C_a w l + 2 C_f l$
- Coupling capacitance to adjacent track $C = C_c \, l/s$ where C_a , C_f , C_c are constants for a given layer and process in digital designs our only aim is to minimise parasitic capacitance

²effective resistance $\approx 0.56R_s$