
Basic Processor Design – RISC

• All instructions are the same length

– typically 1 word (i.e. 16 bits)

• Load/Store Architecture

– All arithmetic and logic instructions deal only with registers and immediate
values1

e.g. ADD R5,R3,R2 R5← R3 + R2
ORI R5,13 R5← R5 | 13

– Separate instructions are needed for access to locations in memory.
e.g. LW R7,13(R4) R7← mem(R4 + 13)

SW R7,13(R4) mem(R4 + 13)← R7
mem(nnn) is shorthand for the data location in memory with address nnn.

– Instruction set is maximally orthogonal

1an immediate (or literal) value is a data value encoded in the instruction word.

1

Basic Processor Design – RISC

Q1RISC

How many Register Addresses in an Arithmetic/Logic Instruction?

• Usually 2 or 3 for RISC

2: ADD Rx,Ry Rx← Rx + Ry

3: ADD Rz,Rx,Ry Rz← Rx + Ry

Q2RISC

How many General Purpose Registers?

• Usually 2n − 1 for RISC

This gives 2n addressable registers including the dummy register, R02.

We then need n bits per register address in the instruction.

With a 16 bit instruction length, n = 2 (i.e. 3 registers + R0) or n = 3 (i.e. 7

registers + R0) are sensible values.

2R0 is always zero

2

Basic Processor Design – RISC

Q3RISC

How many Bits do we use for Short Immediates?
• Used in instructions like

ADDI R2,5 R2← R2 + 5
SW R7,13(R4) mem(R4 + 13)← R7

Sensible values for a 16 bit instruction length are in the range 4 ≤ s ≤ 9

giving 2’s complement values in the range −2s−1 ≤ imm ≤ 2s−1 − 1

Q3ARISC

Do we support All Arithmetic/Logic instructions and All Load/S-
tore instructions in both Register-Register and Register-Immediate
forms?
• Some RISC processors support only Register-Immediate form for Load/Store

instructions.

• Some RISC processors support Register-Register form for all Arithmetic/Logic
instructions and Register-Immediate form for a subset of these instructions.

3

Basic Processor Design – RISC

Q4RISC

What Instruction Fields do we provide? How are they arranged?

• RISC instruction coding is highly orthogonal - any instruction may use any
registers.

• Requirement for maximum length short immediate makes RISC coding tight.

Assume Q1RISC : 3, Q2RISC : 2n − 1, Q3RISC : s, Q3ARISC : YES
A suitable coding for Arithmetic/Logic and Load/Store instructions is:

unused
Format Specifier

Opcode
0

1

0....0

rd

x n n 1 s

n

x = 15 - 2n - s

imm
rs1

rs2

Example: If n = 2 and s = 7 then x = 4 giving up to 2x (=16) instructions.

4

Basic Processor Design – RISC

Most RISC processors support an instruction to set the upper bits of a register. The
MIPS processor calls it LUI (load upper immediate) while the SPARC processor
calls it SETHI.
For MIPS, the sequence of instructions required to set upper and lower parts of a
register is:
LUI Rx,200 Rx← 200 ×216
ADDI Rx,5 Rx← Rx + 5

Note that the ×216 (i.e. shift left by 16) value comes from the MIPS word length (32) less the length
of the long immediate used for LUI (16). In our example it will be ×216−l where l is the length of
our long immediate.

To code a LUI or SETHI instruction we need fewer fields:

l = 16 - n - xlnx

immOpcode rd

Example: If n = 2 and x = 4 then l = 10.
Note: s + l ≥ 16 for the LUI/ADDI sequence to produce a 16 bit result.

5

Basic Processor Design – RISC

Alternative Example Coding #2

An alternative solution is based on the following assumptions:
Q1RISC : 3 (or 2 for register-immediate instructions), Q2RISC : 7 (n = 3),
Q3RISC : 8 (s = 8 and l = 8), Q3ARISC : NO

rs1

imm8

rdOpC

OpcodeB

OpcodeA

imm8

rs1rd0

1

10

0

rd

rs2

OpcodeA allows for up to 32 Register-Register Arithmetic/Logic instructions.

OpcodeB allows for up to 8 Register-Immediate Arithmetic/Logic instructions.

OpcodeC allows for up to 2 Register-Immediate Load/Store instructions3.

3in this case we know that one of the two will be load and the other will be store

6

Basic Processor Design – RISC

Q5RISC

What Instructions will we support?
Type Function Mnemonic Function Mnemonic

Arithmetic Add ADD/ADDI Subtract SUB
Logic Bitwise AND AND/ANDI Bitwise OR OR/ORI

Bitwise Exclusive OR XOR Shift Right Logical SRL
Data Movement Load Word LW Store Word SW

Load Upper Immediate LUI
Control Transfer Branch if Equals Zero BEZ Jump and Link JAL

Jump and Link Register JALR
This set has been chosen based on a maximum of 32+8+2 instructions (to match example coding
#2), with support for a complete set of common arithmetic and logical functions (note that multiply
is too complex to be included, while shift left is accomplished by adding a number to itself).
The control transfer functions are a minimum set to support subroutines. BEZ provides a condi-
tional PC relative branch (unconditional if R0 is tested). JAL provides a PC relative branch which
stores the calling address in a register. JALR provides the ability to return from a subroutine and
also the ability to jump a long way.

7

Basic Processor Design – RISC

Q5ARISC Define Assembly Language Syntax4 and Semantics.
Mnemonic Format Syntax Semantics

Arithmetic ADD A ADD Rd,Rs1,Rs2 Rd← Rs1 + Rs2

SUB A SUB Rd,Rs1,Rs2 Rd← Rs1 - Rs2

Logic AND A AND Rd,Rs1,Rs2 Rd← Rs1 & Rs2

OR A OR Rd,Rs1,Rs2 Rd← Rs1 | Rs2

XOR A XOR Rd,Rs1,Rs2 Rd← Rs1 ˆ Rs2

SRL A SRL Rd,Rs1 Rd← Rs1 >>1
Immediate ADDI B ADDI Rd,imm8 Rd← Rd + imm8

ANDI B ANDI Rd,imm8 Rd← Rd & imm8

ORI B ORI Rd,imm8 Rd← Rd | imm8

LUI B LUI Rd,imm8 Rd← imm8 <<8
Data Movement LW C LW Rd,imm8(Rs1) Rd← mem(Rs1 + imm8)

SW C SW Rd,imm8(Rs1) mem(Rs1 + imm8)← Rd

Control Transfer BEZ B BEZ Rd,imm8 if (Rd = 0) then PC ← PC + imm8

JAL B JAL Rd,imm8 Rd← PC; PC ← PC + imm8

JALR A JALR Rd,Rs1+Rs2 Rd← PC; PC ← Rs1 + Rs2

4operand order follows MIPS convention *no flags for this processor

8

Basic Processor Design – RISC

Q5BRISC

What Opcodes will be Assigned?

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

ADD

01

11

10

OpA[2:0]

OpA[4:3]

00 OR

AND

XOR

LSR-

SUB

-

ADDI ORI

ANDI

00

JALR

11 10

0

1

OpB[1:0]

01

LUI

BEZ JAL

- -

OpB[2]

101 111 110

0 1

100

SW

OpC[1:0]

Format C

Format B

Format A

000 001 011 010

-

LW

Instructions are grouped so that decoding is simple (this set show has plenty of
room for expansion).

9

