
Lab Workbook Software Writing for Timer and Debugging

 www.xilinx.com/support/university ZYNQ 5-1
 xup@xilinx.com
 © copyright 2015 Xilinx

Software Writing for Timer and Debugging

Introduction

This lab guides you through the process of writing a software application that utilizes the private timer of
the CPU. You will refer to the timer’s API in the SDK to create and debug the software application. The
application you will develop will monitor the dip switch values and increment a count on the LEDs. The
application will exit when the center push button is pressed.

Objectives

After completing this lab, you will be able to:

• Utilize the CPU’s private timer in polled mode

• Use SDK Debugger to set break points and view the content of variables and memory

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 4 primary steps: Open the project in Vivado, create a SDK software project, verify
operation in hardware, and launch the debugger and debug the design.

Design Description

You will use the hardware design created in lab 4 to use CPU’s private timer (see Figure 1). You will
develop the code to use it.

Figure 1. Design updated from Previous Lab

General Flow for this Lab

Step 1:

Open the
project in
Vivado

Step 2:
Create an

SDK
software
project

Step 3:
Verify

operation in
hardware

Step 4:

Launch
Debugger

Software Writing for Timer and Debugging Lab Workbook

ZYNQ 5-2 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

In the instructions below;

{sources} refers to: C:\xup\embedded\2015_2_zynq_sources
{labs} refers to : C:\xup\embedded\2015_2_zynq_labs
{labsolutions} for the ZedBoard refers to: C:\xup\embedded\2015_2_zedboard_labsolution

 or for the Zybo refers to: C:\xup\embedded\2015_2_zybo_labsolution

Open the Project in Vivado Step 1

1-1. Use the lab4 project from the last lab or, use the lab4 from the
{labsolutions} directory, and save it as lab5. Open the project in Vivado and
then export to SDK.

1-1-1. If you wish to continue using the design that you created in the previous lab, open the lab4 project
from the previous lab, or open the lab4 project in the {labsolutions} directory, and Save it as lab5
to the {labs} directory

Since we will be using the private timer of the CPU, which is always present, we don’t need to
modify the hardware design.

1-1-2. Open the Block Design. You may notice that the status changes to synthesis and implementation
out-of-date as the project was saved as. Since the bitstream is already generated and will be in
the exported directory, we can safely ignore any warning about this.

1-1-3. In Vivado, select File > Launch SDK

A warning pop-up window indicating that the design is out of date. Since we have not made any
changes, we can ignore this.

1-1-4. Click Yes.

Create an SDK Software Project Step 2

2-1. Close previously created projects. Create a new empty application project
called lab5 utilizing already existing standalone_bsp_0 software platform.
Import the lab5.c source file.

2-1-1. In the Project Explorer in SDK, right click on lab4, lab4_bsp and system_wrapper_hw_platfrom_2
and select Close Project

2-1-2. Select File > New > Application Project.

2-1-3. Name the project lab5, and for the board Support Package, (Leave Create New for the Board
Support Package) and click Next.

2-1-4. Select Empty Application and click Finish.

2-1-5. Select lab5 > src in the project explorer, right-click, and select Import.

Lab Workbook Software Writing for Timer and Debugging

 www.xilinx.com/support/university ZYNQ 5-3
 xup@xilinx.com
 © copyright 2015 Xilinx

2-1-6. Expand General category and double-click on File System.

2-1-7. Browse to {sources}\lab5 folder, select lab5.c and click OK, and then click Finish.

You will notice that there are multiple compilation errors. This is expected as the code is
incomplete. You will complete the code in this lab.

2-2. Refer to the Scutimer API documentation.

2-2-1. Open the system.mss from lab5_bsp

2-2-2. Click on Documentation link corresponding to scutimer (ps7_scutimer) peripheral under the
Peripheral Drivers section to open the documentation in a default browser window.

2-2-3. Click on the Files link to see available files related to the private timer API.

2-2-4. Browse to the source directory, {Xilinx
installation}\SDK\2015.2\data\embeddedsw\XilinxProcessorIPLib\drivers\scutimer_v2_0\src and
open xscutimer.h link to see various functions available.

Look at the XScuTimer_LookupConfig() and XScuTimer_CfgInitialize() API functions which must
be called before the timer functionality can be accessed.

Look at various functions available to interact with the timer hardware, including:

Figure 2. Useful Functions

2-3. Correct the errors

Software Writing for Timer and Debugging Lab Workbook

ZYNQ 5-4 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

2-3-1. In SDK, in the Problems tab, double-click on the unknown type name x for the parse error. This
will open the source file and bring you around to the error place.

Figure 3. First error

2-3-2. Add the include statement at the top of the file for the XScuTimer.h. Save the file and the errors
should disappear.

#include “xscutimer.h”

2-3-3. Scroll down the file and notice that there are few lines intentionally left blank with some guiding
comments.

Figure 4. Fill in Missing Code

The timer needs to be initialized, the timer needs to be loaded with the value
ONE_TENTH*dip_check_prev, AutoLoad needs to be enabled, and the timer needs to be started.

2-3-4. Using the API functions list, fill those lines. Save the file and correct errors if any. (Use the
completed code further on in this workbook as a guide if necessary.)

Functions needed: XScuTimer_LookupConfig()
 XScuTimer_CfgInitialize()

XScuTimer_LoadTimer()
 XScuTimer_EnableAutoReload()

XScuTimer_Start()

2-3-5. Scroll down the file further and notice that there are few more lines intentionally left blank with
some guiding comments.

Lab Workbook Software Writing for Timer and Debugging

 www.xilinx.com/support/university ZYNQ 5-5
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 5. More Code to be completed

The value of ONE_TENTH*dip_check needs to be written to the timer to update the timer, the
InterruptStatus needs to be cleared, and the LED needs to be written to, and the count variable
incremented.

Functions needed: XScuTimer_LoadTimer()
 XScuTimer_ClearInterruptStatus ()
 LED_IP_mWriteReg ()

2-3-6. Using the API functions list, complete those lines. Save the file and correct errors if necessary.

Software Writing for Timer and Debugging Lab Workbook

ZYNQ 5-6 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 6. Portions of the completed Code

Verify Operation in Hardware Step 3

3-1. Connect the board with micro-usb cable(s) and power it ON. Establish the
serial communication using SDK’s Terminal tab.

3-1-1. Make sure that micro-USB cable(s) is(are) connected between the board and the PC. Turn ON
the power

3-1-2. Select the tab. If it is not visible then select Window > Show view > Terminal.

Lab Workbook Software Writing for Timer and Debugging

 www.xilinx.com/support/university ZYNQ 5-7
 xup@xilinx.com
 © copyright 2015 Xilinx

3-1-3. Click on and if required, select appropriate COM port (depends on your computer), and
configure it with the parameters as shown. (These settings may have been saved from previous
lab).

3-2. Program the FPGA by selecting Xilinx Tools > Program FPGA and
assigning system_wrapper.bit file. Run the TestApp application and verify
the functionality.

3-2-1. Select Xilinx Tools > Program FPGA.

3-2-2. Click the Program button to program the FPGA.

3-2-3. Select lab5 in Project Explorer, right-click and select Run As > Launch on Hardware (GDB) to
download the application, execute ps7_init, and execute lab5.elf

Depending on the switch settings you will see LEDs implementing a binary counter with
corresponding delay.

Flip the DIP switches and verify that the LEDs light with corresponding delay according to the
switch settings. Also notice in the Terminal window, the previous and current switch settings are
displayed whenever you flip switches.

Figure 7. Terminal window output

Launch Debugger Step 4

4-1. Launch Debugger and debug

4-1-1. Right-click on the Lab5 project in the Project Explorer view and select Debug As > Launch on
Hardware (GDB).

The lab5.elf file will be downloaded and if prompted, click Yes to stop the current execution of the
program.

4-1-2. Click Yes if prompted to change to the Debug perspective.

At this point you could have added global variables by right clicking in the Variables tab and
selecting Add Global Variables … All global variables would have been displayed and you could
have selected desired variables. Since we do not have any global variables, we won’t do it.

4-1-3. Double-click in the left margin to set a breakpoint on various lines in lab5.c shown below. A
breakpoint has been set when a “tick” and blue circle appear in the left margin beside the line
when the breakpoint was set. (The line numbers may be slightly different in your file.)

The first breakpoint is where count is initialized to 0. The second breakpoint is to catch if the
timer initialization fails. The third breakpoint is when the program is about to read the dip switch
settings. The fourth breakpoint is when the program is about to terminate due to pressing of
center push button. The fifth breakpoint is when the timer has expired and about to write to LED.

Software Writing for Timer and Debugging Lab Workbook

ZYNQ 5-8 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

Figure 8. Setting breakpoints

4-1-4. Click on the Resume () button to continue executing the program up until the first breakpoint
is reached.

In the Variables tab you will notice that the count variable may have value other than 0.

4-1-5. Click on the Step Over () button or press F6 to execute one statement. As you do step over,
you will notice that the count variable value changed to 0.

Lab Workbook Software Writing for Timer and Debugging

 www.xilinx.com/support/university ZYNQ 5-9
 xup@xilinx.com
 © copyright 2015 Xilinx

4-1-6. Click on the Resume button again and you will see that several lines of the code are executed
and the execution is suspended at the third breakpoint. The second breakpoint is skipped. This is
due to successful timer initialization.

4-1-7. Click on the Step Over (F6) button to execute one statement. As you do step over, you will notice
that the dip_check_prev variable value changed to a value depending on the switch settings on
your board.

4-1-8. Click on the memory tab. If you do not see it, go to Window > Show View > Memory.

4-1-9. Click the sign to add a Memory Monitor

Figure 9. Monitor memory location

4-1-10. Enter the address for the private counter load register (0xF8F00600), and click OK.

Figure 10. Monitoring a Memory Address

You can find the address by looking at the xparameters.h file entry to get the base address

(), and find the load offset double-clicking on the xscutimer.h
in the outline window followed by double-clicking on the xscutimer_hw.h and then selecting
XSCUTIMER_LOAD_OFFSET.

Figure 11. Memory Offset

4-1-11. Make sure the DIP Switches are not set to “0000” and click on the Step Over button to execute
one statement which will load the timer register.

Notice that the address 0xF8F00604 has become red colored as the content has changed. Verify
that the content is same as the value: dip_check_prev*32500000. You will see hexadecimal
equivalent (displaying bytes in the order 0 -> 3).

E.g. for dip_check_prev = 1; the value is 0x01EFE920; (reversed: 0x20E9EF01)

Software Writing for Timer and Debugging Lab Workbook

ZYNQ 5-10 www.xilinx.com/support/university
 xup@xilinx.com
 © copyright 2015 Xilinx

4-1-12. Click on the Resume button to continue execution of the program. The program will stop at the
writing to the LED port (skipping fourth breakpoint as center push button as has not occurred).

Notice that the value of the counter register is changed from the previous one as the timer was
started and the countdown had begun.

4-1-13. Click on the Step Over button to execute one statement which will write to the LED port and
which should turn OFF the LEDs as the count=0.

4-1-14. Double-click on the fifth breakpoint, the one that writes to the LED port, so the program can
execute freely.

4-1-15. Click on the Resume button to continue execution of the program. This time it will continuously
run the program changing LED lit pattern at the switch setting rate.

4-1-16. Flip the switches to change the delay and observe the effect.

4-1-17. Press a push button and observe that the program suspends at the fourth breakpoint. The timer
register content as well as the control register (offset 0x08) is red as the counter value had
changed and the control register value changed due to timer stop function call. (In the Memory
monitor, you may need to right click on the address that is being monitored and click Reset to
refresh the memory view.)

4-1-18. Terminate the session by clicking on the Terminate () button.

4-1-19. Exit the SDK and Vivado.

4-1-20. Power OFF the board.

Conclusion

This lab led you through developing software that utilized CPU’s private timer. You studied the API
documentation, used the appropriate function calls and achieved the desired functionality. You verified
the functionality in hardware. Additionally, you used the SDK debugger to view the content of variables
and memory, and stepped through various part of the code.

