Lab Workbook Adding IP cores in PL

Adding IP cores in PL

Introduction

This lab guides you through the process of extending the processing system you created in the previous
lab by adding two GPIO (General Purpose Input/Output) IPs

Objectives

After completing this lab, you will be able to:

e Configure the GP Master port of the PS to connect to IP in the PL
e Add additional IP to a hardware design

e Setup some of the compiler settings

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 6 primary steps: You will open the project in Vivado, add and configure GPIO
peripherals in the system using IP Integrator, connect external ports, generate bitstream and export to
SDK, create a TestApp application in SDK, and, finally, verify the design in hardware.

Design Description

The purpose of this lab exercise is to extend the hardware design (Figure 1) created in Lab 1

PL

AXI

Interconnect ﬂ'ﬁe__\ GPIO ¢ PushButions
Block E — " \
AXl4-Lite | |

PS GPIO

Figure 1. Extend the System from the Previous Lab

1

:

DIP Switches

i‘ XILINX www.xilinx.com/support/university ZYNQ 2-1
- ® xup@xilinx.com
© copyright 2015 Xilinx

Adding IP cores in PL Lab Workbook

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4:
Open the Add Two Connect Generate
Project in Instances of external Bitstream

Vivado |:> GPIO using |:> GPIO |:> and Export to |:>

IP Integrator Peripheral SDK
Connections
Step 5: Step 6:
Generate Testin
TestApp Hardware
Application in |:>
SDK

In the instructions below;
{sources} refers to: C:\xup\embedded\2015_2_zynq_sources
{labs} refers to : C:\xup\embedded\2015_2_zynq_labs

{labsolutions} for the ZedBoard refers to:
or for the Zybo refers to:

10pen the Project

C:\xup\embedded\2015_2_zedboard_labsolution
C:\xup\embedded\2015_2_zybo_labsolution

Step 1

1-1. Open the previous project, or the lab1 project from the {labsolutions}
directory, and save the project as lab2. Open the Block Design.

1-1-1. Start Vivado, if necessary, and open either the lab1 project (lab1.xpr) you created in the previous
lab or from the {/absolutions} directory using the Open Project link in the Getting Started page.
1-1-2. Select File > Save Project As ... to open the Save Project As dialog box. Enter lab2 as the

project name. Make sure that the Create Project Subdirectory option is checked, the project
directory path is {labs} and click OK.

This will create the lab2 directory and save the project and associated directory with lab2 name.

2Add Two Instances of GPIO Step 2

2-1. Enable AXI_M_GPO interface, FCLK_RESETO0_N, and FCLK_CLKO ports,
Add two instances of a GPIO Peripheral from the IP catalog to the
processor system.

2-1-1. In the Sources panel, expand system_wrapper, and double-click on the system.bd (system_i)

file to invoke IP Integrator. (The Block Design can also be opened from the Flow Navigator)

2-1-2. Double click on the Zynq block in the diagram to open the Zynq configuration window.

ZYNQ 2-2 www.xilinx.com/support/university
xup@xilinx.com

© copyright 2015 Xilinx

& XILINX.

Lab Workbook Adding IP cores in PL

2-1-3. Select PS-PL Configuration page menu on the left, or click 32b GP AXI Master Ports block in
the Zynq Block Design view.

|

32b GP
AXI
Slave
Ports

Figure 2. AXI Port Configuration

2-1-4. Expand AXI Non Secure Enablement > GP Master AXI Interfaces, if necessary, and click on
Enable M_AXI_GPO interface check box under the field to enable the AXI GPO port.

P5-PL Configuration

+ Search:
=1 | Name Select Description
g
e | [H General
[==0] H
ETJ--AXI Mon Secure Enablement 0 * |Enable AXI Mon Secure Transaction
. B GP Master AXI Interface
= M AXI GPQ interface Enables General purpose AXI master interface 0
[-M AXI GP1 interface J Enables General purpose AXI master interface 1

- GP Slawve AXI Interface

- HP Slave AXI Interface

- ACP Slave AXI Interface
- DMA Controller

~PS-PL Cross Trigger interface |:|

Enables PL cross trigger signals to PS and vice-versa

Figure 3. Configuration of 32b Master GP Block

2-1-5. Expand General > Enable Clock Resets and select the FCLK_RESETO0_N option.

2-1-6. Select the Clock Configuration tab on the left. Expand the PL Fabric Clocks and select the

FCLK_CLKO option (with requested clock frequency of 100.000000 MHz) and click OK.

2-1-7. Notice the additional M_AXIl_GPO interface, and M_AXI_GPO_ACLK, FCLK_CLKO0, and
FCLK_RESETO_N ports are now included on the Zynq block. You can click the regenerate button
(@) to redraw the diagram.

processing_system7_0

DDR <k
- X104

M_AXI_GPO_ACL M_AXI_GPO<=
ZYNQ.™ mrsens
FCLK_RESETO_N

DDR
FIXED_IO

ZYNQY Processing System

Figure 4. Zynq system with AXI and clock interfaces

2-1-8. Click the Add IP icon LF and search for AXI GPIO in the catalog

v xilinx.com/support/universit ZYNQ 2-3
& XILINX. e op@xinceom

© copyright 2015 Xilinx

Adding IP cores in PL Lab Workbook

Search: ap| (7 matches)

{F 3GPP LTE Channel Estimator

{F 3GPP LTE MIMO Decoder

{F 3GPP LTE MIMO Encoder

{F 3GPPLTE Turbo Encoder

{F 3GPP Mixed Mode Turbo Decoder
{F 3GPP Turbo Encoder

{F AXIGPIO

EMTER to select, ESC to cancel, Ctrl+Q for IP details

Figure 5. Add GPIO IP

2-1-9. Double-click the AXI GPIO to add the core to the design. The core will be added to the design
and the block diagram will be updated.

processing_system?7_0

F =

DDR < ||f=———"% DDR
y FIXED_10 < || FIXED_IO
GPIO 4 —M_AXI_GPO_ACLK ZYNQ M_AXL_GPO<4- |||

FCLK_CLKO
mre— A FCLK_RESETO_N =
AXI GPIO L -

ZYMNQ7 Processing System

-

Figure 6. Zynq system with AXI GPIO added
2-1-10. Click on the AXI GPIO block to select it, and in the properties tab, change the name to switches

Blodk Properties — O o1 =

o

« +ER
{F switches

Mame; switches

Parent name: system

General | Properties | IP

Figure 7. Change AXI GPIO default name

2-1-11. Double click on the AXI GPIO block to open the customization window.

2-1-12. From the Board Interface drop down, select sws 8bits for ZedBoard or sws 4bits for Zybo for
GPIO.

ZYNQ 2-4 www.xilinx.com/support/university v
xup@xilinx.com iA XI LI NX®

© copyright 2015 Xilinx

Lab Workbook

Adding IP cores in PL

AXI GPIO (2.0)

@ Documentation Tj IP Location

[] Show disabled parts

dhs_ax1
5_axi_aclk GPIO gk |
5_axi_aresetn

Component Name system_axi_gpio_0_0

.~ Board | IP Configuration

/

Assodate IP interface with board interface
IP Interface

GPIO

GPIO2

Clear Board Parameters

["] Enable Interrupt

Board Interface

ws 4bits

Custom
biris dbits
eds 4bits

Ok Cancel

Figure 8. Configuring GPIO instance

2-1-13. Click the IP configuration tab, and notice the width has already been set to match the switches on

the ZedBoard (8) or Zybo (4)

Notice that the peripheral can be configured for two channels, but, since we want to use only one
channel without interrupt, leave the Enable Interrupt and Enable Dual Channel unchecked.

AXI GPIO (2.0)

@ Documentation fj IP Location

[] Show disabled ports

¢

Component Name system_axi_gpio_0_0
 Board iP Conbguation |
GPIO
| All Inputs
All Outputs
GPIO Width £l

[Enable Dual Channef
GPIO 2

All Inputs

All Outputs

GPIO Width 32

Default Output Value | 0x00000000
Default Tri State Value |0xFFFFFFFF

Default Cutput Value | 0x00000000
Default Tri State Value | 0xFFFFFFFF

[1-32)
[0%00000000, 0xFFFFFFFF]
| [0x00000000, 0xFFFFFFFF]

[1-32)

[0x00000000, 0xFFFFFFFF]

@

[0x00000000, 0xFFFFFFFF]

@

[] Enable Interrupt

e

Figure 9. Configuring GPIO instance

2-1-14. Click OK to save and close the customization window

2-1-15. Notice that Designer assistance is available. Click on Run Connection Automation, and select

/switches/S_AXI

& XILINX.

www.xilinx.com/support/university

xup@xilinx.com

© copyright 2015 Xilinx

ZYNQ 2-5

Adding IP cores in PL Lab Workbook

2-1-16. Click OK when prompted to automatically connect the master and slave interfaces

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its
configuration options on the right.

aQ, (=-{m] All Automation {1 out of 2 selected)
=H{m] £F switches
D ik GPIO Connect Slave interface (fswitches/S_AXI) to a selected Master address space.

@sEm

Description

Options
Master: fprocessing_system7_0/M_AXI_GPO

Clock Connection (for unconnected cks) : | Auto

Figure 10. Run connection automation

2-1-17. Notice two additional blocks, Processor System Reset, and AXI Interconnect have automatically
been added to the design. (The blocks can be dragged to be rearranged, or the design can be
redrawn.)

processing_system?7_0_axi_periph

rst_processing_system7_0_100M

1
slowest_sync_dk mb_reset — =L 500_AXI
ext_reset_in bus_struct_reset[0:0] ACLK tch
switches
=aux_reset_in peripheral_reset[0:0] ARESETN | =
—mb_debug_sys_rst interconnact_aresetn[0:0] J .__lsoo_nCLK D%D MOO_AXI 4 [} i .S AXT
=dcom_locked peripheral_aresetn[0:0] S00_ARESETN] | s_axi_adk GPIO = I
MOO_ACLK 5 axi_aresetn
Processor System Reset MOO ARESETN
B AXI GPIO
processing_system7_0 AXI Interconnect
DDR <= ||
- FIXED 104k ||}
M_AXI_GPO_ACLK ZYNQ M_AXI_GPO . e

FCLK_CLKD
FCLK_RESETO_N jp=—1

EYN Q7 Processing System

Figure 11. Design with switches automatically connected
2-1-18. Add another instance of the GPIO peripheral (Add IP). Name it as buttons

2-1-19. Double click on the IP block, select the bins GPIO interface (btns_5bits for the Zedboard,
btns_4bits for the Zybo) and click OK.

At this point connection automation could be run, or the block could be connected manually. This
time the block will be connected manually.

2-1-20. Double click on the AXI Interconnect and change the Number of Master Interfaces to 2 and click
OK

ZYNQ 2-6 www.xilinx.com/support/university v
xup@xilinx.com (A XI LINX®

© copyright 2015 Xilinx

DDR
FIXED_IO

Lab Workbook

Adding IP cores in PL

2-1-21.

2-1-22.

AXI Interconnect (2.1)

ﬁ Documentation [IP Location

Component Name |system_processing_system7_0_axi_periph_0

Slave Interfaces | Master Interfaces |

Mumber of Slave Interfaces 1

Mumber of Master Interfaces

Interconnect Optimization Strategy

["] Enable Advanced Configuration Options

AXI Interconnect indudes IP Integrator automatic converter insertion and configuration.

When the endpoint IPs attached to the interfaces of the AXI Interconnect differ

in width, clock or protocol, a converter IP will automatically be added inside the interconnect.
If a converter IP is inserted, IP integrator's parameter propagation automatically

configures the converter to match the design.

To see which conversion IPs have been inserted, use the IP integrator

‘expand hierarchy' buttons to explore inside the AXI Interconnect hierarhcy.

MNOTE:Addressing information for AXI Interconnect is specified in the IP Integrator address editor.

Figure 12. Add master port to AXI Interconnect

Click on the s_axi port of the buttons AXI GPIO block, and drag the pointer towards the AXI
Interconnect block. The message Found 1 interface should appear, and a green tick should
appear beside the M071_AXI port on the AXI Interconnect indicating this is a valid port to connect
to. Drag the pointer to this port and release the mouse button to make the connection.

In a similar way, connect the following ports:
buttons s_axi_aclk -> Zynq7 Processing System FCLK_CLKO
buttons s_axi_aresetn -> Processor System Reset peripheral_aresetn

AX! Interconnect MO1_ACLK -> Zynq7 Processing System FCLK_CLKO

AX! Interconnect MO1_ARESETN -> Processor System Reset peripheral_aresetn

The block diagram should look similar to this:

processing_system7_0

DDR 4F
- FIXED_10= |||
M_AXI_GPO_ACLK ZYNO M_AXT_GP O e processing_system7_0_axi_periph
) FCLK_CLKO __
FCLK_RESETO_N b | 1 500_AXI
ACLK
ZYNQ7 Processing System ARESETN

rst_processing_system?7_0_100M

— SO0_ARESETN [1¢&=[]

MOO_ACLK [
MOD_ARESETN

MO1_ACLK

MO1_ARESETN

soo_ack D@ ;
MOO_AXT 4 [
§ MO 1_AX < £

| |

l_.—:

i R5_axT

DDR
FIXED_IO

switches

—— s axl_aresetn

s_axi_adk GPID 4 ||

AXI GPIO
buttons

slowest_sync_dk mb_reset

ext_reset_in bus_struct_reset[0:0]
—alx_reset_in peripheral _reset[0:0]
=—mb_debug_sys_rst interconnect_aresetn[0:0]
=dcm_locked peripheral_aresetn [0:0#

Processor System Reset

AXI Interconnect

50

. axi_aclk GPIo: |||

Figure 13. System Assembly View after Adding the Peripherals

_axi_aresetn

AXI GPIO

& XILINX.

www.xilinx.com/support/university
xup@xilinx.com

© copyright 2015 Xilinx

ZYNQ 2-7

Adding IP cores in PL Lab Workbook

2-1-23. Click on the Address Editor tab, and expand processing_system7_0 > Data > Unmapped
Slaves if necessary

2-1-24. Notice that switches has been automatically assigned an address, but buttons has not (since it

was manually connected). Right click on btns_4bit and select Assign Address or click on the &
button.

Note that both peripherals are assigned in the address range of 0x40000000 to 0x7FFFFFFF
(GPO range).

Z= Diagram X | [Address Editor x

N\ cell Slave Interface Base Name Offset Address Range High Address
=
o€ —i} processing_system7_0
‘v‘j =B Data (32 address bits : Dx40 0[1G 1]
= gyitches S_AXI Reg 0x4120_0000 64K = 0x4120 FFFF
~-=a buttons 5_AXI Reg 0x4121_0000 64K v 0x4121 FFFF

Figure 14. Peripherals Memory Map

3Make GPIO Peripheral Connections External Step 3

3-1. The push button and dip switch instances will be connected to
corresponding pins on the board. This can be done manually, or using
Designer Assistance. Normally, one would consult the board’s user
manual to find this information.

3-1-1. In the Diagram view, notice that Designer Assistance is available. We will manually create the
ports and connect.

3-1-2. Right-Click on the GPIO port of the switches instance and select Make External to create the
external port. This will create the external port named gpio and connect it to the peripheral.
Because Vivado is “board aware”, the pin constraints will be automatically applied to the port.

3-1-3. Select the gpio port and change the name to switches in its properties form.
The width of the interface will be automatically determined by the upstream block.
3-1-4. For the buttons GPIO, click on the Run Connection Automation link.

3-1-5. In the opened GUI, select btns_5bits (for ZedBoard) or btns_4bits (for Zybo) under the options
section.

3-1-6. Click OK.
3-1-7. Select the created external port and change its name as buttons

3-1-8. Run Design Validation (Tools -> Validate Design) and verify there are no errors.

The design should now look similar to the diagram below

ZYNQ 2-8 www.xilinx.com/support/university v
xup@xilinx.com iA XILINX®
© copyright 2015 Xilinx

Lab Workbook Adding IP cores in PL

3-2.

processing_system?7_0
DDR 4 (|} { DDR
o FIXED_104- ||} {_> FIXED_IO
M_AXI_GPO_ACLK ZYNQ M_AXL_GPO<F —-I processing_system7_0_axi_periph
) FCLK_CLKO I
FCLK_RESETO_N {2=500_AX1
ACLK
Y ~eceing Svsterr
ZYNQ7 Processing System RESETN[D:D] switches
S00_ACLK 5] L, .
rst_processing_system?_0_100M S00_ARESETN[0:0] D%D PIO0-AXI = B -
= == y : MO1_AXI o £ _axi_adk GPIO 4 |||} switches
MOO_ACLK d
lowest_sync_dk mhb_reset m “IJU_ARESETN[U'D] =] = _axi_aresetn
ext_reset_in bus_struct_reset[0:0] s " '
B . MO1_ACLK AXI GPIO
—aux_reset in petipheral_resst[0:0] m
) MO1_ARESETN[0:0] buttons
=mb_debug_sys_rst interconnect_aresetn[0:0]
—=dem_locked eripheral_aresetn[0:0] s dhs_AxI
B - ! AXI Interconnect EN
essor Svelem Resel _axd_adic GPIO ||p———] 3 buttons
Processor System Rese il]

AXI GPIO

Figure 15. Completed design

Synthesize the design, open the I/0 Planning layout, and check the
constraints using the 1/O planning tool.

3-2-1. In the Flow Navigator, click Run Synthesis. (Click Save if prompted) and when synthesis
completes, select Open Synthesized Design and click OK
3-2-2. In the shortcut Bar, select I/0 Planning from the Layout dropdown menu
99 110 Planining -
Figure 16. Switch to the 10 planning view
3-2-3. In the I/O ports tab, expand the two GPIO icons, and expand buttons_tri i, and switches tri_i,
and notice that the ports have been automatically assigned pin locations, along with the other
Fixed IO ports in the design, and an I/O Std of LVCMOS25 (for ZedBoard) and LVCMOSS33 (for
Zybo) has been applied. If they were not automatically applied, pin constraints can be included in
a constraints file, or entered manually or modified through the I/O Ports tab.
IjO Ports e [l
A Name Direction Board PartFin Site Fixed Bank 1/0 Std Voo vref Bo.
X, B-G All ports (143)
sy INOUT W 502 (Multiple)* 1.500 (Multiple)
LE;'__" INOUT v {(Multiple) (Multiple)® {(Multiple) (Multiple)
£3 by} (Multiple){LVCMOS25* - 2.500
I} =& switches_tri_j (&) N L. {(Multiple)| LvEMOS 25 - 2,500
Da] b switches_tri_i[7] m sws_8bits_tri.., [M15 - 34 LVCMOS25% - 2,500
-l [switches_tri_i[5] m sws_8bits_tri... [H17 - 35|LVCMOS25= - 2.500
@ [switches_tri_i[5] N sws_8bits_tri... [H18 - 35|LvCMOs525* - 2,500
< b switches_tri_i[4] byl sws_8hits_tri... [H12 - 35|LvCMOs25* - 2,500
[switches_tri_i[3] m sws_8bits_tri... [F21 -~ 35|LVCMOS25= - 2.500
- ewitches_tri_i[2] N sws_gbits_tri.., [H22 - 35|LvCMOs525% - 2,500
- switches_tri_i[1] N sws_gbits_tri... [G22 - 35| LvemMOs25* - 2.500
[switches_tri_i[0] m sws_8bits_tri... [F22 - 35|LvCMOs 25 - 2.500
~[=) Scalar ports (0)
iz GP?O_‘BSDIIB'E: N 34| LVCMOS25* b 2.500
=@ buttons_tri_i (5 N 34LVCMOs525* % 2.500
~[buttons_tri_i[4] N btns_Sbits_tri,.,[T18 - 34LVCMOs525% - 2,500
[buttons_tri_i[3] ™ bins_5bits_tri...|R18 - 34 LvCMOS25* - 2.500
e buttons_tri_i[2] N btns_5bits_tri...[N15 - 34 LVCMOS25* - 2.500
+br buttons_tri_i[1] N btns_5bits_tri...[R16 » 34LVCMOs525% - 2.500
[buttons_tri_i[0] iyl bins_Sbits_tri...[P16 | - 34| LVCMO525* - 2.500
~[=) Scalar ports (0}
-5 Scalar ports (0)
< >
Figure 17. The IP port pin constraints for the ZedBoard
v www.xilinx.com/support/university ZYNQ 2-9
& XILINX.

xup@xilinx.com
© copyright 2015 Xilinx

Adding IP cores in PL Lab Workbook

1fO Ports =
A Name Direction Board Part Pin Site Fixed Bank 1f0 5td Vo Wref
E =- All ports (138)
{% E! (o DDR_1497 (71) INOUT v 502 (Multiple)* 1,500 (Multiple)
= -l FIXED_IO_1497 (59) INOUT v {Multiple) (Multiple)* (Multiple) (Multiple)
Pz E-lg GPIO_41639 (4) N (Multiple) [(VEMOS 33~ - 3.300
3 Bl switches_tri i (4) N (Multiple) [Lvemos 33 - 3,300
] B switches_tri_i[3] il sws_dbits_tri... [T16 - 34|LveMos33*= - 3.300
= B switches_tri i[2] N sws_bits_tri... [W13 - 34|LVCMOS533* i 3.300
Qr switches_tri_i[1] ™ sws_4bits_tri... [P15 - 34{LVCMOS33* hd 3.300
v - switches_tri_i[0] IN sws_dbits_tri... [G15 - 35|LVCMOS33* = 3.300
- Scalar ports (0)
B[GPIO_43611 (%) vl 34|LVCMOS33* A 3.300
BB buttons_tri_i (4)] 34|LveMos33= - 3.300
Er buttons_tri_i[3] N bins_4bits_tri...[Y16 - 34|LVCMOS533* » 3.300
Qr buttons_tri_i[Z] N btns_4bits_tri...[V16 ot 34|LVCMOS33* 5 3.300
i buttons_tri_i[1] IN btns_4bits_tri...[P16 - 34|LVCMOS33* = 3.300
i+ buttons_tri_i[0] N bins_4bits_tri...|R18 = 34|LVCMOS33* S 3.300
+I) Scalar ports (1)
i Scalar ports (0]
< >

Figure 18. The IP port pin constraints for the Zybo

4Generate Bitstream and Export to SDK Step 4

4-1. Generate the bistream, and export the hardware along with the generated
bitstream to SDK.
4-1-1. Click on Generate Bitstream, and click Yes if prompted to Launch Implementation (Click Yes if
prompted to save the design)
4-1-2. Click Cancel
4-1-3. Export the hardware by clicking File > Export > Export Hardware and click OK. This time, there
is hardware in Programmable Logic (PL) and a bitstream has been generated and should be
included in the export to SDK.
Expart hardware platform for
software development tools,
Include bitstream
Export to: | B0 <Local to Project> -
Figure 19. Export the design
4-1-4. Click Yes to overwrite the hardware module.
4-1-5. Start SDK by clicking File > Launch SDK and click OK
ZYNQ 2-10 www.xilinx.com/support/university (' XILINX

xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Adding IP cores in PL

5Generate TestApp Application in SDK Step 5

5-1.

5-1-1.

5-1-2.

5-1-4.

5-1-5.

5-1-6.

Close the projects from the previous lab. Generate software platform
project with default settings and default software project name
(standalone_0).

In SDK, right click on the mem_test project from the previous lab and select Close Project
Do the same for mem_test bsp and system_wrapper_hw_platform_0

From the File menu select File > New > Board Support Package

Click Finish with the standalone OS selected and default project name as standalone _bsp 0
Click OK to generate the board support package named standalone_bsp 0

From the File menu select File > New > Application Project

Name the project TestApp, select Use existing board support package, select
standalone_bsp_0 and click Next

m New Project l = é
Application Project —Gr
Create a managed make application project. l—/

Project name: | TestApp

¥| Use default location
C\xup\embedded\2015_2_zynq_labs\lab2\lab2.sdk\TestApp

default «

OS Platform: [standalone ']

Target Hardware

Hardware Platform: [system_wrapper_hw_platform_l VI {New...]
Processor: [ps7_cor1exa9_0 N]
Target Software
Language: QC C++
Board Support Package: Create New | TestApp_bsp
Q) Use existing |standalone_bsp_0 %
‘i;’; < . [Next > J l Finish ‘ [Cancel

Figure 20. Application Project settings

i' XILINX www.xilinx.com/support/university ZYNQ 2-11

xup@xilinx.com
© copyright 2015 Xilinx

Adding IP cores in PL Lab Workbook

5-1-8. Select Empty Application and click Finish

This will create a new Application project using the created board support package.

5-1-9. The library generator will run in the background and will create the xparameters.h file in the
lab2\lab2.sdk\standalone_bsp_0\ps7_cortexa9 0O\include directory

5-1-10. Expand TestApp in the project view, and right-click on the src folder, and select Import

5-1-11. Expand General category and double-click on File System

5-1-12. Browse to the {sources}\lab2 folder

5-1-13. Select lab2.c and click Finish
A snippet of the source code is shown in figure below.

#include "xparameters.h”
#include "xgpic.h™

int main (void)

{

XGpic dip, push;
int psb_check, dip_check;

xil printf("-- Start of the Program --‘rin");

XGpio Initialize(&dip, XPAR_SWITCHES DEVICE_ID);
XGpioc_SetDataDirection(&dip, 1, @xffffffff);

¥opioc_Initialize(&push, XPAR_BUTTONS DEVICE_ID);
XGpioc_SetDataDirection(&push, 1, Buffffffff);

while (1)
1
psb_check = XGpio DiscreteRead({&push, 1);
xil printf({"Push Buttens Status ¥x\r\n", psb_check);
dip_check = XGpio DiscreteRead(&dip, 1);
xil printf({"DIP Switch Status ¥x\r'n", dip_check);

sleep(1);

}

Figure 21. Snippet of source code

ZYNQ 2-12 www.xilinx.com/support/university v
xup@xilinx.com (A XILINX®
© copyright 2015 Xilinx

Lab Workbook Adding IP cores in PL

6Test in Hardware Step 6

6-1. Connect the board with a micro-usb cable(s) and power it ON. Establish the
serial communication using SDK’s Terminal tab.

6-1-1. Make sure that micro-USB cable(s) is(are) connected between the board and the PC. Turn ON
the power

6-1-2. Selectthe & Terminal tgp. |f it is not visible then select Window > Show view > Terminal

6-1-3. Clickon ' andif required, select appropriate COM port (depends on your computer), and
configure it with the parameters as shown. (These settings may have been saved from previous
lab)

6-2. Program the FPGA by selecting Xilinx Tools > Program FPGA and
assigning system.bit file. Run the TestApp application and verify the
functionality

6-2-1. Select Xilinx Tools > Program FPGA

m Program FPGA &J
Program FPGA ?‘H;?'I
Specify the bitstream and the ELF files that reside in BRAM memory

Hardware Configuration

.| Hardware Platform: "system_wrapper_hw_platform_l ']
Connection: ‘Local '] [New ‘
Device: Auto Detect Select...
Bitstream: system_wrapper.bit [Search.“} {Browse..}

Partial Bitstream

BMM/MMI File:

Software Configuration

Processor ELF/MEM File to Initialize in Block RAM
‘i;”: Program { Cancel

Figure 22. Program FPGA

6-2-2. Click Program to download the hardware bitstream. When FPGA is being programmed, the
DONE LED (green color) will be off, and will turn on again when the FPGA is programmed

6-2-3. Select TestApp in Project Explorer, right-click and select Run As > Launch on Hardware (GDB)
to download the application, execute ps7_init, and execute TestApp.elf

6-2-4. You should see the something similar to the following output on Terminal console

i' XILINX www.xilinx.com/support/university ZYNQ 2-13
- ® xup@xilinx.com
© copyright 2015 Xilinx

Adding IP cores in PL Lab Workbook

DIP Switch Status 6
Push Buttons Status 8
DIP Switch Status 6
Push Buttons Status 8
DIP Switch Status 6
Push Buttons Status 8
DIP Switch Status 6
Push Buttons Status 8
DIP Switch Status 6
Push Buttons Status 8

Figure 23. SDK Terminal output

6-2-5. Select Console tab and click on the Terminate button (®) to stop the program
6-2-6. Close SDK and Vivado programs by selecting File > Exit in each program

6-2-7. Power OFF the board

Conclusion

GPIO peripherals were added from the IP catalog and connected to the Processing System through the
32b Master GPO interface. The peripherals were configured and external FPGA connections were
established. A TestApp application project was created and the functionality was verified after
downloading the bitstream and executing the program.

ZYNQ 2-14 www.xilinx.com/support/university v
xup@xilinx.com (A XILINX®
© copyright 2015 Xilinx

