
RTL Synthesis using Design Compiler

Dr Basel Halak

2 School of Electronics and Computer Science, University of Southampton, UK

Learning Outcomes:

After completing this unit, you should be able to:

1. Set up the DC RTL Synthesis Software and run

synthesis tasks

2. Synthesize a simple RTL design

3. Create your own scripts

4. Carry out basic timing and power analysis

based on the results

3 School of Electronics and Computer Science, University of Southampton, UK

Logic Synthesis

Floorplanning,

Placement & Routing

Finished design

yes

yes
no

no

Digital Design Flow

Verification

Verification

Verification

Architecture design

Design Specification

4 School of Electronics and Computer Science, University of Southampton, UK

Design Compiler Lab Instructions

For this lab you will need:

1. A synthesizable Verilog of the design (this is provided)

2. Tool Setup File (DC_Setup.sh) (this is provided)

3. Library Setup File (this is provided)

5 School of Electronics and Computer Science, University of Southampton, UK

Synthesis Process

Design Write Out

Timing Optimization

Design Analysis

Map

Add Constraints

Elaborate

Read in Design

Set up the Library

6 School of Electronics and Computer Science, University of Southampton, UK

Synthesis Process

Design Write Out

Timing Optimization

Design Analysis

Map

Add Constraints

Elaborate

Read in Design

Set up the Library

7 School of Electronics and Computer Science, University of Southampton, UK

Design Directory Management

1. Create a directory for your digital design project (e.g.

digit)

2. Inside this directory create a sub-directory called src and

copy your hdl design files into it.

3. Also create a sub-directory for your synthesis files and call

it syn and copy your hdl design files into it. You also need

to save the tool setup file “DC_Setup.sh” in this folder.

 digit

syn src

8 School of Electronics and Computer Science, University of Southampton, UK

How to setup Linux Environment to run DC

1. Move into syn directory and type the following commands:

source DC_Setup.sh

2. If you have done this part correctly, you should be able to

run dc-shell without any error massages, by typing

dc_shell -gui

3. Setup the tool to use 0.35 um AMS technology library by typing the
following command in the dc_shell command line:

source library_Setup

9 School of Electronics and Computer Science, University of Southampton, UK

Synthesis Process

Design Write Out

Fix Timing Violations

Design Analysis

Map

Add Constraints

Elaborate

Read in Design

Set up the Library

10 School of Electronics and Computer Science, University of Southampton, UK

2. Read in the HDL

 The design example is in verilog so you need to type

analyze -format verilog {./qmults.v}

You should get the following message :

 Presto compilation completed successfully.
1

11 School of Electronics and Computer Science, University of Southampton, UK

Synthesis Process

Design Write Out

Fix Timing Violations

Design Analysis

Map

Add Constraints

Elaborate

Read in Design

Set up the Library

12 School of Electronics and Computer Science, University of Southampton, UK

3. Elaboration

 Elaboration is the stage where the design is translated into a series of graphs,
which can then be mapped onto an optimal structure

 The basic command is very simple:

 elaborate MODULENAME

 In this case you need to type:

 elaborate qmults -architecture verilog -library DEFAULT

 Click on the following link to see how the schematic should look like:

 Schematic.pdf

Schematic.pdf

13 School of Electronics and Computer Science, University of Southampton, UK

Synthesis Process

Design Write Out

Fix Timing Violations

Design Analysis

Map

Add Constraints

Elaborate

Read in Design

Set up the Library

14 School of Electronics and Computer Science, University of Southampton, UK

Add Constraints

 You can use constraints to control the action of the compiler.

 Constraints describe the surrounding environment of the circuit, such as loads and

drives of IO, and clock characteristics.

 By default, Design Compiler will not constrain any paths. If you issue the command:

check_timing

You will get the following output

Warning: The following end-points are not constrained for maximum delay.

End point

o_complete
o_overflow
o_result_out[0]
o_result_out[1]
o_result_out[2]
………

15 School of Electronics and Computer Science, University of Southampton, UK

Add Constraints: Defining the clock

 Most of the paths can be constrained by defining a

clock.

 Example: Create a clock called “i_clock", applied to the

input port "Clock", with a period of 8 ns with the

following command:

create_clock i_clk -name i_clk -period 8

16 School of Electronics and Computer Science, University of Southampton, UK

Add Constraints: Optimize Area

 set_max_area: This constraint specifies the maximum

area a particular design should have. The value is

specified in units used to describe the gate-level macro

cells in the technology library.

 Example: to minimise the design area, we issue the

commands

set_max_area

17 School of Electronics and Computer Science, University of Southampton, UK

Add Constraints: Optimize Area

 set_max_area: This constraint specifies the maximum

area a particular design should have. The value is

specified in units used to describe the gate-level macro

cells in the technology library.

 Example: to minimise the design area, we issue the

commands

set_max_area 0

This will instruct design compiler to use as less area as

possible.

18 School of Electronics and Computer Science, University of Southampton, UK

Synthesis Process

Design Write Out

Timing Optimization

Design Analysis

Map

Add Constraints

Elaborate

Read in Design

Set up the Library

19 School of Electronics and Computer Science, University of Southampton, UK

4. Synthesis

 In this step the logic functionality of the design will be

implemented in terms of cell instances from the process

specific library.

 This is done using the command:

compile

This command may take few minutes depending on the size of
you design

20 School of Electronics and Computer Science, University of Southampton, UK

Synthesis Process

Design Write Out

Timing Optimization

Design Analysis

Map

Add Constraints

Elaborate

Read in Design

Set up the Library

21 School of Electronics and Computer Science, University of Southampton, UK

Design Analysis

**
Report : qor
Design : qmults
Version: C-2009.06-SP4
Date : Mon Jul 21 17:19:31 2014
**
 Timing Path Group 'i_clk'

 Levels of Logic: 20.00
 Critical Path Length: 5.96
 Critical Path Slack: 0.04
 Critical Path Clk Period: 6.00
 Total Negative Slack: 0.00
 No. of Violating Paths: 0.00
 Worst Hold Violation: 0.00
 Total Hold Violation: 0.00
 No. of Hold Violations: 0.00

…………………….

 Area

 Combinational Area: 78696.799866
 Noncombinational Area: 54345.200165
 Net Area: 27702.000000

 Cell Area: 133042.000031
 Design Area: 160744.000031

 Design Rules

 Total Number of Nets: 1557
 Nets With Violations: 0

………………………

• We can apply a range of

analysis capabilities to our

design to check that it

meets our requirements,

• To get a quick summary of

the design performance and

area statues we can use the

command

report_qor

This will provide information

about the timing information,

critical path slack, critical path

clock period, total design area

and information about the CPU

statistics

22 School of Electronics and Computer Science, University of Southampton, UK

Design Analysis: Power Report

 To get a quick summary of the design power statues we

can use the command

report_power

This will provide information about dynamic and leakage

power.

23 School of Electronics and Computer Science, University of Southampton, UK

Design Analysis: Power Report

**

**

Report : power

 -analysis_effort low

Design : qmults

Version: C-2009.06-SP4

Date : Mon Jul 21 17:22:44 2014

**

Library(s) Used:

 c35_CORELIB (File:

/opt/esdcad/designkits/ams/v370/synopsys/c35_3.3V/c35_COR

ELIB.db)

operating Conditions: nom_pvt Library: c35_CORELIB

…………………………………….

…………………………………………………

Global Operating Voltage = 3.3

Power-specific unit information :

 Voltage Units = 1V

 Capacitance Units = 1.000000pf

 Time Units = 1ns

 Dynamic Power Units = 1mW (derived from V,C,T units)

 Leakage Power Units = 1pW

 Cell Internal Power = 12.1502 mW (77%)

 Net Switching Power = 3.7034 mW (23%)

Total Dynamic Power = 15.8535 mW (100%)

Cell Leakage Power = 109.5970 nW

Continued:

24 School of Electronics and Computer Science, University of Southampton, UK

Design Analysis: Timing

 To report the timing of the design. we can use the

command

 report_timing

By default, the report_timing command displays

information on the critical path or the timing path with the

maximum delay.

25 School of Electronics and Computer Science, University of Southampton, UK

Design Analysis: Timing

**

Report : timing

 -path full

 -delay max

 -max_paths 1

Design : qmults

Version: C-2009.06-SP4

Date : Mon Jul 21 17:28:07 2014

**

Operating Conditions: nom_pvt Library: c35_CORELIB

Wire Load Model Mode: enclosed

 Startpoint: reg_count_reg[1]

 (rising edge-triggered flip-flop clocked by i_clk)

 Endpoint: reg_count_reg[30]

 (rising edge-triggered flip-flop clocked by i_clk)

 Path Group: i_clk

 Path Type: max

 Des/Clust/Port Wire Load Model Library

 --

 qmults 10k c35_CORELIB

 qmults_DW01_inc_1 10k c35_CORELIB

 Point Incr Path

 clock i_clk (rise edge) 0.00 0.00

 clock network delay (ideal) 0.00 0.00

 reg_count_reg[1]/C (DF3) 0.00 0.00 r

 reg_count_reg[1]/Q (DF3) 0.88 0.88 f

 add_84/A[1] (qmults_DW01_inc_1) 0.00 0.88 f

 add_84/U62/Q (INV3) 0.15 1.04 r

 add_84/U61/Q (NOR21) 0.14 1.17 f

 add_84/U60/Q (NAND41) 0.38 1.55 r

 add_84/U6/Q (BUF6) 0.25 1.80 r

 add_84/U42/Q (NOR31) 0.33 2.14 f

 add_84/U41/Q (INV3) 0.21 2.35 r

 add_84/U46/Q (NOR31) 0.35 2.70 f

 add_84/U45/Q (INV3) 0.21 2.91 r

 add_84/U53/Q (NOR31) 0.35 3.26 f

 add_84/U52/Q (INV3) 0.21 3.48 r

 add_84/U49/Q (NOR31) 0.37 3.85 f

 add_84/U5/Q (CLKIN6) 0.15 4.00 r

 add_84/U2/Q (NOR31) 0.34 4.34 f

 add_84/U10/Q (NAND22) 0.37 4.71 r

 add_84/U13/Q (NOR31) 0.28 4.99 f

 add_84/U12/Q (INV3) 0.18 5.17 r

 add_84/U15/Q (NOR21) 0.18 5.35 f

 add_84/U63/Q (XNR21) 0.29 5.64 r

 add_84/SUM[30] (qmults_DW01_inc_1) 0.00 5.64 r

 U397/Q (NAND22) 0.07 5.71 f

 U395/Q (NAND22) 0.25 5.96 r

 reg_count_reg[30]/D (DF3) 0.00 5.96 r

 data arrival time 5.96

 clock i_clk (rise edge) 6.00 6.00

 clock network delay (ideal) 0.00 6.00

 reg_count_reg[30]/C (DF3) 0.00 6.00 r

 library setup time 0.00 5.99

 data required time 5.99

 data required time 5.99

 data arrival time -5.96

 slack (MET) 0.04

**

Report : timing

 -path full

 -delay max

 -max_paths 1

Design : qmults

Version: C-2009.06-SP4

Date : Mon Jul 21 17:28:07 2014

**

Operating Conditions: nom_pvt Library: c35_CORELIB

Wire Load Model Mode: enclosed

 Startpoint: reg_count_reg[1]

 (rising edge-triggered flip-flop clocked by i_clk)

 Endpoint: reg_count_reg[30]

 (rising edge-triggered flip-flop clocked by i_clk)

 Path Group: i_clk

 Path Type: max

 Des/Clust/Port Wire Load Model Library

 --

 qmults 10k c35_CORELIB

 qmults_DW01_inc_1 10k c35_CORELIB

 Point Incr Path

 clock i_clk (rise edge) 0.00 0.00

 clock network delay (ideal) 0.00 0.00

 reg_count_reg[1]/C (DF3) 0.00 0.00 r

 reg_count_reg[1]/Q (DF3) 0.88 0.88 f

 add_84/A[1] (qmults_DW01_inc_1) 0.00 0.88 f

 add_84/U62/Q (INV3) 0.15 1.04 r

 add_84/U61/Q (NOR21) 0.14 1.17 f

 add_84/U60/Q (NAND41) 0.38 1.55 r

 add_84/U6/Q (BUF6) 0.25 1.80 r

 add_84/U42/Q (NOR31) 0.33 2.14 f

 add_84/U41/Q (INV3) 0.21 2.35 r

 add_84/U46/Q (NOR31) 0.35 2.70 f

 add_84/U45/Q (INV3) 0.21 2.91 r

 add_84/U53/Q (NOR31) 0.35 3.26 f

 add_84/U52/Q (INV3) 0.21 3.48 r

 add_84/U49/Q (NOR31) 0.37 3.85 f

 add_84/U5/Q (CLKIN6) 0.15 4.00 r

 add_84/U2/Q (NOR31) 0.34 4.34 f

 add_84/U10/Q (NAND22) 0.37 4.71 r

 add_84/U13/Q (NOR31) 0.28 4.99 f

 add_84/U12/Q (INV3) 0.18 5.17 r

 add_84/U15/Q (NOR21) 0.18 5.35 f

 add_84/U63/Q (XNR21) 0.29 5.64 r

 add_84/SUM[30] (qmults_DW01_inc_1) 0.00 5.64 r

 U397/Q (NAND22) 0.07 5.71 f

 U395/Q (NAND22) 0.25 5.96 r

 reg_count_reg[30]/D (DF3) 0.00 5.96 r

 data arrival time 5.96

 clock i_clk (rise edge) 6.00 6.00

 clock network delay (ideal) 0.00 6.00

 reg_count_reg[30]/C (DF3) 0.00 6.00 r

 library setup time 0.00 5.99

 data required time 5.99

 data required time 5.99

 data arrival time -5.96

 slack (MET) 0.04

**

Report : timing

 -path full

 -delay max

 -max_paths 1

Design : qmults

Version: C-2009.06-SP4

Date : Mon Jul 21 17:28:07 2014

**

Operating Conditions: nom_pvt Library: c35_CORELIB

Wire Load Model Mode: enclosed

 Startpoint: reg_count_reg[1]

 (rising edge-triggered flip-flop clocked by i_clk)

 Endpoint: reg_count_reg[30]

 (rising edge-triggered flip-flop clocked by i_clk)

 Path Group: i_clk

 Path Type: max

 Des/Clust/Port Wire Load Model Library

 --

 qmults 10k c35_CORELIB

 qmults_DW01_inc_1 10k c35_CORELIB

 Point Incr Path

 clock i_clk (rise edge) 0.00 0.00

 clock network delay (ideal) 0.00 0.00

 reg_count_reg[1]/C (DF3) 0.00 0.00 r

 reg_count_reg[1]/Q (DF3) 0.88 0.88 f

 add_84/A[1] (qmults_DW01_inc_1) 0.00 0.88 f

 add_84/U62/Q (INV3) 0.15 1.04 r

 add_84/U61/Q (NOR21) 0.14 1.17 f

 add_84/U60/Q (NAND41) 0.38 1.55 r

 add_84/U6/Q (BUF6) 0.25 1.80 r

 add_84/U42/Q (NOR31) 0.33 2.14 f

 add_84/U41/Q (INV3) 0.21 2.35 r

 add_84/U46/Q (NOR31) 0.35 2.70 f

 add_84/U45/Q (INV3) 0.21 2.91 r

 add_84/U53/Q (NOR31) 0.35 3.26 f

 add_84/U52/Q (INV3) 0.21 3.48 r

 add_84/U49/Q (NOR31) 0.37 3.85 f

 add_84/U5/Q (CLKIN6) 0.15 4.00 r

 add_84/U2/Q (NOR31) 0.34 4.34 f

 add_84/U10/Q (NAND22) 0.37 4.71 r

 add_84/U13/Q (NOR31) 0.28 4.99 f

 add_84/U12/Q (INV3) 0.18 5.17 r

 add_84/U15/Q (NOR21) 0.18 5.35 f

 add_84/U63/Q (XNR21) 0.29 5.64 r

 add_84/SUM[30] (qmults_DW01_inc_1) 0.00 5.64 r

 U397/Q (NAND22) 0.07 5.71 f

 U395/Q (NAND22) 0.25 5.96 r

 reg_count_reg[30]/D (DF3) 0.00 5.96 r

 data arrival time 5.96

 clock i_clk (rise edge) 6.00 6.00

 clock network delay (ideal) 0.00 6.00

 reg_count_reg[30]/C (DF3) 0.00 6.00 r

 library setup time 0.00 5.99

 data required time 5.99

 data required time 5.99

 data arrival time -5.96

 slack (MET) 0.04

**

Report : timing

 -path full

 -delay max

 -max_paths 1

Design : qmults

Version: C-2009.06-SP4

Date : Mon Jul 21 17:28:07 2014

**

Operating Conditions: nom_pvt Library: c35_CORELIB

Wire Load Model Mode: enclosed

 Startpoint: reg_count_reg[1]

 (rising edge-triggered flip-flop clocked by i_clk)

 Endpoint: reg_count_reg[30]

 (rising edge-triggered flip-flop clocked by i_clk)

 Path Group: i_clk

 Path Type: max

 Des/Clust/Port Wire Load Model Library

 --

 qmults 10k c35_CORELIB

 qmults_DW01_inc_1 10k c35_CORELIB

 Point Incr Path

 clock i_clk (rise edge) 0.00 0.00

 clock network delay (ideal) 0.00 0.00

 reg_count_reg[1]/C (DF3) 0.00 0.00 r

 reg_count_reg[1]/Q (DF3) 0.88 0.88 f

 add_84/A[1] (qmults_DW01_inc_1) 0.00 0.88 f

 add_84/U62/Q (INV3) 0.15 1.04 r

 add_84/U61/Q (NOR21) 0.14 1.17 f

 add_84/U60/Q (NAND41) 0.38 1.55 r

 add_84/U6/Q (BUF6) 0.25 1.80 r

 add_84/U42/Q (NOR31) 0.33 2.14 f

 add_84/U41/Q (INV3) 0.21 2.35 r

 add_84/U46/Q (NOR31) 0.35 2.70 f

 add_84/U45/Q (INV3) 0.21 2.91 r

 add_84/U53/Q (NOR31) 0.35 3.26 f

 add_84/U52/Q (INV3) 0.21 3.48 r

 add_84/U49/Q (NOR31) 0.37 3.85 f

 add_84/U5/Q (CLKIN6) 0.15 4.00 r

 add_84/U2/Q (NOR31) 0.34 4.34 f

 add_84/U10/Q (NAND22) 0.37 4.71 r

 add_84/U13/Q (NOR31) 0.28 4.99 f

 add_84/U12/Q (INV3) 0.18 5.17 r

 add_84/U15/Q (NOR21) 0.18 5.35 f

 add_84/U63/Q (XNR21) 0.29 5.64 r

 add_84/SUM[30] (qmults_DW01_inc_1) 0.00 5.64 r

 U397/Q (NAND22) 0.07 5.71 f

 U395/Q (NAND22) 0.25 5.96 r

 reg_count_reg[30]/D (DF3) 0.00 5.96 r

 data arrival time 5.96

 clock i_clk (rise edge) 6.00 6.00

 clock network delay (ideal) 0.00 6.00

 reg_count_reg[30]/C (DF3) 0.00 6.00 r

 library setup time 0.00 5.99

 data required time 5.99

 data required time 5.99

 data arrival time -5.96

 slack (MET) 0.04

Continued:

26 School of Electronics and Computer Science, University of Southampton, UK

Design Analysis: Timing

 To examine the

critical path

graphically

 In design vision: go

to the Schematic

menu and choose

the option Add

Paths From/To

 Fill in the starting

point and end point

of the critical path

from the previous

timing report

 Click ok

 Click ok aging for the

pop up window

27 School of Electronics and Computer Science, University of Southampton, UK

Design Analysis: Timing

 This will generate a graphical view of your critical

path:

28 School of Electronics and Computer Science, University of Southampton, UK

Design Analysis: Save Reports

 You can output the report to a file using:

report_area > synth_area.rpt

report_power > synth_power.rpt

report_timing > synth_timing.rpt

29 School of Electronics and Computer Science, University of Southampton, UK

Synthesis Process

Design Write Out

Timing Optimization

Design Analysis

Map

Add Constraints

Elaborate

Read in Design

Set up the Library

30 School of Electronics and Computer Science, University of Southampton, UK

Timing Optimization

 Optimise the performance of the design as follows:

1. Change timing constraints to target higher clock

frequencies

2. Use the techniques provided in appendix 1 to meet

your target performance

3. Repeat the above process several times until you

reach the maximum achievable frequency

4. Estimate area and power of the design for each target

frequency

 Make sure your design is free from Hold time

violation (refer to appendix 1)

31 School of Electronics and Computer Science, University of Southampton, UK

Synthesis Process

Design Write Out

 Timing Optimization

Design Analysis

Map

Add Constraints

Elaborate

Read in Design

Set up the Library

32 School of Electronics and Computer Science, University of Southampton, UK

Fix Naming

it is important to ensure that the naming styles of variable in the design are

appropriatefor the target output language we are using (Verilog in this case). We can

firstly see what names need changing:

report_names -rules verilog

If we are happy with the proposed new names we can perform the name changing

process:

change_names -rules verilog -hierarchy -verbose

33 School of Electronics and Computer Science, University of Southampton, UK

Save Out the Design:

This is the final step in the synthesis flow, it allows the designer to transfer the

synthesised circuit to the next stage of the design flow. This can be done as follows:

1. For Place and Route Stage: You need to save the following files:

 1.1. Save the hierarchical Verilog:

write -f verilog -hierarchy -output “qmults_syn.v"

 1.2. Save the timing constraints (sdc file)

 write_sdc design.sdc

2. For post synthesis simulation: You need to save the following files:

 1.1. Save the hierarchical Verilog:

write -f verilog -hierarchy -output “qmults_syn.v"

 1.2. Save the timing information (sdf file)

 write_sdf design.sdf

34 School of Electronics and Computer Science, University of Southampton, UK

The easy way….

 Rather than type all these commands in each time,

they can be stored in a simple script text file and

run with the appropriate design name in each case.

 Simply click on the non-graphical window with the

“dc” prompt and type in:

 source scriptname.tcl

35 School of Electronics and Computer Science, University of Southampton, UK

Using Design Vision

 Using the GUI you can also simply load the script

described previously into the command line of the

GUI

 source script.tcl

36 School of Electronics and Computer Science, University of Southampton, UK

Simple Script

analyze -format verilog {./qmults.v}

elaborate qmults -architecture verilog -library DEFAULT

create_clock i_clk -name i_clk -period 6

compile

 report_area > synth_area.rpt

report_power > synth_power.rpt

change_names -rules verilog -hierarchy -verbose

write -f verilog -hierarchy -output “qmults_syn.v"

write_sdc design.sdc

write_sdf design.sdf

exit

37 School of Electronics and Computer Science, University of Southampton, UK

How to get Help:

38 School of Electronics and Computer Science, University of Southampton, UK

Discussion Points

1. What is the maximum frequency you can achieve?

Can you optimise the design further? Explain how

2. How does optimizing design performance affect its

area overhead?

3. How does optimizing design performance affects

its energy dissipation?

4. How can you resolve hold time violations?

39 School of Electronics and Computer Science, University of Southampton, UK

Appendix 1: Optimization using synthesis tool

There are many ways in which a designer can tweak the design at the

synthesis stage to obtain the target performance :

 Compilation with map_effort high option

 Register balancing

 Removing Hierarchy

 Choosing High-Speed Implementation for High-level

Functional Module

40 School of Electronics and Computer Science, University of Southampton, UK

Compilation with map_effort high option

 Using a map_effore high option during the first synthesis run is not advisable as

the run-time for a map_effort high option is significantly longer than that for a

map_effort medium.

 Generally, during synthesis, it is advisable for the designer to run a quick

synthesis on the design using a map_effort medium option when employing

design constraints. This would allow the designer to have a feel for the timing

violations if any exist.

 Example:

 compile -map_effort high

41 School of Electronics and Computer Science, University of Southampton, UK

Register Balancing

 Register balancing is a very useful command when it comes to optimizing

designs that are made up of pipelines.

 The concept here is to allow Design Compiler to move logic from one stage of

the pipeline to another. This would allow Design Compiler the flexibility to

move logic away from pipeline stages that are overly constrained to pipeline

stages that have additional timing.

 You can balance the register after you compile by typing:

 balance_registers

42 School of Electronics and Computer Science, University of Southampton, UK

Removing Hierarchy

 The original hierarchy of the design form a logical boundary,

which prevents synthesis tools from optimizing across this

boundary. By default, DC maintains the original hierarchy of

the design.

 Having needless hierarchy in the design limits DC to

optimize within that boundary without optimizing across the

hierarchy.

43 School of Electronics and Computer Science, University of Southampton, UK

Removing Hierarchy

 How remove hierarchy:

Current design = modulename

ungroup -all -flatten

compile -map_effort high -incremental_mapping

 However, this option is not suitable for usage if the hierarchical design is

large. Too huge a design will take up considerable computing resources

(for example, a long time to compile).

44 School of Electronics and Computer Science, University of Southampton, UK

Choosing High-Speed Implementation for High-level Functional Module

 The designer can manually change the implementation selection specified

synthetic library cell instances by setting the variable set_implementation as

follows:

Set_implementation <implementation_type> <cell_list>

 If A1 is an instance of the DW01_ADD cell in the current design, a cla carry-

lookahead implementation can be specified to implement A1

set_implementation cla A1

45 School of Electronics and Computer Science, University of Southampton, UK

Choosing High-Speed Implementation for High-level Functional Module

 The set_implementation command does not function on cell instances that are

not defined in a synthetic library.

 To list the current implementation of all synthetic library instances, and

indicates whether the implementation

report_resources

 To remove any effects of set_implementation from all synthetic cells of the

current design:

remove_attribute [get_cells *] implementation

46 School of Electronics and Computer Science, University of Southampton, UK

How to Fix Hold Time Violation

47 School of Electronics and Computer Science, University of Southampton, UK

How Fix Hold Time Violation

 Any path that has hold time violations can be fixed

by adding buffers in that path. These buffers will

add delay to the path and ultimately slow it down.

48 School of Electronics and Computer Science, University of Southampton, UK

How Fix Hold Time Violation

 During synthesis design, the designer can set the attribute set_fix_hold

to have Design Compiler fix the hold violations using the following

commands:

set_fix_hold <clock_name>

compile –map_effort high -incremental_mapping

 Example: the following command sets a fix_hold attribute on clock

"clk1".

set_fix_hold clk1

 To remove the fix_hold attribute from clock "clk1“:

remove_attribute [get_clocks clk1] fix_hold

