
1

Programming in C and Interrupts

2

Design Summary

ARM

Processor

(CM0-DS)

AHB-Lite

LED

MEM

CONTROLER

LED

PSRAM

(16MB)

FLASH

(16 MB)

XILINX ARTIX7

DIGILENT NEXYS4

CLK &

RESET

AHB2UART

UART

IRQ

LED
SLEEP

3

 The design consists of 3 peripherals with below memory map

Design Summary

Base Address Size

PSRAM/Internal Ram 0x0000_0000 8 MB/16KB

LED 0x5000_0000 0x00 General Purpose IO

UART 0x5100_0000 0x00 Send/Receive

0x04 Control Register

Can generate Interrupt

4

AHB Slaves

AHB-Lite

Slave

5

ARMv6-M Exception Model

Exception number Exception type Priority

1 Reset -3 (highest)

2 NMI -2

3 HardFault -1

4-10 Reserved

11 SVCall Programmable

12-13 Reserved

14 PendSV Programmable

15 SysTick, optional Programmable

16 + N External interrupt 0-31 Programmable

6

Cortex-M0 Interrupt Controller

 Nested Vectored Interrupt Controller (NVIC)

 An integrated part of the Cortex-M0 processor;

 Supports up to 32 IRQ inputs and a non-maskable interrupt (NMI) inputs;

 Flexible interrupt management

 Enable/ disable interrupt;

 Pending control;

 Priority configuration;

 Hardware nested interrupt support;

 Vectored exception entry;

 Interrupt masking;

 Can be easily accessed using C or assembly language.

 Location: Private Peripheral Bus  System Control Space NVIC

7

Cortex-M0 Interrupt Controller
 Memory map of Nested Vectored Interrupt Controller (NVIC)

Reserved

External Device

External RAM

Peripherals

SRAM

Code

Private Peripheral Bus

ROM table

Reserved

System Control Space

(SCS)

Reserved

Break point unit

Data watch point unit

Reserved

Debug Control

Nested Vectored

Interrupt Controller

(NVIC)

Reserved

SysTick Timer

Reserved

0xE000E000

0xE000EFFF
0xE0000000

0xE00FFFFF

0xE000E100

0xE000ED00

System Control Block

(SCB)

0xE000ECFF

0xE000ED8F

8

NVIC Registers
Address Register

0xE000E100 Interrupt Set-Enable Register

0xE000E104 — 0xE000E17F Reserved

0xE000E180 Interrupt Clear-Enable Register

0xE000E184 — 0xE000E1FF Reserved

0xE000E200 Interrupt Set-Pending Register

0xE000E204 — 0xE000E27F Reserved

0xE000E280 Interrupt Clear-Pending Register

0xE000E300 — 0xE000E3FC Reserved

0xE000E400 — 0xE000E41C Interrupt Priority Registers

0xE000E420 — 0xE000E43C Reserved

9

NVIC Registers
 Interrupt Set-Enable Register

 Write ‘1’ to enable one or more interrupts;

 Write ‘0’ has no effect;

 Interrupt Clear Enable Register

 Write ‘1’ to Clear one or more interrupts.

 Write ‘0’ has no effect;

Interrupt Set-Enable

Register

bit8 bit16 bit24 bit31

Write ‘1’ to clear Interrupt #0

Interrupt Clear Enable

Register

Write ‘1’ to enable Interrupt #0 Write ‘1’ to enable Interrupt #31

Write ‘1’ to clear Interrupt #15

10

NVIC Registers

 Why use separated register address

 Compared with the “read-modify-write” process the benefit of using separated address includes:

 Reduces the steps needed for enabling/ disabling an interrupt, resulting in smaller code and less

execution time;

 Prevents the race condition, e.g. the main thread is accessing a register by “read-modify-write”

process, and it is interrupted between its “read” and “write” operation. If the ISR again modifies the

same register that is currently being accessed by the main thread, a conflict will occur.

 Interrupt pending and clear pending

 An interrupt goes into pending status if it cannot be processed immediately, e.g. a lower priority

interrupt will be pended if a higher interrupt is being processed.

11

Enabling UART Interrupt

12

 When the processor executes a WFI it stops executing instructions and enters sleep

mode.

 The Processor stays in SLEEP mode until one of the following event occurs,

 a non-masked interrupt occurs and is taken

 an interrupt masked by PRIMASK becomes pending

 a Debug Entry request.

 When the processor enters “SLEEP” mode, the “SLEEPING” sideband signal is asserted

from Cortex M0

 This signal is used to implement various hardware power saving techniques

WFI (Wait for Interrupt) Instruction

13

WFI (Wait for Interrupt) Instruction

Processor Busy

Enter SLEEP Mode and wait

until UART interrupts

14

Calling a C Function from Assembly

 ISR can be written in either assembly or C language, for example in C:

 Call a C function from the assembly code, for example:

void UART_ISR() {
 char c;
 c=*(char*) AHB_UART_BASE; //read a character from UART
 …
}

UART_Handler PROC
 EXPORT UART_Handler // label name in assembly
 IMPORT UART_ISR // function name in C
 PUSH {R0,R1,R2,LR} // context saving
 BL UART_ISR // branch to ISR written in C
 POP {R0,R1,R2,PC} // context restoring
 ENDP

15

Retarget printf

16

1. Compile the Software using KEIL MDK ARM and generate code.hex file

2. Follow the steps given in the lab manual to download code.hex onto PSRAM

3. Open FPGA project under Vivado and implement the design

4. Use Vivado hardware manager to download the .bit file

5. Communicate with the board using HyperTerminal (or any other serial terminal)

Lab Steps (with PSRAM)

17

1. Compile the Software using KEIL MDK ARM and generate code.hex file

2. Open FPGA project under Vivado and implement the design

3. Use Vivado hardware manager to download the .bit file

4. Communicate with the board using HyperTerminal (or any other serial terminal)

Lab Steps (with BRAM)

18

Output

SLEEPING SIGNAL

LEDs change pattern when
you send UART Characters.

