Integrating AHB-Lite UART and Memory Controller

The Architecture for the Digital World®

AHB-Lite System (Recap)

Design Summary

- Replace AHB2MEM peripheral with SRAM/FLASH memory controller
- Add UART peripheral for basic IO
- The design consists of 3 peripherals with below memory map

	Base Address	Size
PSRAM	0×0000_0000	8 MB
LED	0×5000_0000	0x00 General Purpose IO
UART	0×5100_0000	0x00 Send/Receive 0x04 Control Register

Design Summary

AHB-Lite Master

CM0-DS in our case

//AHBLite MASTER --> CMO-DS

CORTEXMODS u cortexm0ds (//Global Signals .HCLK (HCLK), (HRESETn), .HRESETn //Address, Control & Write Data (HADDR[31:0]), .HADDR . HBURST (HBURST[2:0]), (HMASTLOCK), .HMASTLOCK (HPROT[3:0]), .HPROT .HSIZE (HSIZE[2:0]), .HTRANS (HTRANS[1:0]), (HWDATA[31:0]), . HWDATA (HWRITE), .HWRITE //Transfer Response & Read Data . HRDATA (HRDATA[31:0]), (HREADY), .HREADY .HRESP (HRESP), //CM0 Sideband Signals .NMI (1'b0), .IRO (IRQ[15:0]), .TXEV 0. .RXEV (1'b0), . LOCKUP (LOCKUP), .SYSRESETREQ 0. .SLEEPING ());

Address Decoder

- Combination Block
- Decodes the address of each transfer and provides a select signal for slave
- Provides control signal to Multiplexer

1		
	168	//Address Decoder
	169	
	170	AHBDCD uAHBDCD (
	171	.HADDR(HADDR[31:0]),
	172	
	173	.HSEL_SO(HSEL_MEM),
	174	.HSEL_S1(HSEL_LED),
	175	.HSEL_S2(HSEL_UART),
	176	.HSEL_S3(),
l	177	.HSEL_S4(),
	178	.HSEL_S5(),
	179	.HSEL_S6(),
	180	.HSEL_S7(),
	181	.HSEL_S8(),
	182	.HSEL_S9(),
	183	.HSEL_NOMAP(HSEL_NOMAP),
	184	
	185	.MUX_SEL(MUX_SEL[3:0])
	186);
	187	
11		

Slave-to-Master Multiplexer

- Multiplex the read data bus and response signals
- Decoder provides control (MUX_SEL)
- Remember Pipelined Operation

190) AHBMUX UAHBMUX (
191	.HCLK(HCLK),	
192	.HRESETn(HRESETn),	
193	.MUX_SEL(MUX_SEL[3:0]),	
194		
195	.HRDATA_SO(HRDATA_MEM),	
196	.HRDATA_S1(HRDATA_LED),	
197	.HRDATA_S2(HRDATA_UART),	
198	.HRDATA_S3(),	
199	.HRDATA_S4(),	
200	.HRDATA_S5(),	
201	.HRDATA_S6(),	
202	.HRDATA_S7(),	
203	.HRDATA_S8(),	
204	.HRDATA_S9(),	
205	.HRDATA_NOMAP(32'hDEADBEEF),	
206		
207	.HREADYOUT_S0 (HREADYOUT_MEM) ,	
208	.HREADYOUT_S1 (HREADYOUT_LED),	
209	.HREADYOUT_S2(HREADYOUT_UART),	
210	.HREADYOUT_S3(1'b1),	
211	.HREADYOUT_S4(1'b1),	
212	.HREADYOUT_S5(1'b1),	
213	.HREADYOUT_S6(1'b1),	
214	.HREADYOUT_S7(1'b1),	
215	.HREADYOUT_S8(1'b1),	
216	.HREADYOUT_S9(1'b1),	
217	.HREADYOUT_NOMAP(1'b1),	
218		
219	.HRDATA(HRDATA[31:0]),	
220	.HREADY (HREADY)	
221);	

AHB Slaves

AHB2SRAMFLSH uAHB2SRAMFLSH .HCLK(HCLK), .HRESETn (HRESETn) , .HADDR(HADDR[31:0]), .HSEL(HSEL MEM), .HREADY (HREADY) , .HSIZE(HSIZE[2:0]), .HTRANS(HTRANS[1:0]), .HWDATA(HWDATA[31:0]), .HWRITE (HWRITE), .HRDATA (HRDATA MEM[31:0]), .HREADYOUT (HREADYOUT MEM), .MemDB (MemDB) , .MemAdr (MemAdr_SRAMCTRL), .RamCS(RamCEn), .MemWR(RamWEn), .MemOE(RamOEn), .RamUB(RamUBn), .RamLB(RamLBn), .RamCre(RamCRE), .RamAdv(RamADVn), .RamClk(RamCLK),

.RamWait(RamWait)

);

// AHBLite Memory Controller

AHBUART uAHBUART (.HCLK(HCLK), .HRESETn (HRESETn) , .HADDR(HADDR[31:0]), .HTRANS(HTRANS[1:0]), .HWDATA(HWDATA[31:0]), .HWRITE (HWRITE), .HREADY (HREADY) , .HREADYOUT (HREADYOUT UART), .HRDATA(HRDATA UART[31:0]), .HSEL(HSEL UART),

.RsRx (RsRx) , .RsTx(RsTx) .uart irq(UART IRQ) 17);

Lab Steps (with PSRAM)

- I. Compile the Software using KEIL MDK ARM and generate code.hex file
- 2. Follow the steps given in the lab manual to download code.hex onto PSRAM
- 3. Open FPGA project under Vivado and implement the design
- 4. Use Vivado hardware manager to download the .bit file
- 5. Communicate with the board using HyperTerminal (or any other serial terminal)

Lab Steps (with BRAM)

- I. Compile the Software using KEIL MDK ARM and generate code.hex file
- 2. Open FPGA project under Vivado and implement the design
- 3. Use Vivado hardware manager to download the .bit file
- 4. Communicate with the board using HyperTerminal (or any other serial terminal)

Output

Nexys4 - HyperTerminal
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>C</u> all <u>T</u> ransfer <u>H</u> elp
68084907 40082101 D1F92800 4A024903 600086808 E7DE6010 50000000 51000004 Reading and displaying first 16 bytes from the external memory FC FF 0 0 81 0 0 0 0 0 0 0 0 0 0 0 Exiting main() TEST: TEST:A TEST:H TEST:D TEST:
Connected 00:23:14 Auto detect 19200 8-N-1 SCROLL CAPS NUM Capture Print echo

