UART and BRAM Integration

SUMMARY

- 1. Compile the Software using KEIL MDK ARM and generate code.hex file
- 2. Open FPGA project under Vivado and implement the design
- 3. Use Vivado hardware manager to download the .bit file
- 4. Communicate with the board using HyperTerminal (or any other serial terminal)

SOFTWARE COMPILATION

- 1. Open the software project lab/software/code.uvproj
- 2. Right click on Target and press "Build Target"

3. Check code.hex get generated inside software folder

SYNTHESIZE AND IMPLEMENT THE HARDWARE DESIGN

- 1. Open the Vivado project given in lab-BRAM/FPGA/Nexys4/Nexys4.xpr
- 2. Analyze the top level of the design AHBLITE SYS.v
- 3. Implement the design and generate bit stream
- 4. Once the bit stream is generated follow the steps from the previous lab to download the bit stream using hardware manager

- 5. Once the hardware is loaded onto FPGA, the CMO in the design starts to execute the program loaded in the internal memory
- 6. Check the HyperTerminal for the "TEST" message. If the message doesn't appear, try sending a character by pressing "Enter". (Refer to next step for setting hyperterminal)
- 7. If everything is working fine you should see something like below,

8. Note, when you send a character, the same character is reflected on the board LEDs. This will help in debugging if you have any issues with your HyperTerminal.

SETTING HYPERTERMINAL

- 1. Go to the tools directory and open HyperTerminal.exe (or you can use any serial terminal)
- 2. Set the serial terminal with the following setting

