AHB-Lite System Integration

The Architecture for the Digital World®

AHB-Lite System (Recap)

Basic SoC

Memory Map

	START ADDRESS	END ADDRESS	SIZE
MEM	0×0000_0000	0x00FF_FFFF	IKB (256 Words)
LED	0×5000_0000	0x50FF_FFFF	I6MB

AHB-Lite Master

CM0-DS in our case

//AHBLite MASTER --> CMO-DS

CORTEXMODS u cortexm0ds (//Global Signals .HCLK (HCLK), (HRESETn), .HRESETn //Address, Control & Write Data (HADDR[31:0]), .HADDR . HBURST (HBURST[2:0]), (HMASTLOCK), .HMASTLOCK (HPROT[3:0]), .HPROT .HSIZE (HSIZE[2:0]), .HTRANS (HTRANS[1:0]), (HWDATA[31:0]), . HWDATA (HWRITE), .HWRITE //Transfer Response & Read Data . HRDATA (HRDATA[31:0]), (HREADY), .HREADY .HRESP (HRESP), //CM0 Sideband Signals .NMI (1'b0), .IRO (IRQ[15:0]), .TXEV 0. .RXEV (1'b0), . LOCKUP (LOCKUP), .SYSRESETREQ 0. .SLEEPING ());

Address Decoder

- Combination Block
- Decodes the address of each transfer and provides a select signal for slave
- Provides control signal to Multiplexer

Slave-to-Master Multiplexer

- Multiplex the read data bus and response signals
- Decoder provides control (MUX_SEL)
- Remember Pipelined Operation

//Slave to Master Mulitplexor AHBMUX uAHBMUX (.HCLK(HCLK), .HRESETn (HRESETn) , .MUX SEL(MUX SEL[3:0]), .HRDATA SO (HRDATA MEM) , .HRDATA S1(HRDATA LED), .HRDATA S2(), .HRDATA S3(), .HRDATA S4(), .HRDATA S5(), .HRDATA S6(), .HRDATA S7(), .HRDATA S8(), .HRDATA S9(), .HRDATA NOMAP(32'hDEADBEEF), .HREADYOUT SO (HREADYOUT MEM) , .HREADYOUT S1 (HREADYOUT LED), .HREADYOUT S2(1'b1), .HREADYOUT S3(1'b1), .HREADYOUT S4(1'b1), .HREADYOUT S5(1'b1), .HREADYOUT S6(1'b1), .HREADYOUT S7(1'b1), .HREADYOUT S8(1'b1), .HREADYOUT S9(1'b1), .HREADYOUT NOMAP(1'b1), .HRDATA(HRDATA[31:0]), .HREADY (HREADY));

AHB Slaves

LAB Part I: Simulate the design and view AHB-Lite Transactions

- I. Open "CODE" KEIL project in Lab Part I/Software folder and compile the design
- 2. Check code.hex gets generated
- 3. Copy your downloaded CM0-DS design files (CORTEXM0DS.v and cortexm0ds_logic.v) to the "Lab Part1/FPGA/Source folder"
- 4. Follow Step I and Step 2 in the lab manual to simulate the design using Vivado design flow
- 5. Once the design starts simulation add these signals into the waveform from u_cortexm0ds design instance
 - I. AHB-Lite Signals
 - 2. Core register signals

View AHB-Lite Transactions

Untit	tled 1*													
₹								285.000) ns					
쁹	Name	Value	250 ns ,	260 ns ,		270 ns,	280 ns		290 ns ,	300 ns		310 ns ,	320 ns	
0+	1 RESET	0												
0-	1 CLK	1												
9	🖪 📲 LED[7:0]	00						00						X
4		0												
4		1												
ы		1												
	e cm0_r00[31:0]	00000055		fffff:	fff			<u> </u>				0	0000055	
	••••••••••••••••••••••••••••••••••••••	5000000								5000000)0			
2		00000084		00000	082					0000	00084			Х
-	🖪 📲 HADDR[31:0]	5000000	00000094			00000088			50000000		X	00000088		Х
E.	🖪 📲 HTRANS[1:0]	2	2			2			2		χ	0		X
		1												
-	HWDATA[31:0]	00fc0300				00fc0300					X	00000055		X
ы	🖬 📲 HRDATA[31:0]	60084803	49026008			00000055			60084803		X	00000000		Х
31	1 HREADY	1												
		0												

Read Transaction

ARM

LAB Part 2: Make those LEDs blink on the board!

- I. Open "CODE" KEIL project in Lab Part2/Software folder and compile the design
- 2. Check code.hex gets generated
- 3. Copy your downloaded CM0-DS design files (CORTEXM0DS.v and cortexm0ds_logic.v) to the "Lab Part2/FPGA/Source folder"
- 4. Open Vivado Project "Nexys4" inside "Lab Part2/FPGA/Nexys4 folder"
- 5. Follow Step 3, Step 4 and Step 5 in the lab manual to synthesize, implement and download the design on the board

Result

