ARM[®] AMBA[®] 3 AHB-Lite

Overview

The Architecture for the Digital World®

ARM[®] AMBA[®] Open Specification

- Open standard (No License required)
- The de facto standard for on-chip communication
- Used as on-chip interconnect for connecting and managing functional blocks in a System-on-Chip
- Promotes design re-use by defining common interface standards for SoC modules
- AMBA Family: AMBA 5, AMBA 4, AMBA 3 & AMBA 2
- AMBA 5 CHI (Coherent Hub Interface) specification is the latest addition to the AMBA (mainly used for server and networking SoCs)
- More info: <u>http://www.arm.com/products/system-ip/amba/amba-open-specifications.php</u>

AMBA Acronyms

Acronyms

- $AMBA^{\mathbb{R}} \rightarrow Advanced Microcontroller Bus Architectures$
- AXI \rightarrow Advanced eXtensible Interface
- ACE \rightarrow AXI Coherency Extensions
- AHB \rightarrow Advanced High-Performance Bus
- APB \rightarrow Advanced Peripheral Bus
- ATB \rightarrow Advanced Trace Bus
- ASB \rightarrow Advanced System Bus

How to access the full specification?

Go to <u>http://infocenter.arm.com/</u>

enter.arm.com/	help/index.jsp					
ARM	The Arch	tecture for th	ne Digital W	/orld®		
Products	Support	Community	Markets	About	Careers	
You are here: 💼 🔸	Support > Docur	nentation				
All docume	nts	 Search our d 	ocumentation		🔊 🔊 Search scope	: All topics
Contents	Ry E	АМВА				
ARM11 process ARM9 process ARM7 process ARM7 process	ssors sors sors	v1.0 This documer	nt is only availa	ble in a PDF	version to registere	ed ARM customers.
AMBA specifications		Non-Confidential Restricted Access				
■ III AMBA 3 III III AMBA 3 III III Multi-II	aver AHB Techi					DF version
	3 ATB Protocol 3 APB Protocol 3 AHB-Lite Pro F download AXI Protocol St	Home				

AMBA 3 AHB-Lite

- Original AHB Specification was part of AMBA 2
- Subset of original AHB
- Reduced interconnect logic
- Simplifies slave design
- Master slave architecture
- Most of the designs have single master in the system
- Multiple masters still possible on multi-layer interconnect

AMBA 3 AHB-Lite

ARM

Image Source: Walt Disney

AMBA 3 AHB-Lite

- Single Master
- Simple slaves
- Easier module design/debug
- No arbitration issues

Image Source: Walt Disney

AHB-Lite transactions

- Master
 - Register Read
 - Register Write
 - Burst Read
 - Burst Write

- Slave/Peripheral
 - Can make Master wait
 - Can give error response

Image Source: Walt Disney

AHB-Lite Features

- Single Clock Edge operation
- Uni-directional busses
 - No tri-state signals
 - Good for synthesis
- Pipelined Operation

A system based on AHB-Lite

Components of AHB-Lite System

- Master
- Slaves/Peripherals
- Address Decoder
 Multiplexor
 AHB-Lite Interconnect

AHB-Lite Master

AHB-Lite Slave

AHB-Lite Master & Slave

Decoder & MUX

Pipelined Transactions (Conceptual Level)

AHB-Lite Signals

AHB-Lite Master Signals

AHB-Lite Slave Signals

AHB-Lite Master & Slave

AHB-Lite Master & Slave

Cortex M0 doesn't speak the entire language !

- Cortex M0 does not support BURST transaction
 - HBURST[2:0] is always 3'b000
- Cortex M0 does not support locked transactions
 - HMASTLOCK is always 1'b0
- Cortex M0 issues only non-sequential transfers
 - HTRANS[1:0] is either 2'b00 (IDLE) or 2'b10 (Non Sequential)

AHB-Lite Master & Slave

HTRANS[1:0]

HTRANS	Туре	Description
00	IDLE	Master does not wish to perform a transfer
01	BUSY	Bus Master is in the middle of a burst but cannot immediately continue with the next transfer
10	NON-SEQ	Indicates the first transfer of a burst or a single transfer
	SEQ	The remaining transfers in the burst are sequential address steps from the previous transfer. Step size is that of data width of transfer (which is shown by HSIZE)

Cortex M0 Always generates NON-SEQ Transactions

Address-phase:		Data-phase:					
HSIZE [1:0]	HADDR [1:0]	HxDATA [31:24]	HxDATA [23:16]	HxDATA [15:8]	HxDATA [7:0]		
00	00	-	-	-	Rd[7:0]		
00	01	-	-	Rd[7:0]	-		
00	10	-	Rd[7:0]	-	-		
00	11	Rd[7:0]	-	-	-		
01	00	-	-	Rd[15:8]	Rd[7:0]		
01	10	Rd[15:8]	Rd[7:0]	-	-		
10	00	Rd[31:24]	Rd[23:16]	Rd[15:8]	Rd[7:0]		

HPROT[3:0] Protection Signal Encoding

HPROT[3] Cacheable	HPROT[2] Bufferable	HPROT[1] Privileged	HPROT[0] Data/Opcode	Description
-	-	-	0	Opcode fetch
-	-	-	1	Data access
-	-	0	-	User access
-	-	1	-	Privileged access
-	0	_	-	Non-bufferable
-	1	-	-	Bufferable
0	-	-	-	Non-cacheable
1	-	-	-	Cacheable

Transactions

Transaction		Access
HTRANS[1:0]	= 2'b00	IDLE
HTRANS[1:0]	= 2'b10	FETCH
HPROT[0]	= 1'b0	
HSIZE[1:0]	= 2'b10	
HWRITE	= 1'b0	

Instruction Fetch

Transaction		Access
HTRANS [1:0]	= 2'b10	BYTE
HPROT[0]	= 1'b1	
HSIZE[1:0]	= 2'b00	
HTRANS [1:0]	= 2'b10	HALF-
HPROT[0]	= 1'b1	WORD
HSIZE[1:0]	= 2'b01	
HTRANS [1:0]	= 2'b10	WORD
HPROT[0]	= 1'b1	
HSIZE[1:0]	= 2'b10	

Control Signals Recap

HTRANS[1:0]

IDLE BUSY NONSEQ SEQ

HBURST[2:0]

SINGLE INCR WRAP[4|8|16] INCR[4|8|16]

HMASTLOCK

UNLOCKED LOCKED

HSIZE[2:0]

Byte Halfword Word Doubleword

...

HPROT[3:0]

Data/Opcode Privileged/user Bufferable Cacheable

Transfer Response Signals

HREADYOUT	Multiplexor	When HIGH, the HREADYOUT signal indicates that a transfer has finished on the bus. This signal can be driven LOW to extend a transfer.
HRESP	Multiplexor	The transfer response, after passing through the multiplexor, provides the master with additional information on the status of a transfer. When LOW, the HRESP signal indicates that the transfer status is OKAY. When HIGH, the HRESP signal indicates that the transfer status is ERROR.

AHB-Lite Transactions

Basic transfer - Write

Basic transfer - Read

AHB Pipelined Transaction

ARM

Pipelined Operation

AHB basic signal timing – Adding wait states

Master will extend Address Phase B

HREADY (Inform all)

HRESP – Slave Response

HRESP	<u>Event</u>	Bus Master operation
OKAY	Access completed normally	
ERROR	Slave aborts access, (2 cycle response)	Master has option of continuing or terminating a burst containing an ERROR

It is permissible to continuously drive HRESP Low in a system which does not wish to generate any errors.

ERROR Response

If HRESP = ERROR, CM0-DS takes an exception and you should implement appropriate exception handler to catch the error

A simple AHB-Lite Slave

AHB2LED.v

AHB2LED TOP LEVEL

Sampling Address & Control

end

Sampling Address & Control

Lab

- Analyse the AHB2LED.v file provided
- In the next lab, we will look into system integration, simulation and implementation of a complete AHB-Lite System using Cortex M0 Design Start core