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Introduction 
This application note is a step by step guide for a basic implementation of the Cortex-

M0 DesignStart (or “Cortex-M0_DS” for short) processor in an FPGA board. It’s 

intended as a starting point to build a system around the Cortex-M0_DS processor. The 

system described in this application note has a Cortex-M0_DS processor, reset, 

preloaded memory with a program that fetches constants from memory at regular 

intervals, and a pattern detector attached to the data bus. When a specific pattern 

appears on the data bus, an LED turns on; when another specific pattern appears on 

the bus, the LED turns off. 

The Cortex-M0_DS deliverables from ARM include only the processor and a non 

sinthesizable testbench, so we will implement these other parts around the processor to 

build a synthesizable system: the software executable image, a reset synchronizer, a 

memory holding the program, the system clock, and the detector module that will 

command the LED. 

This system was developed using Microsoft Windows XP SP3 32-bit edition as a host 

OS, Xilinx ISE 12.2 for WinXP32 as the FPGA development tool, and the ARM/Keil 

MDK 4.14 Evaluation Version for the software development tools. The hardware is 

based on a Xilinx Spartan3E-500 FPGA (Nexys2 board from Digilent). Other 

combinations of development tools, operating systems, and FPGA boards should work 

with minor changes. 

 

Prerequisites 
Hardware & Software 

a) Nexys2 board 

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,789&Prod=NEXYS2 

b) Xilinx ISE12.2 development tools  

http://www.xilinx.com/products/design-tools/ise-design-suite/index.htm 

c) Digilent Adept software 

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2 

d) Digilent Plugin for Xilinx tools 

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,768&Prod=DIGILENT

-PLUGIN    

e) Cortex-M0 DesignStart deliverables 

http://www.arm.com/support/university/index.php 
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f) ARM/Keil MDK evaluation version 

http://www.keil.com/arm/mdk.asp 

g) BIN to COE conversion utility 

http://www.sourceforge.net/projects/bin2coe 

 

Recommended level of knowledge: 

a) Digital systems design and VHDL language: intermediate 

b) Processor architectures: intermediate 

c) Verilog language: basic 

d) “C” programming language: intermediate 

e) Embedded systems programming using “C”: intermediate 

f) Cortex-M0 assembler language: basic 

g) AMBA-LITE™ bus: basic 

h) ARM/Keil MDK: basic 

i) Xilinx ISE: intermediate; up to the level of the Xilinx FPGA Design Flow 

Workshop available at the Xilinx University Program: 

www.xilinx.com/university/workshops/fpga-design-flow/index.htm 

 

Workflow 
 

A) Software Development and Simulation: Using the ARM/Keil MDK, we will develop 

and simulate a simple software program to verify memory fetches of predefined 

constants. 

 

B) Basic System Implementation: Using the Xilinx ISE, we will implement a basic 

synthesizable system that can execute the code developed in (A) 

 

C) Functional Simulation: Using the ISIM tool, we will simulate the system generated in 

(B) and verify that the predefined constants appear on the processor’s data bus. 

 

D) Hardware Verification: A ChipScope Pro module will be added to the system 

developed in (B), so that we can see the internal signals. The system will be 

synthesized and downloaded to the board, and we will verify the memory fetches 

and the LEDs flashing on and off.  
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Software Development and Simulation 
In this step we will create a project in the ARM/Keil MDK IDE with a program that 

fetches two constants from memory at regular intervals. 

To do that we create a new project with ARM Cortex-M0 as the chosen CPU: 

 

 
Fig.1 

 

Next, add the sources “main.c” and “vectors.c” (listings in the “Source Code” section). If 

desireable, change the name “Target 1” to “CM0_DS” and “Source Group 1” to  

“BlinkingLed”, or choose other names too. 

 

 
Fig.2 
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The main.c source has the executable code, and vectors.c source has the base address 

for the stack and ARM exception vectors. The only exception vector used in this 

application is the Reset Handler. Remember to use the correct value for “period”, 

depending if you are simulating or if you are building an image for FPGA 

implementation. For simulation purposes, use 200 as “period” value. For implementation 

in FPGA, use 20000000 instead. 

Next, set the Options for Target CM0_DS in tabs “Target”, “Output”, “ASM”, “Linker”, & 

“Debug”: In the “Target” tab, choose a working frequency, for example 10 MHz (this 

frequency should be the same as the system clock frequency in the FPGA project in 

step (B)), and also implement a ROM memory with size 1024 bytes, and a RAM 

memory with size 1024 bytes. This provides a total memory size of 2048 bytes.  

 
Fig.3 

In the “Output” tab, choose a folder for the objects generated by the toolchain, the name 

of the executable image, and the option to generate a .HEX file with the code. 

 
Fig.4 
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In the “Asm” tab, choose Thumb Mode. 

 

 
Fig.5 

 

In the “linker” tab, because we use the evaluation version of the toolchain, we need to 

set the base addresses by hand and instruct the linker how to deal with the exception 

vector table. Set the “R/O” (ROM) base address to 0x00000000 and “R/W” (RAM) base 

address to 0x00000400, then add “--entry 0x15 --first=vectors.o(__Vectors)”, to the 

“Misc. Controls” to locate the vector table defined by vectors.c. 

 

 
Fig.6 
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In “Debug” tab, ensure that “Use Simulator” tick is selected for debugging purposes. 

 

 
Fig.7 

 

Now, build the executable image from the sources using the “build” button or the project 

menu “build target”. 

 

Fig.8 

 

If everything went fine, you should have the executable image in elf format 

“BlinkingLed.axf”. Simulate the program with the “start/stop debug session” button. 
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In the simulation, use the F11 key to step through the assembly code, noting its 

relationship with the C source code (the assembly code may differ depending on the 

MDK version used). 

 

 
Fig.9 

 

When the C assignment line executes with constant 0xaaaa5555 (place a breakpoint on 

the instruction to stop the processor before the instruction executes), note that the 

assembler generates an ARM PC-relative load instruction (LDR) to load that constant 

from memory into a register, so there is a memory access using the HRDATA bus (the 

HRDATA bus is the processor’s read data bus. Data coming into the processor uses 

this bus). In the FPGA, a detector module connected to the HRDATA bus will search for 

this constant or the constant 0xf0f0f0f0 to turn on and off an on-board LED. 

Now reset the processor and place a breakpoint in line 40 where the first memory 

access that loads the constant 0xf0f0f0f0 (LedOff) is done. Run the program (with F5) 

until the breakpoint is reached and take note the simulation time 242.20 uS, which is the 

execution time starting from the “main” function (it doesn’t take into account the 

processor setup time). This time will be compared to the hardware functional simulation 

time. 
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In this section: 

• A software project was created in ARM/Keil MDK configured for the Cortex-

M0_DS processor. 

• C sources “main.c” and “vectors.c” were added to the project which included a 

ready to execute a program with the exception vectors and stack configured. 

• The source code was simulated and debugged. 
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Basic system implementation  
This section will describe how to generate a project in ISE using the Cortex-M0_DS 

processor. Necessary modules will also be added to implement a basic system capable 

of running programs. 

To do this, create a new project in ISE called “CM0_DSSystem” using the Spartan3E-

500 speed grade 4 device, with preferred language “VHDL”. 

 
Fig.10 

For this Project, make a mixed implementation using Verilog and VHDL. The processor 

is described in Verilog and the additional modules in VHDL. The information to make a 

mixed language project is in the XST User’s Guide. The architecture of the project and 

the implementation files are shown here (the names in parenthesis are submodules of 

each module). The .vhd sources are in the “Source Code” section. 

 
Fig.11 
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These .vhd and .v files will be added to the project. The next sections will explain how to 

generate/add each one. 

 

CM0_DSSystem: 
This is the top module of the implementation. It has the connections between the 

submodules and the interface to the LEDs and Crystal Oscillator on the board. The 

module description is in the file “CM0_DSSystem.vhd”, so add it to the project using the 

“Project - >Add source…”  or “Project - > Add copy of source...” menu in ISE. The 

submodules (marked with a “?”) will be added in the next subsections. 

 

 
Fig.12 

 

Cortex-M0 DesignStart: 
This is the processor. Its implementation is in “cortexm0ds_logic.v” (obfuscated 

implementation) and “CORTEXM0DS.v” (interfaces and processor registers and 

signals). They are part of the deliverables from ARM. There is more information about 

these files in the processor release notes. You need to add those files to the project 

using the “Project - >Add source…”  or “Project - > Add copy of source...” menu in ISE. 
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Fig.13 

 

10 MHz Clock: 

This module generates the system clock at 10 MHz from the 50 MHz board’s external 

oscillator. To do this in ISE, create a new ipcore called “SystemClock” using a DCM. In 

“Project”, select “new source” from type “ip (coregenerator)” and type “Single DCM SP”, 

and name it “SystemClock”, and with description in VHDL: 

 
Fig.14 
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Select the “View by Function” tab and choose “Single DCM_SP” from the “FPGA 

Features and Design - > Clocking - > Spartan-3E, Spartan-3A" subtree. 

 

  
Fig.15 

 

 
Fig.16 

 

Generate the ipcore with the following configuration: 

In this window select the input frequency to 50MHz (This is the oscillator frequency of 

the board). 
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Fig.17 

 

 
Fig.18 
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In this window, set the output frequency to 10 MHz (This is the frequency set up in the 

ARM/Keil MDK project) and press “Calculate” button. 

 

 
Fig.19 

This should be the configuration: 

 
Fig.20 
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Detector: 
This module will be attached to the processor’s HRDATA bus and will be responsible for 

reading the data on that bus. When the value 0xaaaa5555 is on the bus, LED3 turns on. 

When 0xf0f0f0f0 is on the bus, LED3 turns off. The module description is in the file 

“Detector.vhd”. You need to add it to the project using the “Project - >Add source…”  or 

“Project - > Add copy of source...” menu in ISE. 

 

 
Fig.21 

 

Reset synchronizer: 
This module generates a delay using a counter and then it generates an active-low 

reset pulse lasting five clock cycles. This is synchronized with the rising edge of the 

system clock. The synchronizer can be implemented in a single module, but for clarity 

here, it is implemented using one module (SyncReset.vhd) and 3 submodules 

(DelayCounter.xco; Counter2Constant.vhd y Constant2Pulse.vhd). You need to add the 

.vhd sources using the “Project - >Add source…”  or “Project - > Add copy of source...” 

menu in ISE.  

 

The module works as such: a counter generates a pulse that overflows, generating a 

delayed pulse synchronized with the system clock. This solution has some 

disadvantages: a) the pulse lasts for only one clock cycle (we need at least two clock 
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cycles to reset the processor) and b) the pulse is periodic (its period is the counter 

overflow), so the processor will be reset periodically. 

 

To overcome this situation, add the modules Counter2Constant, Constant2Pulse, and 

SyncReset to the project. The module Counter2Constant generates a ‘0’ to ‘1’ transition 

in the first overflow of the counter, but the output is held as a ‘1’ in the next counter 

overflows. The module Constant2Pulse generates a one clock cycle pulse synchronized 

with the ‘0’ to ‘1’ transition in the module Counter2Constant. Finally, the module 

SyncReset receives the output of the module Constant2Pulse, negates it, and 

generates a low pulse lasting five clock cycles. This pulse is used to reset the 

processor. 

 

Here are the timing diagrams: 

 

 
Fig.22 

 

The logical diagram (using gates) for each module are listed below. We used FFs to be 

able to set initial values at ‘0’. In the next section you will create the Delay Counter 

module. 
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Fig.23 

 

Binary counter configuration: 
To generate the Reset Synchronizer counter in ISE, create a new ipcore called 

“DelayCounter” using a binary counter. In “project”, select “new source” from type “ip 

(coregenerator)” and type “Binary Counter”, name it “DelayCounter”, and with 

description in VHDL: 
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Fig.24 

 

Select the “View by Function” tab and choose “Binary Counter” from the “Basic 

Elements - > Counters" subtree. 

 

 
Fig.25 

 

The binary counter should have the following configuration: 

The output width is set for 20 bits (2^20 counts), with 1-bit increment. 
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The final count is 250 (0xFA) and the overflow value is 249 (0xF9). We intentionally 

used a small counter value to speed up the simulation. In the hardware implementation 

you may use values according to the counter’s size to control the processor’s startup 

delay time. 

 

 
Fig.26 

  

 
Fig.27 
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Memory: 
This is a basic system, so the RAM and ROM will be implemented as a single memory 

component with the ROM part containing the program. A 2KB system was defined in the 

software program, but the processor always accesses 32 bits (4 bytes) per memory 

access, so it’s necessary to implement a memory with 512 words of 32-bit length each. 

To initialize the memory, a .coe file is needed with the memory contents. To get this file, 

we need a .bin (binary image) file first. This can be obtained from the .axf file generated 

in ARM/Keil MDK. To get “BlinkingLed.bin” file from “BlinkingLed.axf” file, use the 

“fromelf” utility (this tool is bundled with ARM/Keil MDK). This is a command line utility, 

so it can be  invoked as such:  

 

“fromelf  - -bin  - -o  BlinkingLed.bin  BlinkingLed.axf” 

 

Use the utility “Bin2Coe” to generate a COE formatted ASCII file from “BlinkingLED.bin” 

that will be used to initialize the memory. This is also a command line utility, so it can be  

invoked as such:  

 

“bin2coe  BlinkingLed.bin  BlinkingLed.coe 512” 

 

To generate the memory, we need to create a core called “Memory” using the block 

memory available in the FPGA, Again, in “project”, select “new source” from type “ip 

(coregenerator)”, type “Block Memory Generator”, name it “Memory”, and with 

description in VHDL: 

 
Fig.28 
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Select the “View by Function” tab and choose “Block Memory Generator” from the 

“Memories and Storage Elements - > RAMs & ROMs" subtree. 

 

 
Fig.29 

 

The memory must be generated with the following configuration: 

Here we use the default values. 

 
Fig.30 
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Here we configure the memory to be one of 512 words (depth) of 32-bit each (width), 

and add an “enable” signal (check “Use ENA Pin” box). 

 

 
Fig.31 

 

Here tell the memory generator where is the .coe file with the program (it will be copied 

to the ..\ipcore directory). 

 
Fig.32 
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Then add a reset input for the memory. 

 

 
Fig.33 

 
Fig.34 
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When the memory is added to the project, you will see in the top module 

(CM0_DSSystem.vhd), in the memory instantiation section (Inst_Memory : Memory at 

line 174), that the there is a “misaligment” between the memory address bus and the 

processor address bus (see “addra” signal at line 180): 

 

Memory address Bus[0] < - - > Processor Address Bus[2] 

Memory address Bus[1] < - - > Processor Address Bus[3]… 

 

and so on. Also,  the processor’s address bus bits [1] and [0] are discarded. 

This is because on the Cortex-M0, all data accesses need to be aligned on the 

appropriate memory addresses, otherwise the processor does an unaligned data 

access and takes data from the wrong place. So, as the processor always performs a 

32-bit data fetch on a memory access in hardware, if the data needed by the software is 

less than a 32 bits, it's trimmed from the 32-bit word fetched. So, the memory 

layout should always be 32 bits in length. As an example, suppose this data:  

  

mem address 0x00: 0xFEDCBA98  

mem address 0x01: 0x76543210  

  

(In Xilinx ipcore memories configured for 32-bit word length, each memory address  

holds 32 bits/4Bytes, so memory address 0x01 stands for the 5th byte). 

  

So, if the software asks for the byte at address 0x02, the processor puts 0x00000002 in 

HADDR, and takes the 3rd quarter of the 32-bit word fetched on the HRDATA bus at 

memory address 0x00 (0xDC in this case). If the software asks for the half word (16-bit) 

at address 0x02, the processor puts 0x00000002 on HADDR, and takes the 2nd half of 

the 32-bit word fetched in HRDATA bus at memory address 0x00 (asking for the 

halfword at address 0x01 generates an exception), and so on. If the software asks for 

the 32-bit word at address 0x04, the processor puts 0x00000004 on HADDR and takes 

the full 32-bit word fetched in HRDATA bus from memory address 0x01. Further, asking 

for a word at address 0x01, 0x02, 0x03, 0x05, 0x06, or 0x07 generates an exception 

because word access must be 4-byte aligned and halfword access must be 2-byte 

aligned. 
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So, the misalignment between the processor address bus and the memory address bus 

not only avoids an unaligned access in hardware, (if the software does an unaligned 

access because of bad pointer arithmetics, the exception still happens), it also simplifies 

the memory device to use.  Only a simple 32-bit width memory is needed and the 

routing problems associated with accesses to sub-word data in hardware can be 

dismissed. 

Once all of the modules are correctly generated and added to the project, the system is 

ready for a functional simulation: 

 

 
Fig.35 

In this section: 

• A new Xilinx ISE project was created and a basic system using the Cortex-

M0_DS processor and other modules were created, configured, and added to the 

project. All of these components are needed to run a precompiled program. 
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Functional Simulation 
Functional simulation of the system can verify that the signals in the data read bus 

(HRDATA) are the expected ones and that the detector module works as expected. The 

ISIM tool (ISE Integrated Simulator) can be used to perform the simulation. Select the 

simulation option in the Design View (“Design -> View: Simulation”). 

 

 
Fig.36 

 

Highlight the top module (CM0_DSSystem) and run the “Simulate Behavioral Model” 

process. Upon completion, the ISIM application starts. 

 

 
Fig.37 
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By default the simulator runs for 1 uS, but the clock signal is not yet defined, so it’s 

necessary to restart the simulator with the “Restart” button and force the clock signal 

that comes from the board’s oscillator. To do this, select the “clock_in” signal and click 

with the right mouse button, then select the option “force clock” in the contextual menu. 

The forced signal parameters are shown in this figure: 

 
Fig.38 

 

The period of 20 nS is for the 50 MHz oscillator in the Nexys2 board. Press the “OK” 

button and set 300 uS as simulation time. Then, simulate it by pressing the “Run for the 

time specified in the toolbar” button. 

 

 
Fig.39 
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When the simulation completes, note that at simulation time 268.79 uS there’s a 

0xf0f0f0f0 pattern on the read data bus (HRDATA), and the detector module output 

(LED03) changes state from ‘1’ to ‘0’. Compare this value with the one from software 

simulation (242.20 uS). The difference is because the software simulator timer starts at 

the “main” function (assembler instruction MOVS r2,#0xC8). This instruction is executed 

at simulation time 26.49 uS, so this simulation shows the system working as expected 

from the software simulation. 

 

Note that if the software uses a “period” value less than 511 (0x1FF), as in this case 

(remember that “period” is 200 for simulation), you will see that the LED3 turns off for a 

very short period of time (a “glitch”) instead of equal periods for ‘1’ and ‘0’. This is due to 

the nature of the processor pipeline. When the “period” is less than 0x1FF, the memory 

image generated is such that when the software turns off the led, at execution of the 

“while(1)” branch, the processor is also fetching the next memory position (which has 

the 0xaaaa5555 value).  

 

You can see the memory map in the debugger/simulator in ARM/Keil MDK that with a 

“period” less than 511, the 0xaaaa5555 constant is right next the “while(1)” assembler 

branch instruction. So, it’s fetched at branch execution and the value appears in the 

HRDATA bus activating the Detector module output and changing the LED3 value back 

to ‘1’. When the “period” is greater than or equal to 511, the assembler generates a 

constant in memory to represent the “period” value, and this constant is placed right 

next the “while(1)” branch. So, LED3 has equal periods of ‘1’ and ‘0’ instead the of the 

“glitch” observed with the “period” values less than 511. You can see this in the memory 

map if you simulate the software with a “period” value of 512 or greater. 

 

Other important simulation times and signals: 

o At 25.14 uS the reset signal goes from ‘1’ to ‘0’, so the processor signals “Reset” 

and “Lock” start to have a defined value. 

o At 25.64 uS the processor leaves the reset state. You can also see that the reset 

state lasts for five “clock” signal periods (remember that “clock” signal is the 

system clock). 

o At 26.94 uS there is the first appearance of the 0xaaaa5555 constant on the 

HRDATA bus, so LED3 signal has a defined state (‘1’). 
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o At 269.04 uS there is a transition from ‘0’ to ‘1’ in the detector signal (LED3), so 

the glitch (because a “period” value lesser than 512) lasts for three “clock” 

periods. 

o LED0 is the DCM “lock” signal, indicating that the DCM is working. 

o LED1 is the processor “sleep” signal, and it should always be ‘0’. 

o LED2 is the processor “lock” signal, and it should always be ‘0’. 

o LED3 is the detector output. It has a ‘1’ to ‘0’ transition with the constant 

0xaaaa555 on the HRDATA bus and has a ‘0’ to ‘1’ transition with the constant 

0xf0f0f0f0 one the HRDATA bus 

o LED4 is the processor “reset” signal.  

o LED5, LED6, and LED7 have the value ‘101’ hardcoded. 

 

In this Section: 

• The correctness of the system was verified using a functional simulation with the 

ISIM tool. A correspondence between the software simulation time and the 

functional simulation time was also verified. 

 



Embedded Systems Laboratory - FIUBA   

AN 001/11 – v1.00  32

Hardware Verification 
In this Section, implement the system in real hardware and check it using the 

ChipScope Pro tool. To do this, add information about the hardware outside the FPGA 

(the external oscillator, LEDs, etc.). Then add an ILAC (Integrated Logic Analyzer Core) 

module to see the internal signals of the system. 

 

To add information about the external hardware, generate a restrictions file (Unified 

Constraints File – UCF). It’s called a “Constraints File” because this file also contains 

the timing and placement constraints of the system as needed. In this simple system  

there are no placement contraints; in a more complex system it could be useful to add a 

placement constraint (using the FloorPlanner tool) for the CM0_DS processor, so it 

won’t be resynthesized every time there is a change in the design. So, in “project”, 

select “new source” from type “Implementation Constraints File” and call it 

“CM0_DSSystem”, as the top module. 

 

 
Fig.40 

 

This adds to the project an empty file called “CM0_DSSystem.ucf”. Edit it to add the 

information about the board. The information to add for the Nexys2 board is in the 

“Source Code” section and in Digilent’s web site. Other boards should have their own 

.UCF files. The restrictions added include the 50 MHz external oscillator input and the 

LED positions. 
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Fig.41 

 

Now it’s time to add the ILAC module. Add the ChipScope Pro definition and connection 

file. This file will have the information about the signal connections that will be monitored 

and other configuration parameters of the ILAC module. So, in “project”, select “new 

source” from type “ChipScope Definition and Connection File” and call it 

“LogicAnalyzer”. 

 

 
Fig.42 
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A new file will be added to the project called “LogicAnalyzer.cdc”. Double click on it, the 

system will be synthesized and you will be able to add an ILA module (Integrated Logic 

Analyzer). After the “Synthesis” process ends, a new window will pop-up. This is the 

configuration window for the ChipScope Pro tool. Press the “Next” button. 

 

 
 

 

Create the new ILA module using the button “new ILA unit” at the bottom right of the 

window. 

 

 
Fig.44 
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A new ILA module appears at the top left of the window. 

 

 
Fig.45 

 

Select the ILA module, and its configuration window appears 

 

 
Fig.46 

 

Edit the trigger parameters as in Fig. 47. Change only the Trigger Width from ‘8’ to ‘32’. 

This instructs the monitoring hardware on what conditions it should start taking samples 

of the signals. In this case the trigger condition is the value of the HRDATA bus (hence 

the change to ‘32’). There will be only one trigger condition and it will based on a 
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comparision against a constant value (the specific value will be set in “Analyze Design 

using ChipScope” process ahead). 

 
Fig.47 

Press the “Next” button. Now configure the capture parameters. The signals of interest 

are HRDATA bus (to see the constant value we need the full 32 bits), the HADDR bus 

from [2] to [10] (remember that HADDR[0] and [1] were discarded and the memory has 

512 words, so we need 9 bits for the memory address), and LED3 (Detector module 

output). So the data width is 42 bits. Untick the “Data Same as Trigger” checkbox and 

set the Data Width to 42. The Data Depth default value of  512 samples is enough, and 

each sample will be taken at the rising edge of the ILA clock signal (it will configured 

next). After those changes, press the “Next” button. 

 

 
Fig.48 
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Here assign the different signals from the system to the trigger, data, and clock ports of 

the ILA module. 

 

 
Fig.49 

 

Press the “Modify Connections” button and a new window will pop-up with the trigger 

signals in red. 

 

 
Fig.50 
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Associate each trigger signal with the corresponding HRDATA value (CH:0 with 

HRDATA<0> and so on) with the “Make Connections” button (it is possible to select a 

group of signals and associate them all at once). 

 

 
Fig.51 

Now select the “Data Signals” tab (top rigth of the window) and associate the data:  

o CH:0 to CH:31 with HRDATA[0]..[31]  

o CH:32 to CH:40 with HADDR[2]..[10] 

o CH:41 to LED3_OBUF 

 
 Fig.52 
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Finally, select the “Clock Signals” tab and associate CH:0 with “Clock” signal. Press 

“OK” button. 

 

 
Fig.53 

The Clock, Trigger, and Data Ports are now colored black, indicating that all 

connections were made. Press the “Return to Project Navigator” button and a “Save 

Project” pop-up window will appear. Select “Yes”. You will return to the Project main 

window. 

 
Fig.54 
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Now highlight the top module and implement the project to generate the 

“CM0_DSSystem.bit” bitstream file that will be downloaded to the FPGA. To do that, run 

the “Generate Programming File” process. When all the processes finish, run the 

“Analyze Design using ChipScope” process. The ChipScope Pro main window will 

popup. 

 
Fig.55 

Now the bitstream file generated in “Generate Program File” process above will be 

downloaded to the FPGA board using the JTAG chain. Normally this is done with a 

Xilinx programming cable like the Platform USB II, but thanks to Digilent’s “Plugin for 

Xilinx Tools” software and some extra logic in the Nexys2 board, this can be done using 

a USB connection. The details to configure Adept to be recognized as a programming 

cable are bundled with the plugin. So, in the ChipScope Pro screen, press the 

“OpenCable/Search JTAG Chain” button at the top left of the screen and a popup 

window will appear with two devices (the FPGA and the PROM). Press the “OK” button. 

Those devices will show up in the top left of the ChipScope Pro main window. 

 
Fig.56 
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Go to the “Device” menu and select “DEV:0” device (the FPGA), a sub menu will 

appear, select the “Configure…” option. 

 
Fig.57 

 

A popup window will appear. Leave the defaults and press the “OK” button. The FPGA 

will be programmed with the bitstream file generated above and the ILA core will appear 

in the top left of the screen. 

 

 
Fig.58 
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Select the ILA core and its signals (the ones that were configured above) will appear in 

the empty window under the JTAG Chain window in the left. 

 
Fig.59 

 

Now double click in the “Trigger Setup” subtree in the “JTAG Chain” window, and the 

trigger setup window will appear in the main window. 

 

 
Fig.60 
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Now program the trigger condition to see the ‘0’ state of the LED3 signal: the 0xf0f0f0f0 

pattern in the HRDATA bus makes a ‘1’ to ‘0’ transition, and there is a trigger condition 

based on a comparision to a constant. So in “Trigger Setup” set  

“1111_0000_1111_0000_1111_0000_1111_0000” as the trigger value. 

 

 
Fig.61 

After that, start the acquisition using the “play” button. In few moments the trigger 

condition is met and the data acquisition is completed (a “Sample Buffer is full” 

message will appear). Click the “Data Port” subtree in the “Signals” window, right-click, 

and in the submenu select “Add All to View - > Waveform”.  

 
Fig.62 
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Now all the configured signals are in the main window. You can zoom-in the window to 

see the values at HADDR and HRDATA when LED3 is ‘0’ and delete the duplicated 

signals. 

 

 
Fig.63 

 

Note that LED3 is ‘0’ for three samples, the same number of rising edges of the system 

clock signal in the functional simulation (remember that the ILA core was configured to 

take the samples in the rising edge of the system clock). Also note that the value 

0xf0f0f0f0 appears for two samples and the value 0xaaaa5555 appears for one single 

simple.  This is exactly the same number of rising edges of the system clock in the 

functional simulation. So there is a perfect correspondence between the software 

simulation, the functional simulation, and the hardware verification. 

 

Now change the “period” value in the software to 20000000, recompile it, regenerate the 

.COE memory initialization file, and regenerate the memory module changing the .COE 

initialization file to the one with the new “period” value. Then regenerate the bitstream 

file and download it to the board (iMPACT tool can be used instead of ChipScope Pro). 

With this new value, the LED3 will blink with close three seconds in between each blink 

on the board. 
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In this Section: 

• The patterns 0xf0f0f0f0 and 0xaaaa5555 were verified as appearing on the 

HRDATA bus inside the FPGA. 

• It was checked that the same timing results appeared in the software simulation 

at ARM/Keil MDK, the functional simulation with the ISIM tool, and the hardware 

verification with the ChipScope Pro tool. 

• It was visually checked that the LED on the board blinked with a period near 

three seconds and the other LEDs were ‘on’ or ‘off’ according to the functional 

simulation results. 

 

Conclusions 
A step by step implementation of the Cortex-M0_DS processor running a defined 

software program was performed in a Xilinx FPGA. This includes the software 

simulation, the system’s functional simulation, and the system’s real hardware 

implementation using the Xilinx ISE toolchain. 
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Source Code 
Main.c 
// Define where the top of memory is. 

#define TOP_OF_RAM 0x800U 

 

// Define heap starts... 

#define HEAP_BASE 0x47fU 

 

//------------------------------------------------------------------------------ 

// Simple "Blinking Led via Memory Access detection" program. 

// This program makes a memory access at regular intervals 

// In the Nexys2 system there is a pattern detector attached to the 

// HWRead bus, so when two specific patterns are detected, a Led toggles its state 

// pattern 0xaaaa5555 turns on the led, pattern 0xf0f0f0f0 turns it off. 

//------------------------------------------------------------------------------ 

 

#define LedOn  0xaaaa5555 

#define LedOff 0xf0f0f0f0 

 

int main(void)  

{ 

 unsigned int counter;  // dummy  

 unsigned int ii;   // loop iterator 

 unsigned int trap;   // memory access pattern receiver 

 unsigned int period;  // time interval for memory access 

  

 //period=20000000;  // period for FPGA implementation; roughly 3 seconds for a 

10MHz osc in CM0_DS 

 period=200;  // period for simulations in ARM/Keil MDK and Xilinx ISIM tool 

  

 while (1) 

 { 

  counter=0; 

  for (ii=0;ii<period;ii++) 
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  { 

   counter++; 

  } 

   trap=LedOn; // memory access pattern (turn on) 

  for (ii=0;ii<period;ii++) 

  { 

   counter++; 

  } 

   trap=LedOff;   // memory access pattern (turn off) 

  trap++;    // dummy  

 } 

} 

 

vectors.c 
// Define where the top of memory is. 

#define TOP_OF_RAM 0x400U 

 

extern int main(void);     // Use C-library initialization function. 

 

__attribute__ ((section("__Vectors"))) 

static void (* const vector_table[])(void) = 

{ 

  (void (*)(void)) TOP_OF_RAM, // Initial value for stack pointer. 

  (void (*)(void)) main,                      // Reset handler is C initialization. 

  0,                           // No HardFault handler, just cause lockup. 

  0,                           // No NMI handler, just cause lockup. 

  0//...                       // Additional handlers would be listed here. 

}; 

 

UCF File: 
(extracted from the ucf file for the Nexys2 board available at Digilent’s web site) 
# clock pin for Nexys 2 Board 

NET "Clock_In"   LOC = "B8"; # Bank=0, Pin name=IP_L13P_0/GCLK8, Type=GCLK, Sch name=GCLK0 

 

# Leds 

NET "Led0"  LOC = "J14"; # Bank=1, Pin name=IO_L14N_1/A3/RHCLK7, Type=RHCLK/DUAL, Sch name=JD10/LD0 

NET "Led1"  LOC = "J15"; # Bank=1, Pin name=IO_L14P_1/A4/RHCLK6, Type=RHCLK/DUAL, Sch name=JD9/LD1 
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NET "Led2"  LOC = "K15"; # Bank=1, Pin name=IO_L12P_1/A8/RHCLK2, Type=RHCLK/DUAL, Sch name=JD8/LD2 

NET "Led3"  LOC = "K14"; # Bank=1, Pin name=IO_L12N_1/A7/RHCLK3/TRDY1, Type=RHCLK/DUAL, Sch name=JD7/LD3 

NET "Led4"  LOC = "E17"; # Bank=1, Pin name=IO, Type=I/O, Sch name=LD4 s3e500 only 

NET "Led5"  LOC = "P15"; # Bank=1, Pin name=IO, Type=I/O, Sch name=LD5 s3e500 only 

NET "Led6"  LOC = "F4";  # Bank=3, Pin name=IO, Type=I/O, Sch name=LD6 s3e500 only 

NET "Led7"  LOC = "R4";  # Bank=3, Pin name=IO/VREF_3, Type=VREF, Sch name=LD7 s3e500 only 

 

 

 


