Embedded Systems Laboratory - FIUBA

Application Note:
Cortex™-MO Implementation in the Nexys2 FPGA Board —
A Step by Step Guide.

Pedro Martos (pmartos@fi.uba.ar / pimartos@gmail.com)
& Fabricio Baglivo (baglivofabricio@gmail.com)

Buenos Aires University — School of Engineering
www.fi.uba.ar

Embedded Systems Laboratory
laboratorios.fi.uba.ar/lse

Contents
11 geo [0 Tox i o] o IR TP TP ST PPPRT PP 3
P I EIEQUISITES. ..cee ittt ettt ettt et oo e e bbbttt e e e e e s e b bbbttt e e e e e e b bbb e e e e e e e enrreeeeas 3
WVOTKIIOW ...ttt ettt e e e e e e ekt e e et e e e e e et bbb e e e e e e e eanbbeeeeas 4
Software Development and SIMUIAtIONevviiiiiiiiiiiieeeee e 5
Basic system implementation.............ouuviiiiiiiiiic - 11
FUNCLional SIMUIALION ... 28
Hardware VErifICALIONouuiieiiiee e e e et e e e 32
(O] oo 11 5] 0] o S PP PP PPT R PPTPPPPR 45
ACKNOWIBAGEMENLS ...ttt e e e e et e e e e e e e ettt b e e e e e e e e annneees 45
[I0=To F= U o) 1o =TT PPPRPRPPP 45
1010 (ol oo [P PP PPPRPI 46

AN 001/11 - v1.00 1

Embedded Systems Laboratory - FIUBA

Revision History:

Date Version Change
24/May/2011 1.00 Initial Release.

For questions, comments, or improvements to this application note, please contact the authors at the

emails shown above. Thanks.

AN 001/11 - v1.00 2

Embedded Systems Laboratory - FIUBA

Introduction
This application note is a step by step guide for a basic implementation of the Cortex-

MO DesignStart (or “Cortex-M0O_DS” for short) processor in an FPGA board. It's
intended as a starting point to build a system around the Cortex-M0O_DS processor. The
system described in this application note has a Cortex-M0O_DS processor, reset,
preloaded memory with a program that fetches constants from memory at regular
intervals, and a pattern detector attached to the data bus. When a specific pattern
appears on the data bus, an LED turns on; when another specific pattern appears on
the bus, the LED turns off.

The Cortex-MO_DS deliverables from ARM include only the processor and a non
sinthesizable testbench, so we will implement these other parts around the processor to
build a synthesizable system: the software executable image, a reset synchronizer, a
memory holding the program, the system clock, and the detector module that will
command the LED.

This system was developed using Microsoft Windows XP SP3 32-bit edition as a host
OS, Xilinx ISE 12.2 for WinXP32 as the FPGA development tool, and the ARM/Kell
MDK 4.14 Evaluation Version for the software development tools. The hardware is
based on a Xilinx Spartan3E-500 FPGA (Nexys2 board from Digilent). Other
combinations of development tools, operating systems, and FPGA boards should work

with minor changes.

Prerequisites
Hardware & Software

a) Nexys2 board
http://www.digilentinc.com/Products/Detail.cim?NavPath=2,400,789&Prod=NEXYS2
b) Xilinx ISE12.2 development tools

http://www.xilinx.com/products/design-tools/ise-design-suite/index.htm

c) Digilent Adept software
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,66,828&Prod=ADEPT2

d) Digilent Plugin for Xilinx tools
http://www.digilentinc.com/Products/Detail.cim?NavPath=2,66,768&Prod=DIGILENT
-PLUGIN

e) Cortex-MO DesignStart deliverables

http://www.arm.com/support/university/index.php

AN 001/11 - v1.00 3

Embedded Systems Laboratory - FIUBA

f) ARM/Keil MDK evaluation version

http://www.keil.com/arm/mdk.asp

g) BIN to COE conversion utility

http://www.sourceforge.net/projects/bin2coe

Recommended level of knowledge:
a) Digital systems design and VHDL language: intermediate
b) Processor architectures: intermediate
c) Verilog language: basic
d) “C” programming language: intermediate
e) Embedded systems programming using “C”: intermediate
f) Cortex-M0 assembler language: basic
g) AMBA-LITE™ bus: basic
h) ARM/Keil MDK: basic
i) Xilinx ISE: intermediate; up to the level of the Xilinx FPGA Design Flow
Workshop available at the Xilinx University Program:

www.xilinx.com/university/workshops/fpga-design-flow/index.htm

Workflow

A) Software Development and Simulation: Using the ARM/Keil MDK, we will develop
and simulate a simple software program to verify memory fetches of predefined

constants.

B) Basic System Implementation: Using the Xilinx ISE, we will implement a basic

synthesizable system that can execute the code developed in (A)

C) Functional Simulation: Using the ISIM tool, we will simulate the system generated in

(B) and verify that the predefined constants appear on the processor’s data bus.

D) Hardware Verification: A ChipScope Pro module will be added to the system
developed in (B), so that we can see the internal signals. The system will be
synthesized and downloaded to the board, and we will verify the memory fetches

and the LEDs flashing on and off.

AN 001/11 - v1.00 4

Embedded Systems Laboratory - FIUBA

Software Development and Simulation
In this step we will create a project in the ARM/Keil MDK IDE with a program that

fetches two constants from memory at regular intervals.

To do that we create a new project with ARM Cortex-MO as the chosen CPU:

% Uil acallaiionfesbiV

Mo G Vow Fowd Foh Ceieg bephoss Soch S0 Wedew el
Tl . L Al @ e NCDEY

el Do
Ll

Ve A8
Dwsee Cones i

Toket MBI

Dt Dwegppuin:

| [8 e cracernetes

w
O #ma g atan)
C aaa e

O A 5 pg lnd.
a

"B [@ T T

Fig.1

Next, add the sources “main.c” and “vectors.c” (listings in the “Source Code” section). If

desireable, change the name “Target 1" to “CMO_DS” and “Source Group 1" to

“BlinkingLed”, or choose other names too.

E\ C:Mgnacio\FacultadiCortexMOVProyectoKeil\CMO_DSNexys2Blinkingled\Blinkingled. uvproj - p¥ision4

File Edt View Froject Flash Dsbug Periphersls Tools SVCS Window Help

DEEHS s 2@ B EE S sRa@ ecsa(m]
Mo_ps
. mainc | [] vectors.c | - x
- 01 | Define where the top of memory is. =
=3 BlinkingLed 02 Hdefine TOP_OF RAM 0xS00T =
B mainc 03
o [A] vectors.c 04 // Define heap starts...
05 #define HEAP BASE Ox47LU
%
lird P

08 // Simple "Blinking Led via Memory Access detectior" program.

03 // This program makes & memory access at regular intervals

18 // In the NexysZ system there is a pattern detector attacked to the

1 // HWRead bus, so when two specific patterns are detected, a Led toggles its state
12 // pattern 0Oxaa=aS55E5 turns on the led, pattern OxfOFOfOFD turns it off.

13 /7

14

15 int mainivoid)

e 1

17 unsigned int counter; /4 dummy

18 unsigned int ii; /¢ loop iterator

19 unsigned int trap: J/ memory access pattern receiver e
20 unsigned int period; /¢ time interval for memory access

21

2 period=20000000; // roughly 3 seconds for a 10MHz osec in €MO_DS
23 while (1)

24 {

25 counter=o;

2% for ([ii=0;ii<period;ii++)

27 {

Kl AN iR
4 3

Simulation CAP| NUM SCRL| OYR /W

Fig.2

AN 001/11 - v1.00 5

Embedded Systems Laboratory - FIUBA

The main.c source has the executable code, and vectors.c source has the base address
for the stack and ARM exception vectors. The only exception vector used in this
application is the Reset Handler. Remember to use the correct value for “period”,
depending if you are simulating or if you are building an image for FPGA
implementation. For simulation purposes, use 200 as “period” value. For implementation
in FPGA, use 20000000 instead.

Next, set the Options for Target CMO_DS in tabs “Target”, “Output”, “ASM”, “Linker”, &
“Debug”™ In the “Target” tab, choose a working frequency, for example 10 MHz (this
frequency should be the same as the system clock frequency in the FPGA project in
step (B)), and also implement a ROM memory with size 1024 bytes, and a RAM

memory with size 1024 bytes. This provides a total memory size of 2048 bytes.

Options for Target *CMO_DS® @

Device Target] Dutput] Listing] User] CJCHI Asm } Limker] Debug] Uli\it\es]

ARM Cortes-MO
Code Generation -
el MHZ): 100
Dperating system: | None LJ ™ Use Cross-Maodule Optimization
™ Use MicrolIB I BigEndian
[Use Link-Time Code Generation
Read/Only Memomny Areas Readwrite Memony Areas
default off-chip Start Size Startup defaul off-chip Start Size Malnit
" ROMI: 8 ™ RaM: - |
|| ROM2: & r R 2: .|
[~ ROM3Z: & r R 3: B
an-chip on-chip
W IROMI: |00 0400 * v |RANM1: |D=400 0400 v
[~ IROM2Z: & [IRAMZ:]
ak. | Cancel I Defaults | Help

Fig.3
In the “Output” tab, choose a folder for the objects generated by the toolchain, the name

of the executable image, and the option to generate a .HEX file with the code.

Options for. Target ‘CM0_DS* @

Device | Target Dutput | Listing | User | CCe+ | Asm | Linker | Debug | Utiies |

Select Folder for Objects... ‘ Mame of Executable: |Blinkingl ad

& Cigate Executable: \objshBlinkingLed

¥ Debug Information [™ Create Batch File

¥ Create HEX File
¥ Browse Information

" Create Librany: Sobjs\BlinkingLed LIB

akK | Cancel J Defaults Help

Fig.4

AN 001/11 - v1.00 6

Embedded Systems Laboratory - FIUBA

In the “Asm” tab, choose Thumb Mode.

Options for Target ‘CM0_DS*

Devicei Target] Dutput] Listing] Uszer] C/C++ Asm]Linker] Debug] Utilities]

Conditional Azzembly Contral Symbaols

X

Define: |

Language / Code Generation
[~ Split Load and Stare Multiple
I~ Read-Only Pasition Independert
I~ Read-wiite Position Independent
v Thumb Mode
[~ Mo'warnings

Include
Paths

Mizc]
Controls

control |"CAK el ARMAUNCWARM' st ' Sistsh" lst" -wref -0 ' 0" --depend ™. d"'
string

Assembler |-cpu Cortes-t0 i -pd "__EVAL SETA 1" -g 16 ~apca=interwark - "C:AKeilWARMYINC! -

(u]3 | Cancel Drefaults

Help

Fig.5

In the “linker” tab, because we use the evaluation version of the toolchain, we need to

set the base addresses by hand and instruct the linker how to deal with the exception
vector table. Set the “R/O” (ROM) base address to 0x00000000 and “R/W” (RAM) base
address to 0x00000400, then add “--entry 0x15 --first=vectors.o(__Vectors)”, to the

“Misc. Controls” to locate the vector table defined by vectors.c.

Options for Target "CM0_DS*
Devicei Target] Dutput] Listing] User] EI.-’E++] Asm Linker]Debug] Utilities]

I™ Use Memary Layout from T arget Dialog
[~ Make FW Sections Position Independent
™ Make RO Sections Position Independent

B/0 Base: |0»00000000
R/ Baze |0x00000400

X

[~ Dan't Search Standard Libraries

V¥ Report 'might fail Conditions az Erors izacleidoping: i

Sl =
ile

Mise |EniY 015 -first=vectorz.ol__Vectors)
contrals

string

Linker |--cpu Cortex-p0 * 0 ro-baze 0x00000000 --entry 0x00000000 --nw-base 0x00000400 --entry Reset_H: & |
control |--entry 0x15 -first=vectors.o__Vectors] --autoat --summary_stder -info summaryzizes --map --sref -calh
v

0] | Cancel Drefaults

Help

Fig.6

AN 001/11 - v1.00

Embedded Systems Laboratory - FIUBA

In “Debug” tab, ensure that “Use Simulator” tick is selected for debugging purposes.

QOptions for Target ‘CM0_DS*

&+ Use Simulator
[~ Limit Speed to RealTime

IV Load &pplication at Startup
Initialization File:

- Restore Debug Session Setiings

Dewcai Talgat] Dutputl List\ng] User] CJCH] Asm I Linker Debug 1 Utililies]

Seftings || © Use:]

I Run to mainf]

[e

3
_vJ Settings

I Fun to main(]

o e |

W Load Application at Startup
Initialization File:

Restore Debug Seszion Settings

W Breakpoints ¥ Toobox ™ Breakpoints ™ Toobox
™ wiatch Windows & Performance Analyzer W wiatch Windows
I Memary Display ¥ Memory Display
CFPUDLL: Parametzr: Drriveer DLL: Parametzr:
|SARMEM3DLL | |SARMEM3DLL |
Dialog DLL: Parameter: Dialog DLL: Farameter:

DaRMCM1.DLL

]TAF{MCMW.DLL |

o]

Cancel I

Defaults]

Help

Fig.7

Now, build the executable image from the sources using the “build” button or the project

menu “build target”.

lied] C:\lgnacio\Facultad\CortexM0\ProyectoKeil\CM0_DSNexys 2Blinkingled\Blinkingled. uvproj - pVision4

Fle Edt Wew Project Flash Debug Peripherdls Took SUCS Window Help
S |
veactars.c

CMO_DS

Bl

sae@ecveE]

299 cmo_ps ol
= £ BlirkingLed 02

/¢ Define where the top of memory is.
#define TOP_OF_RAN Ox8000

] vectors.c efine heap starts...
] wect: 04 // Def. & tart
05 #define HELP BASE Ox47fU

Ll

08 // Simple "Blinking Led via Memory Access detection” program.

09 // This program makes @ memory access at regular intervals
10 // Tn the Nexys2 system there is a pattern detector attacked to the

12 // pattern Oxaaaab555 turas on the led, pattern OxfOFOFOFO turas it off.

11 // HWReaq bus, so wher two specific patterns are detected, a Led toggles its state

15 int main(void)

16 1

z 3
i -

// memory access pattern receiver
#/ time interval for memory access

/7 roughly 3 secends for a i0MHz osc in CM0_DS

17 unsigned int counter; A4 iy

18 unsigned int ii: // loop iterator
13 unsigned int trap:

a0 unsigned int period;

21

2 period=20000000;

23 while (1)

24 1

25 counter=i;

% for [ii=0;ii<period;ii++]

Build target 'CHO_DS'

compiling main.c...

compiling vectors.c...

linking. ..

Program Size: Code=344 RO-data=36 RW-data=0 ZI-data=96
FrowELF: creating hex file...

".\ohisiBlinkingLed.axf”™ - O Errer(s), O Warning(s).

Simulation 1 UM

Fig.8

If everything went fine, you should have the executable image in elf format

“BlinkingLed.axf”. Simulate the program with the “start/stop debug session” button.

AN 001/11 - v1.00

Embedded Systems Laboratory - FIUBA

In the simulation, use the F11 key to step through the assembly code, noting its

relationship with the C source code (the assembly code may differ depending on the

MDK version used).

\E\ C:\lgnacio\Facultad\CortexM0\ProyectoKeil\CMO_DSNexys 2Blinkingled\Blinkingled. uvproj - pVision4
Fle Edit Yew Project Flash Debug Perpherals Tooks SVCS Window Help

DEHEa EEE G| ® e (@eosael@ R

& weon s |OBlEsesR-la-E-.-28- 8- %
Regiter [Vahie [~ 240 period=20000000; // roughly 3 seconds for a 10MHz osc in CHD DS Al Maske [[CaseSenshive
o Fore £30x00000040 2409 LDE rz, [pe,#36] : BOx000000CE
RO 0. 23: while (1) Mame ‘ Address | Type ‘
= 0. 24: { B Simulatar ...
Rz 0. 0x000000AZ EOOF B 0x000000C4 3 Peripheral
A3 M" o counter=0; = Blinkingled Application
R4 s, 0x00000044 2100 MOVS ri,#0x00 [+] D Runti
RS 00 2: for (ii=0;ii<pericd;iit++) - [wa] main Module
i 040... ! i
o o 0x000000A6 2000 HOVS 0, #0x00
Ox00000048 EOO1 E Ox000000AE
RS 0:0.. g5 z
R3 0D Counter-++;
R10 0. 8s ’
e = 0x000000AL 1C49 ADDS ri,rl,#1
tia G 0x000000AC 1C40 ADDE r0, o, #1
R (5P = 0x000000AE 4230 cur 0, r2
0x000000B0 D3FB BCC 0x0000004L
R14 LR ... 3
30 rran=Nxamasaasi&i&G: £ memary ancess nmartern (nurn ani
R15[FC) 00, < 5
- 4PSR 0:0..
+ - Banked mainc | [#] vectors.c L
* - System - j
= e 22 period=20000000; // roughly J seconds for a 10MHz osc in CMO DS
Mode Thr. o - -
while (1)
Stack MSP 21 f |
Floiee b =il counter=0;
B Sec e Sl GEEag s sree s g b
ElProject | SRegisters 4 3
o LCAx Locals Q
Load "C:%\Ignaciol’Facultad))CortexM0Y\ProyectoKeil\) CHO_DSNexys2Blinkingled) &) [yane Value
S S . o 5 counter 000000000
e CESEIICEE E;?l;]ﬁlnwgt o yte Code Jize Limit i 0x00000000
urrently used: yres (1%) - rap 000000000
petiod 000000000
< 3
=
LSSIGN BreakDisshle BreakEnshle BreakKill BreakList BreakSet Breaklccess I sl stack flLocals |£|Memory1
Simulation t1: 0,00000000 sec UM
Fig.9

When the C assignment line executes with constant Oxaaaa5555 (place a breakpoint on
the instruction to stop the processor before the instruction executes), note that the
assembler generates an ARM PC-relative load instruction (LDR) to load that constant
from memory into a register, so there is a memory access using the HRDATA bus (the
HRDATA bus is the processor’'s read data bus. Data coming into the processor uses
this bus). In the FPGA, a detector module connected to the HRDATA bus will search for
this constant or the constant 0xfOfOfOfO to turn on and off an on-board LED.

Now reset the processor and place a breakpoint in line 40 where the first memory
access that loads the constant 0xfOfOfOf0 (LedOff) is done. Run the program (with F5)
until the breakpoint is reached and take note the simulation time 242.20 uS, which is the
execution time starting from the “main” function (it doesn’t take into account the
processor setup time). This time will be compared to the hardware functional simulation

time.

AN 001/11 - v1.00 9

Embedded Systems Laboratory - FIUBA

In this section:
e A software project was created in ARM/Keil MDK configured for the Cortex-
MO_DS processor.
e C sources “main.c” and “vectors.c” were added to the project which included a
ready to execute a program with the exception vectors and stack configured.

e The source code was simulated and debugged.

AN 001/11 - v1.00 10

Embedded Systems Laboratory - FIUBA

Basic system implementation
This section will describe how to generate a project in ISE using the Cortex-MO_DS

processor. Necessary modules will also be added to implement a basic system capable

of running programs.

To do this, create a new project in ISE called “CM0_DSSystem” using the Spartan3E-

500 speed grade 4 device, with preferred language “VHDL".

B New Project Wizard

Project Settings
Specify device and project properties.

Select the device and desian flow for the project

Property Name Yalue

Product Category |

Family
Device

|Spartanze
|#C3ss00E

Package
Speed |4

|Fazz0__

Top-Level Source Type
Synthests Tool
Simulator

Preferred Language

Property Specification in Project Fils

(-
[ie]) < |

Manual Compile Order

glel| [ml=leE

3

YHDL Saurce Analysis Standard w|
Enable Message Filtering O
T |

Fig.10

For this Project, make a mixed implementation using Verilog and VHDL. The processor

is described in Verilog and the additional modules in VHDL. The information to make a

mixed language project is in the XST User’'s Guide. The architecture of the project and

the implementation files are shown here (the names in parenthesis are submodules of

each module). The .vhd sources are in the “Source Code” section.

CMO DSSyatem.vhd

X
i 10Mhz Clack
(DCM) |
SistemClock xaw
HADOR(Z:11)
i
HTRANSHWRITE
+ Memoria
HREADY ~
Cortex-M0 HRDATAD 3]
HRESPNMUIRCRXEY Desi t
Memory.xco
Led?
FLEEF
Led2
LOCK
CORTEXMO_DSv ¥
L, (cartaxmids_logic.v)
Ledt Resat
Resel Synchronizer Bdiasinr o

SyncReset.vhd

(Constant2Pulze.vhd) Detectar.vhd

(Counter2Conslant.vhd)

(DelayCounter. xco)

AN 001/11 - v1.00

Fig.11

11

Embedded Systems Laboratory - FIUBA

These .vhd and .v files will be added to the project. The next sections will explain how to
generate/add each one.

CMO_DSSystem:

This is the top module of the implementation. It has the connections between the
submodules and the interface to the LEDs and Crystal Oscillator on the board. The
module description is in the file “CM0_DSSystem.vhd”, so add it to the project using the
“Project - >Add source...” or “Project - > Add copy of source...” menu in ISE. The

submodules (marked with a “?”) will be added in the next subsections.

22 ISE Project Navigator (M.63c) - C:\lgnacio\FacultadiCortexMO\ProyectolSEACMO_DS_SystemCMO_DS_System.xise - [Design Summary (out of date)]

- NEEN Edt Yew Project Source Process Tools Window Layout Help

-8 x
DA HP X X || =i 228 K AQ (= RE 3 AR I R
it el sl o | ModuloPPal Praject Status &
U | view:) 8 Implementation) 8 Simulation E S
T LI - = @ [0B Properties Project File: CMO_DS_System.xise Parser Errors: Mo Errors
| & | et ! 5 Moilule Level Ltz oy Module Name: CMO_DSSystem Implementation State: Hew
B || - cvops sstem (5] iming Constrairts L
i £ as00eAfg320 o 1 Pinout Repart Target Device: *C3500e-4Fg320 “Errors:
o & [l CM0_DSSystem - Behavioral (CMD_DSSystem.vhd) L] Clack Repart Product Yersion: ISE12.2 sWarnings:
a = Y Static T
8 Inet Datector: Detector () @ @} stati Tining Design Goal: Balanced +Routing Results:
B & Inst_SyncReset - SyncReset () (= Errors and Warnings
| Tnst_SystemClack - Systemclock () 38 p‘ Parser Messages Design Strategy: yllinx Default (unlocked) «Timing Constraints:
o) = Inst_Memory - Memory () o] Sftticeds Mot || |Environment: +Final Timing Score:
@ Pracessor - CORTEXMODS () | [Translation Messages
| I [Map Messages
m [Place and Route Messages I =
e | Detailed Reports -1
[Bitgen Messages || |Report Name: Status |Generated |Errors Warnings [Infos
i @ Al Implementation Messages || [Svrthesis Report
P B3 MoFrocesses Rurning 5 Detailed Reports
S] Synthesis Report Translation Repart
[, | Processes: CMO_DSSystem - Behavioral E O Tanslation Report || {Map Repart
Homn sy fRaports Design Properties ||| Place and Route Report
Design Utities [Enable Message Filtering
User Constraints Optional Design Summary Contents Power Report
Synthesize - #5T [show Clock Report Post-PAR Static Timing Report
Implement Design [] show Faling Constraints
Generate Programming File [Show Warrings Bitgen Repart
Configure Target Device: [show Errrs
Analyze Design Using ChipScope
‘ Secondary Reports | -1 ‘
|Report Name | status Generated | @
= Design Summary (out of date) ‘
Console ~+0O8 x
| i) INFO:HDLCompiler: 1061 - Parsing VHDL file "C:/Ignacio/Facultad/CortexN0/ProyectolSE/CHO_DS_System/CHO_DSSystem.vhd" into library work
) INFO: Projectfome : 656 - Parsing design hierarchy completed successfully.
<

@ Erors 4\ Warnings [gg Find in Files Results

Fig.12

Cortex-MO DesignStart:

This is the processor. Its implementation is in “cortexmOds_logic.v’ (obfuscated
implementation) and “CORTEXMODS.v” (interfaces and processor registers and
signals). They are part of the deliverables from ARM. There is more information about
these files in the processor release notes. You need to add those files to the project
using the “Project - >Add source...” or “Project - > Add copy of source...” menu in ISE.

AN 001/11 - v1.00 12

Embedded Systems Laboratory - FIUBA

2 ISE Project Navigator (M.63c) - C:\lgnacio\Facultad\CoriexM0\ProyectolSE\CMO_DS_SysternMCMO_DS_System.

¥ Fle Edb Yiew Project Source Process Tools Window Layout Help

D2 H XDEX(wa »iflRBR s EETSiFRIPELQ
= It 08 x . |5 DesignOvervew ~ ~
T [Desion nDa x| gy btk — CMO_DSSystem Project Status
B view: @ {8F implementation O = *
m [@ [108 Properties Project File: CMO_DS_System.xise Parser Errors: Mo Errors
| & [Herachy [todule Level Utization Module Name: CMD_DSSystem Implementation State: Mew
b @ [Tiing Constraints
T 13 bl Repit Target Device: XC355008-4Fg320 sErrors:
= & Mgty CMO_DSSystem - Behavioral (CMO_DSSystem. vhd) %] [] Clack Repart Product Version: ISE12.2 *Warnings:
& st Detector, Detector.() - @3 static Tring - | || Design Goal: Balanced *Routing Results:
o | &l st_SyncReset - SyncReset () = Errors and Warnings - -
5 ot_systemClock - SystemClock (1 EE [Parser Messages Design Strategy: | il Default (unlocked) «Timing Constraints:
o @ st_Memory - Memory () " [Synthesis Messages EReIOn Nt
P = essor - CORTEXMODS (CORTEXMODS.v) [0 Tanslation Messages
= " [¥] u_logic - cortexmods_logic (cortexmods_logic.v) % :av Mesds-:uest \
T lace and Route Messages
Detailed Reports 1
[Timing Messages L
[Bitgen Messages Report Name Status |Generated | Errors |warnings |Infos
bo t% sn Impt\amentatmn Messages Synthesis Repart
: = Detaled Reports
» F) HoProcesses Running [0 Sonthests Report Transiation Report
hlo single design module is selected. : [Translation Report % | [Map report
B F Design Ltiees Design Properties Place and Routs Report
[] Enable Message Filtering
Optional Design Summary Carkerts Power Repart
= [[] Shew Clock Report Post-PAR Static Timing Report
1 [] Show Failing Constraints
I Show Warnings Bitgen Repart
[] Show Errors
\ Secondary Reports \ -1 |
|Report Name Status Generated | &
= 15E Design Suite InfoCenter B = Design Summary B8 |
| Console 08 x

A INFO:HDLCowpiler:1574 - Analyzing Verilog file \"C:/Ignacio/Facultad/CortexM0/Proyectol3E/CHO_DS_Systew/CORTEXMODS.v\" into library work

4 INFO:HDLCowpiler:1574 - Analyzing Verilog file 4"C:/Ignacio/Facultad/CortexMO/ProyectolSE/CHO DS System/cortexnOds_logic.wi ™ into library work
4 INFO:ProjectMomt: 656 - Parsing design hierarchy completed successfully.

< I
@ Errors _f\ Warnings (8 Find in Files Results

Fig.13

10 MHz Clock:
This module generates the system clock at 10 MHz from the 50 MHz board’s external
oscillator. To do this in ISE, create a new ipcore called “SystemClock” using a DCM. In

“Project”, select “new source” from type “ip (coregenerator)” and type “Single DCM SP”,
and name it “SystemClock”, and with description in VHDL.:

2= New Source Wizard

Select Source Type
Select source bype, file name and its location,

BIMM File

&4 Chipscope Definition and Connection File
Implement ation Constraints File

IP (CORE Generator & Architecture Wizard)

MEM File

Schematic

User Document File: name:

Yietilog Module :
| Yerilog Test Fixture ISystemCIock |

YHOL Module)

: Location:
WHDL Library ;
WHDL Package MCartexMO\ProvectalSEVCMO_DS_Systembipoore_dir | E]

WHDL Test Bench
Embedded Processor

Add to project

Mext = J[Cancel

Fig.14

AN 001/11 - v1.00 13

Embedded Systems Laboratory - FIUBA

Select the “View by Function” tab and choose “Single DCM_SP” from the “FPGA

Features and Design - > Clocking - > Spartan-3E, Spartan-3A" subtree.

2= New Source Wizard

Select IP
Create Coregen or Architecture Wizard IF Core,

‘Wi by Funckion | Wiew by Mame

Marne

= | Clocking
Q' Clocking ‘Wizard
[+ Spartan-3

= | Spartan-3E, Spartan-34
v Board Deskew with an Internal Deskew (DCM_SF) 121 Production
y Cascading in Series with Twao DICM_SP 12.1 Praduction
o Clock Forwarding | Board Deskew (DCM_SF) 121 Production
iy Clock, Switching with Two DCM_SPs

HCH_SP

Search IP Catalog: |

[all 1P versions

Yersion | Status License

1.6 Production

12,1 Production
12.1 Production

i |

| Clear

[iy IP compatible with chosen part

< Back H Mext = H Cancel

Fig.15

E# Xilinx Architecture Wizard - Setup

i File

Synthesiz Tool

) Verlog

[#5T

v

Fart

[#c35500e-4fg320

]

Fig.16

Generate the ipcore with the following configuration:

In this window select the input frequency to 50MHz (This is the oscillator frequency of

the board).

AN 001/11 - v1.00

14

Embedded Systems Laboratory - FIUBA

AN 001/11 - v1.00

x Clocking Wizard - General Setup

Input Clock Frequency

W OME O

CLEIN Source
(%) Ewtemnal O Intemal

(&) Single
) Difterential

Divide By alue

Use Duty Cycle Carection

O
o
]
|
4
o
|
o

Phase Shift
Type: MOME w
vobe: T

Feedback Source
() Estemal @) Intemal () Mone
Single

Differential

Feedback Value
®K O

Xilinx Clocking Wizard - Clock Buffers
Clock Buffer Settings

(%) Use Global Butters for all selected clock. outputs
() Customize buffers

Fig.17

‘ Input 10 ‘ ‘ Input 11 ‘ ‘ View/Edit Buffer ‘
| CLkD Global Buffer |
| CLKFX Global Buffer |

[< Back H Next >] [Cancel J

Fig.18

15

Embedded Systems Laboratory - FIUBA

In this window, set the output frequency to 10 MHz (This is the frequency set up in the
ARM/Keil MDK project) and press “Calculate” button.

£# Xilinx Clocking Wizard - Clock Frequency Synthesizer

Valid Ranges for Speed Grade -4
DFS Mode

Fin [MHz) Fout [MHz)
Lowe 0.200 - 333.000 5.000 - 311.000
High 0:200 - 333.000

5.000 - 311.000
Inputs for Jitter Calculations

Input Clock Frequency: 50 MHz

(5) Use output frequency

10 | @ MHz O ns
€ Uge Multiply M) and Divide (D] vahies
M 2] pfi
Generated Output
M D Dutput Period Jitter [unit Period Jitter
Freq [MHz) interval] [pk-to-pk ns)
2 10 10 0.0z 2.34

E More Infa _' [< Back H Mext >] [Cancel

Fig.19
This should be the configuration:

£ Xilinx Clocking Wizard - Summary

Feature Summary:

A single DCM_SP configured

Filez To Be Generated

File Direrctory:
Ml gnacio\Facultadt Cartest 0\ Propectel SEACMI_DS _Systembipcors_dir

Achiwiz fle: SystemClock. xaw

HDL file: SystemClock vhd
UCF template file: SystemClock_anwe uct
Block Attributes:

Attributes for DCM_SP. blkname = DCM_SP_INST
CLKFx_DIVIDE =10

CLER_MULTIPLY =2

CLKIN_PERIOD = 20.000

() Show all modifisble attributes

(%) Show only the modifiable attibutes whose values differ from the default

l < Back “ Einith } [Cancel

Fig.20

AN 001/11 - v1.00 16

Embedded Systems Laboratory - FIUBA

Detector:

This module will be attached to the processor's HRDATA bus and will be responsible for
reading the data on that bus. When the value Oxaaaa5555 is on the bus, LEDS3 turns on.
When 0xfOf0fOfO is on the bus, LED3 turns off. The module description is in the file
“Detector.vhd”. You need to add it to the project using the “Project - >Add source...” or

“Project - > Add copy of source...” menu in ISE.

2= ISE Project Navigator (M.63c) - C:\lgnacio\Facultad\CortexMO\ProyectolSEACMO.DS_SystemMCMO_DS_System.xise - [Design Summary]

I Fle Edb Wew Project Sorce Process Tooks indow Layout Help BEE
- ¢ m~ £ S~ o = [| I " " T Q
O2Ha IE PRABIAN:FE ARip @
£ - = Design Overview E ~
F [Design e g@ S CMO_DSSystem Project Status
[: = i
oy | [© {5 mplemeneation © 4 smultion e} [108 Properties Project File: CMO_D5_System.ise Parser Errors: o Errors
o Bl il 5 module Leuel kizatian Module Name: CMO_DSSystem Implementation State: Hew
& cMo_ps_system @ Tirning Constraints =
5 £3 xessmonetfgan o 0 Pinout Report Target Device: *c3sE00e-4Fg320 “Errors:
= iehay d) ,:, Clock Report Product Yersion: ISE 12,2 «Warnings:
Z 2) Static Ti
g Inst_Detector - DetectorBus - Behavioral (Detecto [r] (@ Static Timing Desion Goal: aanced T
[2] Inst_SyncReset - SyncReset () - Errars and Warnings
% Inst_SystemClock - SystemClock (SystemClock.xaw) 38 [2 Parser Messages Design Strategy: ilinx Default (unlocked) «Timing Constraints:
&1 |
[2] tnst_Memory - Memory () | o4 = Syrhase Mesayss, Environment: «Final Timing Score:
Frocessor - CORTEXMODS (CORTEXMODS ¥) i Tranidation Mescages
u_logic - cortexmids_logic (cortexmods_logic.) % Map Messages
I [Place and Rodte Messages _
1) Tiing Messages Detailed Reports 1
[itgen Messages Report Name Status | Generated |Errors |Warnings | Infos
= 1 [2) all Implementation Messages ynthesis Report
B | B Mo Fracesses Runring = Detaled Reports
[Synthesis Report | | Translation Report
T, | Processes: CMO_DSysten - Behaviorsl N | - [Translation Repart | [Map Repart
2t R R Gl | Desian Properties || [Prace and Rocte Report
® Design Lilties [] Enable Message Fikering
| @ User Constraints Optional Design Summary Contents Power Report
_|® 8 Synlthaswzmxs'r E g:uw S?;EKR;W': ; Post-PAR Static Timing Report
® Implement Design 0w Failing Constraints
22 Generske Programming Flle [show Warnings Bitgen Report

5 Configure Target Device [show Ervors

€= Analyze Design Using ChipScope

I Secondary Reports [=]

! | [Report Name [Status
= 15E Design Suite InfoCanter E Desion Summary |

Conscle B
| 3 INFC:HDLCompiler: 1061 - Parsing VHDL file "C:/Ignacio/Facultad/CortexM0/FroyectolSE/CHO DS Systen/CHO DSSystem.vhd” into library work
i) INFO:ProjectMowt:656 - Parsing design hierarchy completed successfully.

‘. >.
@ Errors _f\ Warnings (g4 Find in Files Results

Fig.21

Reset synchronizer:

This module generates a delay using a counter and then it generates an active-low
reset pulse lasting five clock cycles. This is synchronized with the rising edge of the
system clock. The synchronizer can be implemented in a single module, but for clarity
here, it is implemented using one module (SyncReset.vhd) and 3 submodules
(DelayCounter.xco; Counter2Constant.vhd y Constant2Pulse.vhd). You need to add the
.vhd sources using the “Project - >Add source...” or “Project - > Add copy of source...”

menu in ISE.

The module works as such: a counter generates a pulse that overflows, generating a
delayed pulse synchronized with the system clock. This solution has some

disadvantages: a) the pulse lasts for only one clock cycle (we need at least two clock

AN 001/11 - v1.00 17

Embedded Systems Laboratory - FIUBA

cycles to reset the processor) and b) the pulse is periodic (its period is the counter

overflow), so the processor will be reset periodically.

To overcome this situation, add the modules Counter2Constant, Constant2Pulse, and
SyncReset to the project. The module Counter2Constant generates a ‘0’ to ‘1’ transition
in the first overflow of the counter, but the output is held as a ‘1’ in the next counter
overflows. The module Constant2Pulse generates a one clock cycle pulse synchronized
with the ‘0’ to ‘1’ transition in the module Counter2Constant. Finally, the module
SyncReset receives the output of the module Constant2Pulse, negates it, and
generates a low pulse lasting five clock cycles. This pulse is used to reset the

processor.

Here are the timing diagrams:

Outputs:

DelayCounter

. 1st.OV . nth.OV

Counter2Constant .

L 1stov ' nth.ov
Constant2Pulse :
- 1st.OV + nth.OV
SyncReset l ’
stov | nth.OV
Fig.22

The logical diagram (using gates) for each module are listed below. We used FFs to be
able to set initial values at ‘0’. In the next section you will create the Delay Counter
module.

AN 001/11 - v1.00 18

Embedded Systems Laboratory - FIUBA

DelayCounter

Clock Up Counter Overflow(OV)
Counter2Constant
_|—[> 0™ o Out
In S
Clock .G
Constant2Pulse
|)} Qut
In D Q -
Clock >
OC— CLR 6

SyncReset

4] SET Ed)

ol
2l
of
ol

oR CLR R CLR

Clock

Fig.23

Binary counter configuration:

To generate the Reset Synchronizer counter in ISE, create a new ipcore called
“DelayCounter” using a binary counter. In “project”, select “new source” from type “ip
(coregenerator)” and type “Binary Counter”, name it “DelayCounter”, and with
description in VHDL:

AN 001/11 - v1.00 19

Embedded Systems Laboratory - FIUBA

2= New Source Wizard

Select Source Type
Select source type, File name and its location,

BMM File

@& Chipscope Definition and Connection File
[Implementation Constraints File

S (CORE Generator & Architecture Wizard)
MEM File

Schematic

E User Document:

vetilog Madule £ .
werilog Test Fixture !DelayCounterl |
] YHOL Madule [Dcah;n_
[T WHOL Library I
[F] WHOL Package ![J'I,CortexMU'l,ProyectoISE'I,CMU_DS_SYstem'l,ipcore_dir! E]

'] WHOL Test Bench
| Embedded Processar

Add to project:

Fig.24

Select the “View by Function” tab and choose “Binary Counter” from the “Basic

Elements - > Counters" subtree.

2= New Source Wizard

select IP
Create Coregen or Architecture Wizard IP Core.

View by Function | Wiew by MName
Mame © Mersion | Status License
+ /. Automokive & Industrial
/ BaselP

"~/ Basic Elements
7 Accurmulators
| Comparators
|~ Counters

o8-8

‘% Binary Counter 11.0 Production

4 DSP48 macro 2.0 Production
' Memary Elements
| B Registers, Shifters & Pipelining o)
Search IF Catalog:
[] &l IP versions] only IP compatible with chasen part

< Back][Mext =][Cancel

Fig.25

The binary counter should have the following configuration:

The output width is set for 20 bits (2720 counts), with 1-bit increment.

AN 001/11 - v1.00 20

Embedded Systems Laboratory - FIUBA

The final count is 250 (OxFA) and the overflow value is 249 (OxF9). We intentionally
used a small counter value to speed up the simulation. In the hardware implementation
you may use values according to the counter’s size to control the processor’s startup
delay time.

Binary Counter

P Syl #x -
Binary Counter i
Countes
Range: 1..256
Ranga: 1..FFFFF (Hex)
Final Count valie R Range: 1.FFFFE (Hex)
Courit Mode w ~
o [5] Sync Threshokd . Theeshold vake [Fo Range: LEFEFF (Hex)
] Conrol
[Cleck Enablle (CE)
[Syrchronous Cliar (SCLR)
Range: OLFFFFF (Hax)
Porwir-on Rt Init Vaksy a Rarngn: O.FFFFE (Hi)
Latency Sattings
Latency Configuration Manual = Latercy 1 Range:; 1.32
Foncthack Latency Configuratic Ml | Fencback Latercy (0 Range: 0.4
Load Sense actve Hegr
q Pombol |§ whrmemn | [oatasheet] ererate | [carcal][teb |
Fig.26

8 ISE Project Navigator [) - C:Mgnacio\Facullad

L Be EBR Yew Pojd Goeos Booes Touk Wiekew Lagad Hels

D EHo EDDX oa » o R
5 e w08 x| .. LMU_DSSystem Project Status g
B = (@ 7 £ : L
m = i () 3 molervaniation) [sendation @ |CM0L_DS_System, s Parser Errnes: Mo Errnes
Horsedy |0 _Drssystem implementation State: New
| | € Sopesnim © ;
b S O zeansionuain s [|r3ssne Aigaz I sErrors
= = & \ISE12.2 ~Warnings:
= 1 g I 5
E 4 gl brest_SyraRieset - SyreReset - Bebavioral (SR & Ervirs and Werniaz Pesion ek jedomssd + st Renits
E nstcomstzrudsn - Constork2fs - Bohavioeal el Design Strateyy: | Delh i) ~Timing Constraints:
o a nstperiodc2constank - Counter2Constert ™ Lnvironment: “tinol Timing Score:
@ 4] Countersebup - DelayCounter (Dt . - .
- 5 st _SystenrClock, - SysteniChock {Srskenhock, o)
T Inst_Memory - Memary () Detblied Repores =
=[] Processer - CORTEXHODS (CORTEXMIDS v} - 2 - . B =
[ko - cortemdds ok fosetentds.kogk.vh [Slabus | Geoeealed |Frors Waeniogs Tafos
Translation Repoet
B B0 hoProcsises Ry Map Report
[{] | Processas: CH_Csisten - Ushaniorsl 1 [Place v Rous Regeet
my L Oesign Summasy/epoets L Puvrer Repurt
e . g Dk Utities v Post-PAR S8t Tivng Report
B | & Liser Corvdraints [Showe Clock Report Rpr
@8 Smlhesice-xsT] Show Fsling Corstrants SueoRaout
= | @ P23 Tmplement Design] show warnings
3 Genesle Prog s File [Stowe Evrors d
) Configuee Target Dmvice [Seondary Reports. | L1
B Anabros Desin Usiog ClipSiope | Report name | status Generated
| Dale Generated: 05/16/2011 - 23:15:37 ~
= 15E Design Sute Infaentsr J i Surmmmary {ou of dalm)
Conscle ~Oe

| I TRFO:EDLCompd Lee s 1061 Paraing VHDL file "C:/fIgnacin/Facuload/Corteydi/PropectalSESCHN_DS_Syacem/SyncReser.vhd” inta library otk
I INFO: Projectigue: 656 - Parsing design h n 11

1<
@ eroes) Wamings (g Find in Fles Reaes

|

Fig.27

AN 001/11 - v1.00 21

Embedded Systems Laboratory - FIUBA

Memory:

This is a basic system, so the RAM and ROM will be implemented as a single memory
component with the ROM part containing the program. A 2KB system was defined in the
software program, but the processor always accesses 32 bits (4 bytes) per memory
access, so it's necessary to implement a memory with 512 words of 32-bit length each.
To initialize the memory, a .coe file is needed with the memory contents. To get this file,
we need a .bin (binary image) file first. This can be obtained from the .axf file generated
in ARM/Keil MDK. To get “BlinkingLed.bin” file from “BlinkingLed.axf" file, use the
“fromelf” utility (this tool is bundled with ARM/Keil MDK). This is a command line utility,

so it can be invoked as such:

“fromelf - -bin --o BlinkingLed.bin BlinkingLed.axf”

Use the utility “Bin2Coe” to generate a COE formatted ASCII file from “BlinkingLED.bin”
that will be used to initialize the memory. This is also a command line utility, so it can be

invoked as such:

“bin2coe BlinkingLed.bin BlinkingLed.coe 512"

To generate the memory, we need to create a core called “Memory” using the block
memory available in the FPGA, Again, in “project”, select “new source” from type “ip
(coregenerator)”, type “Block Memory Generator”, name it “Memory”, and with
description in VHDL:

2 New Source Wizard

Select Source Type
Select source bype, file name and its location,

BMM File

&8 ChipScope Definition and Connection Fils
Implementation Canstraints File

[IP (CORE Generator & Architecture Wizard)
MEM File:

schematic

=| User Docurment

Yerilog Module 2
.| Verllog Test Fixture ;Mamnry|
ni ety
YHOL Library 2 ~
YHOL Package Ei1,C0rtexMD\,ProyectoISE\,CMD_DS_System\,ipcore_dir | E
| YHDL Test Bench - - - -

Y| Embedded Processor

File nare:

Location:

: | Add to project
T

Fig.28

AN 001/11 - v1.00 22

Embedded Systems Laboratory - FIUBA

Select the “View by Function” tab and choose “Block Memory Generator” from the
“Memories and Storage Elements - > RAMs & ROMs" subtree.

2= New Source Wizard

X

Select IP
Create Coregen or Architecture Wizard IP Core,

Marme ~
[|~/ FPEA Features and Design

|77 Math Functions

=8

‘ersion | Status License 2

~ Mematies & Storage Elements

= FIFOs

I Memory Interface Generators

|7 RAMSs & ROMs

% Block Memory Generator
%y Distributed Memary Generator 5.1

[# |~ Standard Bus Interfaces

[|7 Video & Image Processing

i

Production
Production

Search IP Catalog: ! ![Clear

[] ©nily IP compatible with chosen part

[] all 1P versions

< Back][Mext = ” Canicel

Fig.29

The memory must be generated with the following configuration:
Here we use the default values.

% Diock Memery Genarator

1P Syrbol -]

wgic.”* Block Memory Generator A

Companent Hame |Memary

Mermcry Type Sngle PortRAM -
Clacking Options

Cammon Clock

Algorithm

Defines the algoriim uzed 1o concatenate the blodk RAM primitives, See the datazhest for
mare informatian,

) Minirmim Area

) Low Power

) Finned Primithas

Actual Primitive(s) Lisad Hol!
G wombol |0 FowwEsmaten] [osmheat] | <k pagencrs [[hent> | [Generas | [garcal][eb |

Fig.30

AN 001/11 - v1.00 23

Embedded Systems Laboratory - FIUBA

Here we configure the memory to be one of 512 words (depth) of 32-bit each (width),
and add an “enable” signal (check “Use ENA Pin” box).

% Block Memory Generator DE®

Wigw

1P Syrbial & X

lgiCJF* Block Memory Generator

4.2

Fort A Options

Memory Size

Write Width (32 | Range: 11152 Read width: 32 |
Wrie Depth (512 | Range: 29011200 Read Depth: 512
Operating Mode Enable

O Write First O always Enabled

O Read First (& Use ENA Pin

() Mo Change

¥ 1Poymbol | Power Estimation EooeRois [Leity l [Sohersts] [Sateel l [lesl
N N

Fig.31

Here tell the memory generator where is the .coe file with the program (it will be copied
to the ..\ipcore directory).

% Block Memory Generator

Yiew

IF Syrnbol a8 x

lgic .** Block Memory Generator

4.2

Optional Output Registers
Port &
[] Register Fort & Output of Memary Primitives
[] Register Port & Output of Memary Care
Register Port 4 Input of SofECC logic

Use REGCEA Fin (separats enable pin for Port 4 output registers)

Pipeling Stages within Mux |U J MUy Size: 122448851
e

Latency added by output register(s):

Port &: 0 Clock Cycle(s)
For Spartan-6 Latency information may not be accurate

Memory Initialization

Load Init File

Coe File jf‘E‘HMU\FVUYEE‘DISE\CMU_DS_SYSTEITI\B‘IHk\ﬂgLEd.EDEH[Browse H Show]

Fill Rermaining Mermory Locations

Remaining Mermory Locations (Hesx) |D ‘

[E+3

rE— [<pack |Pageaofs [mest> | [ererate | [cancel][kel

Fig.32

AN 001/11 - v1.00 24

Embedded Systems Laboratory - FIUBA

Then add a reset input for the memory.

% Block Memory Generator

% IPSymbol | % Powsr Estimation |

MWiew
P Syrribol & x g
wgic\P* Block Memory Generator
Power Estimate Options
Output Reset Options
Port &
Use RSTA Pin (setiresst piny
Output Reset Yalue (Hex) iU
1 Symbol |4 Power Estimation age4ofs [Nest= | [cererate | [concel | [Help
Fig.33
% Block Memory Generator
Miew
IP Syrbnl A x

lgic ’?¢ Block Memory Generator

Structural/Unisirn Simulation Mode! Options

Defines the type of warnings and outputs are generated when a read-write or write-wr e
callision occurs,

@ al
) Mone
© Warning Only

) Generate ¥-Only

Behavioral Simulation Model Options
[] Disable Collision Warnings

[Disable Out of Range Warnings

Information

Memory Type: Single Port Memory

Block RAM resource(s) (18K BRAMS): 1

Tatal Port & Read Latency (From Rising Edge of Read Clock): 1 Clock Cycla(s)
Address width A: 9

Far Spartan-3/3€ devices, using 19K BRAM in the 32,/36-bit wide configuration prevents the
use of the associated dedicated multiplisr. For more information, refer to the Multiplier Block
RAM Routing Interaction section in the Spartan-3 user guide,

The Block Memary Generator core is nat fully backward compatible with the Single Port and
Dual Port Block Memary cores. Please see the datasheet for more information,

age Sof S Mext = Generate] l Cancel] l Help

AN 001/11 - v1.00

Fig.34

25

Embedded Systems Laboratory - FIUBA

When the memory is added to the project, you will see in the top module
(CMO_DSSystem.vhd), in the memory instantiation section (Inst_Memory : Memory at
line 174), that the there is a “misaligment” between the memory address bus and the

processor address bus (see “addra” signal at line 180):

Memory address Bus[0] < - - > Processor Address Bus[2]

Memory address Bus[1] < - - > Processor Address Bus[3]...

and so on. Also, the processor’s address bus bits [1] and [0] are discarded.

This is because on the Cortex-MO, all data accesses need to be aligned on the
appropriate memory addresses, otherwise the processor does an unaligned data
access and takes data from the wrong place. So, as the processor always performs a
32-bit data fetch on a memory access in hardware, if the data needed by the software is
less than a 32 bits, it's trimmed from the 32-bit word fetched. So, the memory

layout should always be 32 bits in length. As an example, suppose this data:

mem address 0x00: OXFEDCBA98
mem address 0x01: 0x76543210

(In Xilinx ipcore memories configured for 32-bit word length, each memory address

holds 32 bits/4Bytes, so memory address 0x01 stands for the 5th byte).

So, if the software asks for the byte at address 0x02, the processor puts 0x00000002 in
HADDR, and takes the 3rd quarter of the 32-bit word fetched on the HRDATA bus at
memory address 0x00 (OxDC in this case). If the software asks for the half word (16-bit)
at address 0x02, the processor puts 0x00000002 on HADDR, and takes the 2nd half of
the 32-bit word fetched in HRDATA bus at memory address 0x00 (asking for the
halfword at address 0x01 generates an exception), and so on. If the software asks for
the 32-bit word at address 0x04, the processor puts 0x00000004 on HADDR and takes
the full 32-bit word fetched in HRDATA bus from memory address 0x01. Further, asking
for a word at address 0x01, 0x02, 0x03, 0x05, 0x06, or Ox07 generates an exception
because word access must be 4-byte aligned and halfword access must be 2-byte

aligned.

AN 001/11 - v1.00 26

Embedded Systems Laboratory - FIUBA

So, the misalignment between the processor address bus and the memory address bus
not only avoids an unaligned access in hardware, (if the software does an unaligned
access because of bad pointer arithmetics, the exception still happens), it also simplifies
the memory device to use. Only a simple 32-bit width memory is needed and the
routing problems associated with accesses to sub-word data in hardware can be
dismissed.

Once all of the modules are correctly generated and added to the project, the system is
ready for a functional simulation:

5 15t Praject Navigatar (M. 63c) - C:\gnaciolFacullad\CorlexMOW royectolSEVCM_DS_Sysbem\CM0_DS_System. xise - [Design Summary]

02 S B -
He=d = — 08 % . Hﬁlw A e
o 10 . © i O b ol | B mometrie[omn sy sose e s
i [Hiecaccty HMudule Name: [om pssrtem Lplemert ation Stale: =
g omps s) E - ! - :
| — O sensoe-alymn o Target Device: |edssone-4tnz0 sEmors:
/o = [y 0D tan.- Bkl (CM)_PSy e, bl) ok g Product Versloee |14 12.2 raninge:
= [59 Inst_Detextor - Deteckortus - Behaviorsl [Detecto | 3 e e o R
a4l [yl Inst_symemeses - Synciesst - Behaviord (Symeie g | & Emors ond wisrings e ! .
3 - [Feeorzeaise - Corstatzun - Bohaversl # () Parser Messages |Design Strategy: |MewCeled iecied) | +Timing Constraints:
= 4 § Ervirananent: “Final Timing Score:
P A
3 Detailed Reports L1
) Mg et raene |Status |Generated [freors | Woesings | s
8 Al implementation Hessages: [Eorr— I 1 I I I
SR ot Fapart
3 Trarslation Repart
) Hap Rsport
. B [T —
Cresign Froperties [o—r—
[] Enabsie Message Fitering E i !
Optiensl Dasign Sy Cortiots Post-Pii Static Tming Report
A] Show Clock Repant bigan egert |
o P T] St Faeq Covntrais Lok
@ B) it Dars [show wamings
B) Ganaeats Progamniog Pl [] Showimees . .
[Configure Target Device | acondury Repdets . | o)
€5 fedves D Uiy DS Wt reene Saati Gererated
Date Gerserated: (51642011 - 225512 =
=) I5E Deign Sube Infoenker T Coesigns Sumimary
“~0A %
ler:1061 - Parsing macio/ Facultad/Cortex N/ PEoyectolSE/ CND_DS_System/1pcore_dir/Memory.vhd® into library work -
g 1 656 - Parsin by complered suecessfully.
-
] ¥

) Erors _f, Wamings [Find in Fles Resurs

Fig.35
In this section:

e A new Xilinx ISE project was created and a basic system using the Cortex-
MO_DS processor and other modules were created, configured, and added to the

project. All of these components are needed to run a precompiled program.

AN 001/11 - v1.00 27

Embedded Systems Laboratory - FIUBA

Functional Simulation
Functional simulation of the system can verify that the signals in the data read bus

(HRDATA) are the expected ones and that the detector module works as expected. The
ISIM tool (ISE Integrated Simulator) can be used to perform the simulation. Select the
simulation option in the Design View (“Design -> View: Simulation”).

2 51 Project Mavigater (M. 63c] - C:\gnack\ scultad\CortexMOWroyectolSUICMO_DS_SystemiCMO_DS_System.dse - [Design Summary]

fa =
= Y R i | . 3
o . Inet_SystemClock - Systemeck (Srtenoc e | M) = Bt Esvirenment: *Final Timing Score:
] ot ey - ey (mery i) d
= (1] Processcr - CORTERMICS (CORTERMIDS.v)
5 | Bt Beperts [=
: o Beport ame Stabus Generabed | Erors | Warings b

B Ed e Procesues Rarning [s vmplemactstion Maserges | [syrthess Bapert

W [Processes: CHO_DSStmn - Betvicrs s rcperees [re—r—

e e e, s

: L B e e k —

* bt i e e

=] Show wamngs i |

O Sowkmors Pt S 52t Taning Raprt
g rgant |

£
O s e @ Pr s ents

Fig.36

Highlight the top module (CM0_DSSystem) and run the “Simulate Behavioral Model”
process. Upon completion, the ISIM application starts.

I 15im (M. 63c) - [Default.weig) EBR
- & X

?
4
1
¥
i
g
¥

P P IR e

H - %

I Memary

Source Fies
1= BROO %BY S o
&
&

P [il 0 s iind e P 1,000000 115 8OO0 1

T
Uy b
W ek
1 symcresetpuie
By e 2:0]
= By tedsta31:0)
— |+ g tedstalnc0]
B hada{310]
B tburst{z]
| & B rpeotiz0)
| - I hezef2:0]

&7

2. Instances and Processes

e

Cojects.

=

< >
Defas vl [=]
BN Console W) Broshpoints (g6 Find in Fles Rrsls [T Search Resats

S Tiete: 1,000 g

Fig.37

AN 001/11 - v1.00 28

Embedded Systems Laboratory - FIUBA

By default the simulator runs for 1 uS, but the clock signal is not yet defined, so it's

necessary to restart the simulator with the “Restart” button and force the clock signal

that comes from the board’s oscillator. To do this, select the “clock_in” signal and click

with the right mouse button, then select the option “force clock” in the contextual menu.

The forced signal parameters are shown in this figure:

Define Clock

Enter parameters below to force the signal to an

alternating pattern (clock), Assignments made from within
HOL code or any previously applied constant or clock force

will be owverridden

Signal Mame: f_,liFmIIJI__cissys.tén'!,l;cioc.l.a;i_n
yalue Radix :_B!I_ﬂ_é.lr.’}-' |
Leading Edge Value: |1
Trailing Edge Value: |0
Starting at Time Offset: U
Cancel after Time OFfset: |
Duty Cyele (%) |50
Period |20 ns|
o] 4 l [Cancel] [Apply] ’ Help

Fig.38

The period of 20 nS is for the 50 MHz oscillator in the Nexys2 board. Press the “OK”

button and set 300 uS as simulation time. Then, simulate it by pressing the “Run for the

time specified in the toolbar” button.

2 ISim (M.63c) - [Default.wcfg] CEX
[Bl Edit View Smulation Window Layout Help -8 %
= 2= R <® v MR QI RE TR AAB LAt & Q » »E[3000]% I

268,65 us [268.75 us |268.85 us 268,90

E 3T+l rO0 WBh%

P,

(= objects £ Instances and Processes 2] Source Files [Memory

pes.saus [268.55 us

pes.enus

pes.7nus

[pe3.80us

| B B B B B NN BN B B N BN B B D N OB B N

[]

1c5b4b0Z

0000e7ee

FOFOFOFD

00cE0000

000C00c2

000000c2

000000ce

O000{10cE

000000cE

0

b

[i]

z

z

[}

z

z

1

[1 I = I
SEEOEEEE D EOEEEEE T EOE@EN O E O EOEDE T EOEOEDEEENTEN

Default.wefg

[@] Console @ Breakpoints (a4 Findin Files Resuks [Search Results

Sim Time: 300,000 ns

AN 001/11 - v1.00

Fig.39

29

Embedded Systems Laboratory - FIUBA

When the simulation completes, note that at simulation time 268.79 uS there’s a
O0xfOfOfOf0 pattern on the read data bus (HRDATA), and the detector module output
(LEDO3) changes state from ‘1’ to ‘0’. Compare this value with the one from software
simulation (242.20 uS). The difference is because the software simulator timer starts at
the “main” function (assembler instruction MOVS r2,#0xC8). This instruction is executed
at simulation time 26.49 uS, so this simulation shows the system working as expected

from the software simulation.

Note that if the software uses a “period” value less than 511 (Ox1FF), as in this case
(remember that “period” is 200 for simulation), you will see that the LED3 turns off for a
very short period of time (a “glitch”) instead of equal periods for ‘1’ and ‘0’. This is due to
the nature of the processor pipeline. When the “period” is less than Ox1FF, the memory
image generated is such that when the software turns off the led, at execution of the
“while(1)” branch, the processor is also fetching the next memory position (which has

the Oxaaaa5555 value).

You can see the memory map in the debugger/simulator in ARM/Keil MDK that with a
“period” less than 511, the Oxaaaa5555 constant is right next the “while(1)” assembler
branch instruction. So, it’s fetched at branch execution and the value appears in the
HRDATA bus activating the Detector module output and changing the LED3 value back
to ‘1. When the “period” is greater than or equal to 511, the assembler generates a
constant in memory to represent the “period” value, and this constant is placed right
next the “while(1)” branch. So, LED3 has equal periods of ‘1’ and ‘0’ instead the of the
“glitch” observed with the “period” values less than 511. You can see this in the memory

map if you simulate the software with a “period” value of 512 or greater.

Other important simulation times and signals:

0 At 25.14 uS the reset signal goes from ‘1’ to ‘0’, so the processor signals “Reset”
and “Lock” start to have a defined value.

0 At 25.64 uS the processor leaves the reset state. You can also see that the reset
state lasts for five “clock” signal periods (remember that “clock” signal is the
system clock).

0 At 26.94 uS there is the first appearance of the Oxaaaa5555 constant on the
HRDATA bus, so LED3 signal has a defined state (‘1’).

AN 001/11 - v1.00 30

Embedded Systems Laboratory - FIUBA

0 At 269.04 uS there is a transition from ‘0’ to ‘1’ in the detector signal (LED3), so

the glitch (because a “period” value lesser than 512) lasts for three “clock”

periods.

o LEDO is the DCM “lock” signal, indicating that the DCM is working.

o0 LEDL1 is the processor “sleep” signal, and it should always be ‘0'.

0 LEDZ2 is the processor “lock” signal, and it should always be ‘0’.

0 LEDS3 is the detector output. It has a ‘1’ to ‘O’ transition with the constant
Oxaaaa555 on the HRDATA bus and has a ‘0’ to ‘1’ transition with the constant
0xfOfOfOfO one the HRDATA bus

0 LEDA4 is the processor “reset” signal.

0 LEDS5, LED6, and LED7 have the value ‘101" hardcoded.

In this Section:
e The correctness of the system was verified using a functional simulation with the
ISIM tool. A correspondence between the software simulation time and the

functional simulation time was also verified.

AN 001/11 - v1.00 31

Embedded Systems Laboratory - FIUBA

Hardware Verification
In this Section, implement the system in real hardware and check it using the

ChipScope Pro tool. To do this, add information about the hardware outside the FPGA
(the external oscillator, LEDs, etc.). Then add an ILAC (Integrated Logic Analyzer Core)

module to see the internal signals of the system.

To add information about the external hardware, generate a restrictions file (Unified
Constraints File — UCF). It's called a “Constraints File” because this file also contains
the timing and placement constraints of the system as needed. In this simple system
there are no placement contraints; in a more complex system it could be useful to add a
placement constraint (using the FloorPlanner tool) for the CMO_DS processor, so it
won't be resynthesized every time there is a change in the design. So, in “project”,
select “new source” from type “Implementation Constraints File” and call it

“CMO0_DSSystem”, as the top module.

2= New Source Wizard

Select Source Type
Select source bype, file name and its location,

EMM File

&+ ChipScope Definition and Connection File
| B Implementation Constraints File
| % IP (CORE Generator & Architecture Wizard)

MEM File
[2] Schematic
E User Docurment
Werilog Module :
‘erilog Test Fixture | CMO_DSSyskem
8 ol ol sifidertrot it
| [y wHOL Library :)
[¢] ¥HOL Package i\ Facultad|CartexMOPrayvectalSEWMO_DS_System | E]
B WHDL Test Berch et ol e o Sl bt e e Sl AR
|] Embedded Processar

File name:

Location:

| | Add ko project
T

Fig.40

This adds to the project an empty file called “CM0_DSSystem.ucf”. Edit it to add the
information about the board. The information to add for the Nexys2 board is in the
“Source Code” section and in Digilent's web site. Other boards should have their own
.UCF files. The restrictions added include the 50 MHz external oscillator input and the

LED positions.

AN 001/11 - v1.00 32

Embedded Systems Laboratory - FIUBA

2 ISE Project Navigator (M.63c) - C:\lgnacio\Facultad\CoriexM0\ProyectolSE\CMO_DS_SysternMCMO_DS_System. _DSSystem. ucf]

File Edt Yew Project Source Process Tools Window Llayout Help

; . S I 2 @ = -] = -
o H ik bbx|wael 2288 2R mE TS ARIPELT
% |Design ~08 x| & # clock pin for Nexys 2 Board
r‘;] [[vew: © {5} implementation O = MET "Clock_In” LOC = "B8"; # Bank=D, Pin name=IP_L13P_0/GCLES, Type=GCLE, Sch name=GCLKO
] | Herarchy —
& I] cmo_ps_system @ NET "Ledd" LOC = # Bank=1, Pin nawe=IO L14N 1/43/RHCLE7, Type=RHCLE/DUAL, Sch nawe=JD10/L
O ER +] "535“5005"”9320 ; NET "Ledi" LOC = # Bank=1, Pin name=IO L14F_1/M4/RHCLKS, Type=RHCLE/DUAL, Sch nawe=JDS/LD
& [l CM_DSSystem - Behavioral (CMO_DSSystem,vhd) NET "Ledz" LOC = # Bank=1, Pin newe=I0 L12P_1/45/RHCLE2, Type=RHCLE/DUAL, Sch newe=JD&/LD
£ + I”ft—DEtE“‘D"DE‘E““'B”S'EE“EV'W‘ (Detecto. © NET "Led3" LOC = # Bank=1, Pin name=I0 L12N 1/47/RHCLK3/TRDY1, Type=RHCLE/DULL, Sch name=
iz -] Inst_SyncReset - SyncReset - Behavioral (Synce 9 MNET "Ledd" LOC = # Bank=1, Pin neme=I0, Type=I/0, 3ch newe=LD4 s3e500 only
) & Inst_Systemclock - SystenClock {5 ystemClock:xan) A 10 MET "LedS" LOC = # Bank=1, Pin name=10, Type=I/0, Sch name=LD5 s3e500 only
= oy Inst Memory. Memory: (Flemory, xca) % 11 NET "Ledé" LOC = # Bank=3, Pin neme=I0, Type=I/0, Sch name=LDE 332500 only
L Processorc CORTEXMDS {CORTEMIDS v 12 NET "Led7?" LOC = # Bank=3, Pin name=IO/VREF 3, Type=VREF, Sch name=LD7 s3e500 only
= [CMo_bssystem.uck % i3 -
: %
» #) HoProcesses Running
U{: Processes: CM0_DSSystem - Behavioral
By E Design SummaryiReports
& Design Ukilities
= 1] User Constraints
| B B2 Sunthesize - xsT
w F3 Implement Design
Fd Generate Programming File
@ @ Configure Targst Device < 1 5
@ Analyzs Design Using ChipScape b= 1% Designsuite Infotenter || | &. DesqnSummary | J CMo_DSSystem.hd || | Mo DSSystemuck () ‘
| console 08 x
< I >

@ Errors _f\ Warnings (8 Find in Files Results

Ln13Coll UCF

Fig.41

Now it's time to add the ILAC module. Add the ChipScope Pro definition and connection
file. This file will have the information about the signal connections that will be monitored
and other configuration parameters of the ILAC module. So, in “project”, select “new
source” from type “ChipScope Definition and Connection File” and call it
“LogicAnalyzer”.

5 New Source Wizard

Select Source Type
Select source type, file name and its location,

BMM File

&% Chipscope Definition and Connection File
Implementation Constraints File

4 IP (CORE Generator & Architecture Wizard)

MEM File

Schematic
Usn=jr Document File: niame:
‘erilog Module -
Verilog Test Fixture [Logicanatyzer] |
WHOL Module)
: Location:
WHOL Library
WHOL Package iio'l,Facultad'l,CortexMD'l,ProyectoISE'l,CMD_DS_System | E]

WHOL Test Bench
Embedded Processor

add to project

Mext = J[Cancel

Fig.42

AN 001/11 - v1.00 33

Embedded Systems Laboratory - FIUBA

A new file will be added to the project called “LogicAnalyzer.cdc”. Double click on it, the
system will be synthesized and you will be able to add an ILA module (Integrated Logic

Analyzer). After the “Synthesis” process ends, a new window will pop-up. This is the

configuration window for the ChipScope Pro tool. Press the “Next” button.

. ChipScope Pro Core Inserter [LegicAnalyzer.cdc]

UHAM Counl: 0

et >

creMOP oo OIS EYCMO_DIS_SyelemiLogiAnalaes ca:
A0 onmNOP e SEICND_DS_SrstemilogitAnatzercdt

H = = {
= BEVICE DEVICE Sulect Dedce Options.
CoN
Deniggn Filers
Inpel Design Nellist:
Outpan Design Netlist:
Cora iRRzation
Outper Diraciony:
Dot Setlings
Dedce Family:
LUT Count: ur
FF Count: 21 dthes e

Create the new ILA module using the button “new ILA unit” at the bottom right of the

window.

. ChigScope Pra Care Inserter [LogicAnalyzer,cdc]

[Hu [dit Hulp
H == T
= DEVICE KoM Sehect Imegrated Controlar Optins
IEOH
Paramoteds
No st o
Core Litikration:
LUT Coumt: ar
H Comint: E
BRAM Count: o
« Provious Mgt > Mo 1A Ut Mo ATC? Ui
ullathC arbesMOP rovestolBEVCMO_ES_SystemiLogicAnahes sd =
F atulladCotusNPPovecictSEYCMO DS SystemiLogicAnaker cdo
i '

Fig.44

AN 001/11 - v1.00

34

Embedded Systems Laboratory - FIUBA

A new ILA module appears at the top left of the window.

. ChigScope Pra Care Inserter [LogicAnalyzer,cdc]

[Hu [dit Hulp
H == T
= DEVICE KoM Sehect Imegrated Controlar Optins
e amaoty
BEEiLA gl
No st o
Core Litikration:
LUT Coumt: 1)
H Comint: 229
BRAM Count; 1
= Provious Mgt > N 1A Uit Now ATE? Uni
o ol ortesMOP rovestol IEC HO_DS_SystemiLogicAnahoes cde =
NICHE SCUaContyMPPIecIctSEYCMD DS SysiemLogicAnaher cdo
i '
Fig.45

Select the ILA module, and its configuration window appears

. ChipScepe Pre Cora Inserter [LogicAnalyzar.cdc]

= DEVICE LA Seloct ntogeated Logic Analyzer Optisns
oM -
b Trigger Parametars | Caplurs Paramstars | Nat Connections
Trigger Input and Mstch Unit Settings
Meamber of Inped Trigger Ports: [1 - Manber of Match Units Used: |
ot AT TRIGE: Trigger widtte [0 Match Type: Dasic wiedges [=
Makch Units: |1 [~ B Visses: 0, 1,X.ILF, 0
Counter Width: [Disabled |= Timclions: =, <=
LUT Count: 1
H Count: 229
Count 1 Trgoes Condiion Sottings =
'] Enabie Trgoer Seqsencer M Muambeed of Sequences Levels: 10 -
Stor agpe Ousiificstion Coreiftion Settings
o Enable Stosage Gualllication

Messages
Loading £0IC peojact ¢
BUCtEssTull

copy CUpnacioF acultadic

gicAnatezur coe
¢ == CUgnacioF scuitadhCoreMIVreyectolSEICMI_D'S_Systemi_ngoicMO_DSSyeiem_te_signaibrawssr ngo

Fig.46

Edit the trigger parameters as in Fig. 47. Change only the Trigger Width from ‘8’ to ‘32’.
This instructs the monitoring hardware on what conditions it should start taking samples
of the signals. In this case the trigger condition is the value of the HRDATA bus (hence

the change to ‘32’). There will be only one trigger condition and it will based on a

AN 001/11 - v1.00 35

Embedded Systems Laboratory - FIUBA

comparision against a constant value (the specific value will be set in “Analyze Design
using ChipScope” process ahead).

B, ChipScope Pro Core [nserler [LogicAnalyser, cde]

Eile Eom Heip
B == L
= DEVICE LA Select Integrated Logic Analyeer Oplions
ICON
A Triggar Capture M1
Triggar inpest snd Match Lng Sottings
Humber of nput Trigges Ports: 1 - Humbex of Match Units Used: |
Care LUBZation TRIGA: Trigger Wadthe | 32 Match Type: | Basic wedges 1=
Match Unis: 1 - e Values: 0.1, X.RF. 8
Counter Weathc | isabiod - Functions: =, <
LUT Count: M
FF Count: xar
BFAM Court: 2 Tringer Comdition Setfings
v Crable Trigger Sequences Max Mumbar of Sequencer Livelss 18 I=
S10age QUAIICtion Conelion Settings
v Enable S1orage Cualification
< Previous Mext = P Uinit
W acultadiConeMOProvecnISEICMO_DS_Systemi_ngoiCMO_DSSystem_c3_signalbrowser.ngo
[»

Fig.47
Press the “Next” button. Now configure the capture parameters. The signals of interest

are HRDATA bus (to see the constant value we need the full 32 bits), the HADDR bus
from [2] to [10] (remember that HADDR[O] and [1] were discarded and the memory has
512 words, so we need 9 bits for the memory address), and LED3 (Detector module
output). So the data width is 42 bits. Untick the “Data Same as Trigger” checkbox and
set the Data Width to 42. The Data Depth default value of 512 samples is enough, and
each sample will be taken at the rising edge of the ILA clock signal (it will configured
next). After those changes, press the “Next” button.

O, ChipScape Pre Core Inserter [LogicAnalyzer,cdc]

File Edn Help
B = = b4
= DEVICE L Sebect inbegraled Logic Analyrer Options
o
VLA Trigges Parametess | Capture Pacameters | Net Comections
Caplurs Setlings -
Dt Whetth: 43 = Sample On [Rivng | w [Clack Fiige
Data Depth: 412 - | Samples Dt Same As Trigget
Core Unlication
Trigper Poets s & Drita
LUT Count: 1]
¥F Count: an
BRAM Count: 3

Fgsmies Linit

A_ngolcael_DIESystem _s_sigralbrowserngo

Fig.48

AN 001/11 - v1.00 36

Embedded Systems Laboratory - FIUBA

Here assign the different signals from the system to the trigger, data, and clock ports of
the ILA module.

ipScope Pro Care Inserter [Logi

Hie Ede Help
H == t
[2al= 4 LA Seloct imegrated | ogic Analyzer Options.
= KON
LA Trigger Capt
Ut
& CLOCK PORT
o TRIGGER PORTS
CﬂILIITII‘m - = DATA PORT
LU Cionmit: R
T Count: I
RRAM Count: 2
Madify Connactions
| <Proious | | Balunto Projec Havigator Tateevn Unil |
dr -
ok
gnaciolF REtadiCanmaR DR oyR el SEIC MO _DS_Systemi_ngeiCl_DISSywiem_es_signalbiowssr ngn
4 »
Fig.49

Press the “Modify Connections” button and a new window will pop-up with the trigger

signals in red.

& _Select Net

Net Selections

Structure / Nets
¢ {[ChO_DESystem] 1*| | “Trigger Signals | Data Signals
= Inst_SyncR 1812p! perindicZeonstantCounterSetup [DelayCoul Clock Signals
o= Inst_Memary [Memon]
<] il [Tl L
Net Name > | Pattern: ‘ ‘V| Filter
Net Name Source Instance Source Compaonent | Base Type
Clock Inst_SystemClockiCLk... BUFG BUFG =
Clock_In (CW0_DSSystem ICMD_DSSystem PORT 1=
HADDR=10= Processorld_logichad.. [LUTS LUTS
HADDR=2= Processoriu_logichad. . LUT4 LuT4
HADDR=3= Processor_logichad. .. LUT4 LuT4
HADDR=4= Processori_logichad. .. LUTS LuT3 1
HADDR=5= Processori_logichad...LUTS LuT3
HADDR=6= Processori_logichad. .. LUTS LuT3
HADDR=7= Processori_logichad. . LUTS LuT3
HADDR=8= Processori_logichad. . LUTS LuT3
HADDR=3= Processori_logichad. . LUTS LuT3 =i
HRData=0= Inst_Memary Memary RAME16_S36_536
HRData=10- Inst_Memary Memary RAME1E_S36_S36
HRData<1 1= Inst_Memary Memary RAMB16_S36_536
HRData<12> Inst_Memary Memary. RAME1E_S36_S36 | EETT—— | | Mo hets Lis |
HRData<1 3= Inst_Memary Memary RAMB16 536 536 | |
‘R‘D"‘ﬂﬂ 4= Inst_Memar: lemor RAMEE 535 536 1Y |Remove Connections | | Mawe Mets Dawn |

AN 001/11 - v1.00 37

Embedded Systems Laboratory - FIUBA

Associate each trigger signal with the corresponding HRDATA value (CH:0 with

HRDATA<O0> and so on) with the “Make Connections” button (it is possible to select a

group of signals and associate them all at once).

@, Select Net

Structure / Nets

=

Net

7 J[CMO_DS8yster)

o= |nst_t

R onstzp

o [nst_Mermaory [Mermory]

nstants

e tup [DelayCou

Trigger Signals | Data Signals
Clock Signals

Net Name "Pat‘ern ‘ ‘v| Filter

et Mame Source Instance Source Component | Base Typs

HRData=22= Inst_Memary Miemory RAME16_S36_S36 =

HRData=23= Inst_Memory Memory RAME16_S36_S36 = =
HRD#ta<24~ Inst_Memary Memary RAME16_S36_S36

HRData=25= Inst_Memary Miemory RAME16_S36_S36

HRDsta=26= Inst_Memory Memory RAME16_S36_S36

HRD#ta<27~ Inst_Mermary Memary RAME16_S36_S36

HRData=28= 7@1 Metmary Miemory RAME16_S36_S36

HRDzta=29= Inst_Memory Memory RAME16_S36_S36

HRData<2> Inst_Mermary Memory RAMB16_S36_S36

HRData=30= Inst_temary Memory RAME1B_S36_536

HRD=te=31= Inst_Memory Memory RAMB16_S36 536 =
HRData<3> Inst_Memory Memory RAME16_S36_336

HRData<d= Inst_Memary Memory RAMEN6_536_536

HRDsta=5= Inst_Memory Memory RAME16_S36_S38

HRData=6= Inst_Memory Memory RAMEN 6_S36_S36 | e — ‘ | Wove Nels Un ‘
HRData<7= Inst_Memary Memory RAMB16_S36.5% ||

‘RF"‘E‘ i Inst_Memer femor: MELE 536 536 = = |Remove Connections ‘ | bove Nets Down ‘

Now select the “Data Signals” tab (top rigth of the window) and associate the data:

Fig.51

0 CH:0 to CH:31 with HRDATA[O0]..[31]
0 CH:32 to CH:40 with HADDR[2]..[10]
o CH:41 to LED3_OBUF

-Select Net

Structure [Nets

¢ F[CMO_D8System]

o= Inst_SyncResetinsteonstZpulselinstperiodicZeonstantCounterSetup [DelayCou
o= Inst_Memaory [Memony

[»

Net Selections

Trigger Signals r Data Signals ‘
Clock Signals

HAData<1/s .
JHRData<18> 1
JHRData<19>
JHRData<20>
{HRData<21>
JHRData<22>
{HRData<23>
l /HRData<24>
= /HRData<25>
4] I BT HRData<26>
/HRData<27> |
Net Name ~ pattern: | |~ | Frer] HRData<28>
JHRData<29>
Iiet Name Source Instance Soutce Component | Base Type /HRData<30>
Clock Inst_SystemClockiCLK...|EUFG BUFG = /HRData<31>
Clock_In CMO_DSSystem CMO_DSSystem PORT = JHADDR=<Z2>
HADDR=10= Processoriy_logiched...[LUTS LUT3 /HADDR<3>
HADDR=2= Processoria_logic/had., [LUT4 LUT4 JHADDR<4> =|
HADDR=3= Processoril_logichad...[LUT4 LUT4 JHADDR<5>
HADDR=4= Processoriy_logichad...[LUTS LUT3 JHADDR<6>
HADDR=5= Processoril_logichad... [LUT3 LUT3 /HADDR<7>
HADDR=6= Processoriy_logichad...[LUTS LUT3 JHADDR<8>
HADDR=7= Frocessoril_logichad... [LUT3 LUT3 /HADDR<9>
HADDR=8= Processoriy_logichad...[LUTS LUT3 HADDR<10>
HADDR=g= Frocessoril_logichad... [LUT3 LUT3 \Led3_OBUF -
HRDatas0= Inst_Memary hemory: RAME16_S36_538 =
HRData<10~ Inst_Memary Memary: RAME16_S36_536
HRData<11= Inst_Memary hemory: RAME1E_S36_538
HRData<1 2> Inst_Memary Memory: RAMB16_S36_536 | T e — | |MDve Mets L |
HRData=13= Inst_Memary hemary: RAME1E_S36. 536 | |
HR‘Data#Hb Inst_Mamar Memor ME1S 536 536 | |REmUVE 7ol | | Mo Nets Do |
[]

AN 001/11 - v1.00

38

Embedded Systems Laboratory - FIUBA

Finally, select the “Clock Signals” tab and associate CH:0 with “Clock” signal. Press
“OK” button.

B, Select Net

Structure / Nets Net Selections
¢ /{CMO_DSSystem] 21| Trigger Signals rData Signals
&= |nst_SyncResetinsteonst2pulsadinstperiodic 2ZeonstantCounterSetup [DelayCoul : Clock Signals
o= Inst_hemaory [Memo
= Al i Channel
MlcHo iciock
x|

q] 1 S
I]Net Name V‘Paﬂem:| |V| Filter

Met Mame Source Instance Source Companent |Base Type :

Clock Inst_SystemClockiCLK...[BUFG BUFG -

Clock_in lCM0_DESystem CMO_DSSystem PORT 1=

HADDR=10= Processoriy_logichad...[LUT3 LUTS

HADDR=2= Processoriy_logichad...[LUT4 LUT4

HADDR=3> Processoriy_logichad...[LUT4 LuT4

HADDR=4> Processoriy_logichad...[LUT3 LuTS

HADDR=5= Processoriy_logichad...[LUT3 LUTE

HADDR=6= Processoriy_logichad...[LUTS LUTS
BHACDR=T= Processori_logichad. .. |LUTS LUTS

HADDR=G> Processoriy_logichad...[LUTS LuT3

HADDR=3= Processori_logichad...[LUT3 LuTS

HRDatax0= Inst_Memary Memary RAMB1E_S36_S36

HRData<10= Inst_Memary Memary RAMB16_S36_536 el
IHRDala<1 1= Inst_Memary Memory: RAME1E_S36_S36 g

HRData<12> Inst_Memary Memory RAME16_S36_S36 . | P —— | | Move Nets Ug |
B HRData=13+ Inst_Memary |Memory RAMB1E_S36_S36 | = -

‘Rii)ataﬂa: nst Memar Iemar R&MEE 536 536 B Adi |Remwe cOmedionS| |Mo\,e Nets Down |

Fig.53

The Clock, Trigger, and Data Ports are now colored black, indicating that all
connections were made. Press the “Return to Project Navigator” button and a “Save
Project” pop-up window will appear. Select “Yes”. You will return to the Project main
window.

hipScope Pra Cora Imsertar [LogicAnalyzar.cic]

H = = {
= DEVCE LA Select integiated Logic Analyzer Options
=i CON =
LA Tringer | Capt | Wet
Mt Cormections
|7 T
- CLOCK POST
TRIGGER PORTS
s = DATA PORT
LUT Count: 302
FF Count: n
BHAM Count: 2
Modity Conna<tions
= Privious Helun 10 Project Naagates Fensove Unit
1 et P

81t
anACIoE AU ComMTFrT R ARISEIMG_DS_Systom_ngolCuO,_DESystam _cs_signamaawsor nga

Fig.54

AN 001/11 - v1.00 39

Embedded Systems Laboratory - FIUBA

Now highlight the top module and implement the project to generate the
“CMO0_DSSystem.bit” bitstream file that will be downloaded to the FPGA. To do that, run
the “Generate Programming File” process. When all the processes finish, run the

“Analyze Design using ChipScope” process. The ChipScope Pro main window will

popup.

5 CwipScape fro Anatyzer [CMO_DSSystem]
=
Panject; CMO_[rSSystoem

D\
&

ChipScope Pro

ClwpBeops Pre Anabiser Viesion 127 M3 fete 12200710170 760

Fig.55
Now the bitstream file generated in “Generate Program File” process above will be

downloaded to the FPGA board using the JTAG chain. Normally this is done with a
Xilinx programming cable like the Platform USB IlI, but thanks to Digilent’s “Plugin for
Xilinx Tools” software and some extra logic in the Nexys2 board, this can be done using
a USB connection. The details to configure Adept to be recognized as a programming
cable are bundled with the plugin. So, in the ChipScope Pro screen, press the
“OpenCable/Search JTAG Chain” button at the top left of the screen and a popup
window will appear with two devices (the FPGA and the PROM). Press the “OK” button.

Those devices will show up in the top left of the ChipScope Pro main window.

4 EnipScope Pre Anabyzes |CM0_DSSystem]

Project: CMO_DSSystem
TAD Cham

D
=

ChipScope Pro

Fig.56

AN 001/11 - v1.00 40

Embedded Systems Laboratory - FIUBA

Go to the “Device” menu and select “DEV:0” device (the FPGA), a sub menu will
appear, select the “Configure...” option.

5. ChipScepa Pro Analyzar [CMO_DSSystam]

Eile yeew JTAG Chain [DEWER) Window Help

® DEVY MyDErIce (RCAB008). b Henarms. |
Project: CMO, ._UEVl MyDencel CFO4E).. >| Carnfigury |
JTAG Chain Shaw |DCODE
DEV:0 MyCeeniced ((C:ISS00E) .
DEV Mylamical (ECFOAS]) S LAERL DR
Ehow Configurasion Slidus
Bhaw JTAG Insiguetion Rugishir |
(AN
&/
| G (LT E R

INFO. Buccessfully opened conneelion bo seraer localhost S1A01 (ocalbosti 27 0.0.1)

INFO: Successiully opaned digllent_pugin

INFO. Cable Onboard USE, Porl 0, Spoed 1 ROD0AD H2

IMFE Fauna 0 Core NS in he JTAG dewice Chain,

INFO I cores wazm eepected o be found, see Answer Riecond 18337

Fig.57

A popup window will appear. Leave the defaults and press the “OK” button. The FPGA

will be programmed with the bitstream file generated above and the ILA core will appear
in the top left of the screen.

€l ChipScope Pro Analyzer [CMO_DSSystem]

File View JTAG Ghain Device Window Help
@

|Project: CM0_DSSystem

JTAG Chain

% DEVD MyDeviceD ((G3S500E)
7 UNIT:0 WylLAD (L&)

Trigger Setup
wyaverorm
Listing
EBus Plat

DEVA MyDevice! (XCF045)

&

ChipScope Pro

RO Table: Onboard USE, Port U, Bpeed: TBUOU00 Hz
IMFO: Found 0 Care Units in the JTAG device Chain.
INFO: If cores were expectar fo be found, see Answer Record 18337
COMMAND: configure 0 "C:\gnacio'F: M0_DS
INFO: Found 1 Gore Unitin the JTAG device Ghain

COMMAND: import_inserter_cdc C:llgnaci

I

_dssystem.bit” 0import_inserter_cdc C: it MO0_DS_System| Logi cdc doAuto

M0_DS_Systemi LogicAnalyzer.cdc 0 DoAuto

Cl |

Fig.58

AN 001/11 - v1.00 41

Embedded Systems Laboratory - FIUBA

Select the ILA core and its signals (the ones that were configured above) will appear in
the empty window under the JTAG Chain window in the left.

ChipScope Pro Analyzer [CM0_DSSystem]

Eile View JTAG Chain Device Window Help

- DEV.0 MyDeviceD ({C35500E)
3
Trigger Setup
Waweform
Listing
Bus Plot
DEV:1 WyDevicel (CFO45)

o= Trigger Ports

_‘S’_i;_ggleipg\(: 0 UNIT: 0 | ‘ /r:\\ ‘
=,

o Data Port

N O Cable: Gnhoard USE, Farf, U, Speed: TEO0000HZ

ChipScope Pro

INFQ: Found 0 Gore Units in the JTAG device Chain.

INFO: If cores wers expected to be found, see Answer Record 19337
COMMAND: 0 "C:iignaci MO_DS_¢
INFO: Found 1 Core Unitin the JTAG device Chain

COMMAND: import_inserter_cdc C: i

M0_DS_Systemi LogicAnalyzer.cdc 0 DoAuto

) bit" 0 import_inserter_cdc C:

[»

M0_DS_SystemiL

cdc doAuto

A

Fig.59

Now double click in the “Trigger Setup” subtree in the “JTAG Chain”

trigger setup window will appear in the main window.

& ChipScope Pro Analyzer [CMO_DSSystem]

window, and the

Eile View JTAGChain Device IriggerSetup Window Help

| Trigger RunMode: [Single v || » m T

[Project: CMO_DSSystem Trigger Setup - DEV:0 MyDevice0 (XC3S500E) UNIT:0 MylLAO (ILA)
JTAG Ch =
¢ DEVUaI";yDemeu (CISE00E) | Match Unit [Function I Value | Radix Counter
g == OO0 O0E_IO00(_ 1000, E00I000L I000L I000(SAke
& UNIT:0 MylLAD (L&) §!!°‘MDT”99”P°”“ | == | (000000 000(000 000 10001000 Bin disabled
Waweformm 3| || Active Trigger Condition Name | Triger Condition Equation
Listing =1 (| - TriggerCGonditiond | Mo
Bus Plot =
PRt MyDev a1 GOFD4S) 8| vpe: [window |+ Windows: | 1 Depth: |512 - Fositian: [o
2
e
@ | Storage Gualification: All Data

& Data Port

o= Trigger Ports ‘u,
O CaTe, Unbaard USE, Port, U, Bpeed; TB00000 Fz

INFQ: Found 0 Gore Units in the JTAG device Chain.
INFO: If cores wers expected to be found, see Answer Record 19337
COMMAND: 0"C: i

M0_DS ¢ | bit" 0 import_inserter_cdc C:

[»

g
INFO: Found 1 Core Unitin the JTAG device Chain
COMMAND: import_inserter_cdc C: i

M0_DS_Systemi LogicAnalyzer.cdc 0 DoAuto

M0_DS_SystemiL

cdc doAuto =

A

Fig.60

AN 001/11 - v1.00

42

Embedded Systems Laboratory - FIUBA

Now program the trigger condition to see the ‘0’ state of the LED3 s

ignal: the OxfOfOfOfO

pattern in the HRDATA bus makes a ‘1’ to ‘0’ transition, and there is a trigger condition

based on a comparision to a constant. So in “Tri

Setup” set

gger

“1111 0000 1111 0000 1111 0000 1111 0000 as the trigger value.

% ChipScopa Pro Analyzar [CMO_D5Systam]

Ede Wiew JiAGChain Device InggerSetup ¥indow Hei
25 @ | Triager Fun Moske: [Sinaln > » T
4 v
Project: CMO_DSSystem il & 1rigar Setup - DEVL0 MyDeviced (XCTSS00) UNITD MyILAD LA} i G Ce
JTAG Chaln L8 = > = i
- GEV 0 MyDisdced (KG3ES00E) E Match Uni Funttion Valus Ry Counsar
¢ UNITD WrILAD LA : #| = MO-TnganrPort = | 1111_0000_1111_0000_1111_0000_1111_ooao|| Oin | dlzabied
Triauer Sebip eI -
Wéavetarm o ' Al Artive | Trager c,nnannn Mame Trigner Condition Equation |
Listing A -l - | TriggenCeonditiond |.—
Hus Fiot i} Al == e = = =
‘Signaks: DEV: 0 UNIT: 0 8| Toe [Window |- Wandows 1 Cismlh 512 | Pusiion | ol
o Data Font H -
= Trigger Pans =/ storage Quaidcation: 4l Data
\b/
|
| EF T T Cnbnand UEH, PO 1, B ry
IMFEr Found 0 Core Units in the JTAG device Chaln, u
IMFD s wone uqumnuim by fivur, sy Ansrwes Rivcard 19337
COMMAND:; config 0 Import_inserter_cdc C MO_DS_SystemiL dofurte (=
INFn Founid 1 Cons Uinit |r||||| AR denvice Chain o
L impor_inserer_cdc L CMID_DS_SysteiiL 0 Dekite
Fig.61

After that, start the acquisition using the “play” button.

In few moments the trigger

condition is met and the data acquisition is completed (a “Sample Buffer is full”

message will appear). Click the “Data Port” subtree in the “Signals” window, right-click,

and in the submenu select “Add All to View - > Waveform”.

& ChipScope Pro Analyzer [CMO_DSSystem]

Elle Yiew JTAG Chein Device Trigger Sefup Window [Help
L@ | trogerrunwose: [Binale || b om T
Project: CM0_DSSystem v} (B Trigger Setup . DP:D MyDedced (XCISS00F) LUIMIT:0 Myl A0 L) s o E
JTAG Chaln - = = ; T
- DIEV yDivical IC3ES00EY FE Hatch Unit xugc__n_on [_ Vale Ragke Courter
7 LINIT0 MylLAD (L&) J = MU TnggerFond = | 1111_0000_1111_0000_1111_0000_1111_0000| Bin ;
(0 R | f e ———
Wavefonm U R Ao | At Triggor Condilion N ~ Trigges Candilion Equation
Ligting N 1l TriggerConditiont L
- Biisi Plol 5 s =
Sqna V-0 1:0 O e fniow x| wmeews 1] e[z v Posivon [9
+- Data " 2 E :
=M & | Storage Guaication Al Diata
»n—
[| [@ samale Bufier is full
Clear All 3
- Trigo A\ r)
R c I\/— s P
i _Twipger _condiion 00 15565 |
coumnuuec storage_condition 0 0 FFFT il
(1]
coumnu:nuuune
INFO - Davice U UNILD: Samiple Bulter is Nl !
INF G - Darvice D Unit 0 Wiendfurm caphared 22082011 2137 27 —I

Fig.62

AN 001/11 - v1.00

43

Embedded Systems Laboratory - FIUBA

Now all the configured signals are in the main window. You can zoom-in the window to
see the values at HADDR and HRDATA when LED3 is ‘0’ and delete the duplicated

signals.

® | TiggwAunmoss [Binale [=|| p W T Q09 6|e pia

¥ —.
" ﬁ Trigger Setup - DEV:D Myfhviced (XCISSO0E) UNITZ0 MyILAD (LA} o a
Malch Uinit Function Valui Radix | Countir
= WO TriggerFad -- " = 5

|
WMCEDA| DULY |W3ER 4
3

cation Al rat
@ Sample Bufior ks full |
{] Wisvetonm - DEWS0 MyDeviceD (XCYSS00E) UNIT:D MyELAD LA o &
0 1 2 3 4 5 6 T
BusSignal X o I 1] | | I | 1 1 |
fLedd_GDur o of | |
o ARDDR on [EH [TR S 7 T 4 078 X 02A X [X
= AEData FUFUFOFO| FOFUFUFO) FOEQEQFD W_AnaaSss) 20002100 X 1C4BEN0T x 42901
Wavelonm caphared 22052011 21:37 22 ®: ol4fe] b ol4fr] ax-0)¢
r Tiwger _condiior FIEEEE
COMMAMD: sel_siosage_condition 0 0 FFFF
COMMAMIE run 00
COMMAMIE upload 0 0
INFO - Dévice 0 Unil 0. Sample Bumer |5 Bl i
INFiQ - Davice O Uinit 0. VWaveform capbared 22052011 11:37:22 =
Fig.63

Note that LED3 is ‘0’ for three samples, the same number of rising edges of the system
clock signal in the functional simulation (remember that the ILA core was configured to
take the samples in the rising edge of the system clock). Also note that the value
0xfOfOfOf0 appears for two samples and the value Oxaaaa5555 appears for one single
simple. This is exactly the same number of rising edges of the system clock in the
functional simulation. So there is a perfect correspondence between the software

simulation, the functional simulation, and the hardware verification.

Now change the “period” value in the software to 20000000, recompile it, regenerate the
.COE memory initialization file, and regenerate the memory module changing the .COE
initialization file to the one with the new “period” value. Then regenerate the bitstream
file and download it to the board (iIMPACT tool can be used instead of ChipScope Pro).
With this new value, the LED3 will blink with close three seconds in between each blink

on the board.

AN 001/11 - v1.00 44

Embedded Systems Laboratory - FIUBA

In this Section:

e The patterns 0xfOfOfOf0 and Oxaaaa5555 were verified as appearing on the
HRDATA bus inside the FPGA.

e |t was checked that the same timing results appeared in the software simulation
at ARM/Keil MDK, the functional simulation with the ISIM tool, and the hardware
verification with the ChipScope Pro tool.

e |t was visually checked that the LED on the board blinked with a period near
three seconds and the other LEDs were ‘on’ or ‘off’ according to the functional

simulation results.

Conclusions
A step by step implementation of the Cortex-MO_DS processor running a defined

software program was performed in a Xilinx FPGA. This includes the software
simulation, the system’s functional simulation, and the system’s real hardware

implementation using the Xilinx ISE toolchain.

Acknowledgements
To the ARM University Program, including William Hohl and Joe Bungo, as well as the

people at the Xilinx University Program (XUP) for their support and cooperation.

Legal Notice

XILINX, Spartan, ISE and other designated brands included herein are trademarks of Xilinx in the United
States and other countries.

ARM, Cortex-M0, ARM/Keil MDK, AMBA-LITE and other designated brands included herein are
trademarks of ARM Ltd.

Nexys2, Adept, and other designated brands included herein are trademarks of Digilent Inc.

All other trademarks are the property of their respective owners

The authors of this application note have used their best efforts in preparing this application note. These
efforts include the development, research and testing of the programs and hardware descriptions to
determine their effectiveness. The authors make no warranty of any kind, expressed or implied, with
regard to these programs and hardware descriptions or the documentation contained in this application
note. The authors shall not be liable in any event for incidental or consequential damages in connection

with, or arising out of, the furnishing, performance, or use of these programs and hardware descriptions

AN 001/11 - v1.00 45

Embedded Systems Laboratory - FIUBA

Source Code
Main.c

/I Define where the top of memory is.
#define TOP_OF_RAM 0x800U

// Define heap starts...
#define HEAP_BASE 0x47fU

I]-- -

/I Simple "Blinking Led via Memory Access detection” program.

/[This program makes a memory access at regular intervals
/I In the Nexys2 system there is a pattern detector attached to the
/I HWRead bus, so when two specific patterns are detected, a Led toggles its state

Il pattern Oxaaaa5555 turns on the led, pattern OxfOfOfOfO turns it off.

//-- — - -

#define LedOn Oxaaaabb55
#define LedOff 0xfOfofofo

int main(void)

{
unsigned int counter; /[dummy
unsigned int ii; /l'loop iterator
unsigned int trap; / memory access pattern receiver

unsigned int period; // time interval for memory access

//period=20000000; // period for FPGA implementation; roughly 3 seconds for a
10MHz osc in CMO_DS
period=200; // period for simulations in ARM/Keil MDK and Xilinx ISIM tool

while (1)
{

counter=0;

for (ii=0;ii<period;ii++)

AN 001/11 - v1.00 46

Embedded Systems Laboratory - FIUBA

{

counter++;

}

trap=LedOn; // memory access pattern (turn on)
for (ii=0;ii<period;ii++)

{
counter++;
}
trap=LedOff; // memory access pattern (turn off)
trap++; /[dummy
}
}
vectors.c

/I Define where the top of memory is.
#define TOP_OF_RAM 0x400U

extern int main(void); // Use C-library initialization function.

__attribute__ ((section("__Vectors")))

static void (* const vector_table[])(void) =

{
(void (*)(void)) TOP_OF_RAM, // Initial value for stack pointer.
(void (*)(void)) main, // Reset handler is C initialization.
0, / No HardFault handler, just cause lockup.
0, // No NMI handler, just cause lockup.
o/l... /I Additional handlers would be listed here.
h
UCF File:

(extracted from the ucf file for the Nexys2 board available at Digilent’s web site)

clock pin for Nexys 2 Board
NET "Clock_In" LOC = "B8"; # Bank=0, Pin name=IP_L13P_0/GCLK8, Type=GCLK, Sch name=GCLKO

Leds

NET "Led0" LOC ="J14"; # Bank=1, Pin name=10_L14N_1/A3/RHCLK7, Type=RHCLK/DUAL, Sch name=JD10/LDO
NET "Led1" LOC ="J15"; # Bank=1, Pin name=10_L14P_1/A4/RHCLK®6, Type=RHCLK/DUAL, Sch name=JD9/LD1

AN 001/11 - v1.00 47

Embedded Systems Laboratory - FIUBA

NET "Led2" LOC ="K15"; # Bank=1, Pin name=10_L12P_1/A8/RHCLK2, Type=RHCLK/DUAL, Sch name=JD8/LD2

NET "Led3" LOC ="K14"; # Bank=1, Pin name=10_L12N_1/A7/RHCLK3/TRDY1, Type=RHCLK/DUAL, Sch name=JD7/LD3
NET "Led4" LOC ="E17"; # Bank=1, Pin name=I0O, Type=1/O, Sch hame=LD4 s3e500 only

NET "Led5" LOC ="P15"; # Bank=1, Pin name=10O, Type=1/O, Sch hame=LD5 s3e500 only

NET "Led6" LOC ="F4"; # Bank=3, Pin name=IO, Type=I/0O, Sch name=LD6 s3e500 only

NET "Led7" LOC ="R4"; # Bank=3, Pin name=I0/VREF_3, Type=VREF, Sch name=LD7 s3e500 only

AN 001/11 - v1.00

48

