
SPARCjnr

align
imm.

IR

PC

S1

pPC

S2

nPC

Memory

Instruction

Addr

Memory

Addr

Data

DEST1
(MAR)

MDRin

DEST2

MDRout

shift

ALU

s2_mux

s1_mux

dest_mux

R[rs1]

R[rs2]

R[rs3]

R[rd]

Registers

BCU

+4

1



SPARCjnr

Typical RISC

� Few instructions

� Very few addressing modes

� Architecture

� Three Address

� Register-Register

� Load-Store

The processor described here is based on a subset of the SPARC spec-
i�cation1.

This implementation employs a Harvard memory architecture.

1note that SPARC is not an architecture only a speci�cation based around a complete instruction

set.

2



SPARCjnr

The ALU supports a small number of functions based on only �ve
control signals.

A separate barrel shifter supports three simple shift instructions.

ADDcc
SUBcc

ANDcc
ANDNcc

ORcc
ORNcc

XORcc
XNORcc

ADDX
SUBX

0 10 0 0 111

000

SUBXcc

SUB ANDN ORN XNOR
ADD AND OR XOR

ADDXcc

1

1

1

111

1

1
1

0

0
0

0

0

0

1
1

0
0
0

1

F4:F3:F2
F1:F0

Shift instructions

ALU instructions

SLL SRL SRA

3



SPARCjnr

D Q

D Q

D Q

D Q

0100 10 11

F3

F2

S1 S2

Dest

F0
F1
F4

Clk

C

C

V

Z

N

32 bit Adder

F1:F0

Vo

Co

Vo

Co

Dest[31:0]

Dest[31]

4



SPARCjnr

01 = SLL
10 = SRL
11 = SRA

IR[20:19]

S2[0]

S2[1]

S2[3]

A[31:0]

1100

S1[31:0]

01

{ S1[15:0], 16’b0 } { 16’b0, S1[31:16] }

10

{ S1[31]...S1[31], S1[31:16] }

RES[31:0]

1100

D[31:0]

01

{ D[30:0], 1’b0 } { 1’b0, D[31:1] }

10

D[31:0]

1100

C[31:0]

01

{ C[29:0], 2’b0 } { 2’b0, C[31:2] }

10

{ C[31], C[31], C[31:2] }

C[31:0]

1100

B[31:0]

01

{ B[27:0], 4’b0 } { 4’b0, B[31:4] }

10

{ B[31]...B[31], B[31:4] }

B[31:0]

1100

A[31:0]

01

{ A[23:0], 8’b0 } { 8’b0, A[31:8] }

10

{ A[31]...A[31], A[31:8] }

{ D[31], D[31:1] }

S2[5]

S2[4]

5



SPARCjnr

� All ALU and shift instructions take two operands (either two reg-
isters or one register and one immediate) and return a single reg-
ister result.

SUBX R3,R7,R5 R50
 R3�R7� C

ADD R4,5,R1 R10
 R4 + 5

� for special cases we have a pseudo register, R0, which always
contains zero.

SUB R0,R2,R2 R20
 �R2

� we may even execute an instruction merely for its side effects

SUBcc R5,201,R0

6



SPARCjnr

Instruction Format

� Arithmetic and logic instructions contain all the relevant �elds for
register selection and ALU control.

The decoder is responsible for enabling these �elds during the
correct cycle.

Format field
Function Code

Source 1Destination ALU function

Addressing mode

Source 2

1 00 rd rs1 0 rs2ignoredF4:F0

7



SPARCjnr

Variable Instruction Format

The use of variable �elds allows us to specify more information within
a limited instruction width2.

For simplicity the signed immediate may only be used on the s2 bus.

Addressing mode

ignored1 00 rd rs1 0 rs2

1 00 rd rs1 simm13F4:F0

F4:F0

1

2note that the rs2 �eld is not always present but when present it is always in the same place.

8



SPARCjnr

� Shift instructions are indicated by a different function code.

The decoder will use a part of the function code in order to select
which functional unit drives the destination bus.

Format field
Function Code

1 rd rs100
ignored rs20

simm131
1 1

11 = SRA
10 = SRL
01 = SLL

0

Note that only the least signi�cant 5 bits of the simm13 or R[rs2] are used to determine the amount

of shift.

9



SPARCjnr

� Load and store instructions use similar instruction formats.

LD [R3+R7],R5 R50
 mem(R3 +R7)

ST R1,[R4+5] mem(R4 + 5)0
 R1

Format field
Function Code

1 0rd rs11 0000
ignored rs20

simm131

0 = LD
1 = ST

Source (ST)
Destination (LD)

10



SPARCjnr

� Control Transfer instructions.

CALL

Format field

10 disp30

Since instructions are word aligned, any location within the 4 GByte
address space may be accessed via the CALL instruction3.

CALL label R150
 PC

PC 0
 nPC

nPC 0
 PC + (disp30 � 4)

3A price is paid for this facility � R15 is �xed as the register storing the return address.

11



SPARCjnr

� Control Transfer instructions.

Bicc

Format field
Function Code

1000 = BA

1010 = BG
1001 = BNE

1011 = BGE

1101 = BCC

0011 = BL 0111 = BVS
0110 = BNEG
0101 = BCS

1100 = BGU

1111 = BVC
0010 = BLE
0001 = BE

0100 = BLEU

1110 = BPOS

0 00 0 1 disp22conda

0000 = BN

The conditional branch instructions have a shorter range since they
need eight bits to specify the branch condition and the annul4 status.

BNE label If (Z = 0) then nPC 0
 PC+(disp22� 4)

PC 0
 nPC

4
a = 1 indicates that we have a branch with annul.

12



SPARCjnr

� Control Transfer instructions.

JMPL

Function Code
Format field

1 rd rs100
ignored rs20

simm131
0 1 1 1 0

This instruction allows a register indirect jump. Since it saves the old
program counter it may be used to jump to or return from a subrou-
tine5.

JMPL rs1+rs2,rd rd0
 PC

PC 0
 nPC

nPC 0
 rs1 + rs2

5
JMPL R15+8,R0 performs a subroutine return via the address stored in R15.

13



SPARCjnr

� Using an ADD instruction we can set the value of a register in the
range -4096 to +40956.

ADD R0,simm13,rd rd0
 simm13

� The SETHI instruction enables the setting of the more signi�cant
register bits.

Format
field

Function Code

rd 00 0 01 imm22

SETHI imm22,rd rd < 31 : 10 >0
 imm22

rd < 9 : 0 >0
 0

6note that the signed immediate is sign extended before placement on the s2 bus.

14



SPARCjnr

�Manipulation of immediate and displacement values:

simm13s s ss s s ss ss s ss s sss

simm13

s s

0

s

disp30

disp30

s

00disp22s s s s s s s s s

0

disp22s

imm22 0 0 0 0 0 0 0 0 00

imm22

Sign Extended & Word Aligned

Word Aligned

Sign Extended ADD

CALL

BVC

SETHIShift Left by 10

15


