Distributed Adaptive Systems Theory, Specification, Reasoning

Klaus-Dieter Schewe, Flavio Ferrarotti, Loredana Tec, Qing Wang

Linz, Austria & Canberra, Australia

kdschewe@acm.org

Distributed Adaptive Systems – Theory, Specification, Reasoning

1 Questions that Need Answers

• **Expressiveness** of Rigorous Methods

- Can we give a precise characterisation of a class \mathcal{C} of systems that are captured by our method \mathcal{M} ?
- If we capture $\mathcal{C}' \subsetneq \mathcal{C}$, can we precisely characterise what we gain (e.g. easier proofs, reduced complexity, etc.) for the reduced expressiveness?
- Can we justify that $\mathcal{C}' \subsetneq \mathcal{C}$ is of equal importance as \mathcal{C} itself?
- Can we ensure that our method adequately captures the technology and implementation languages that are commonly used for implementations of the captured class C of systems?
- Can we ensure that our refinement-based development methodology provides an adequate (in terms of effort, feasibility, quality of the result) for the development of systems in the class of interest?

Questions / cont.

- Logical Reasoning with Rigorous Methods
 - Can we provide a logic for our method by means of which all desirable properties of a system of interest can be expressed?
 - Can we provide a (preferably complete) proof theory for such a logic that enables mechanical reasoning complementing proofs by brain and pencil?
 - Can we ensure that proofs can exploit previous knowledge?
 - Can we provide pragmatic guidance for conducting proofs?
 - Can we provide pragmatic refinement rules that have been proven a priori to be correct?

Behavioural Systems Theory

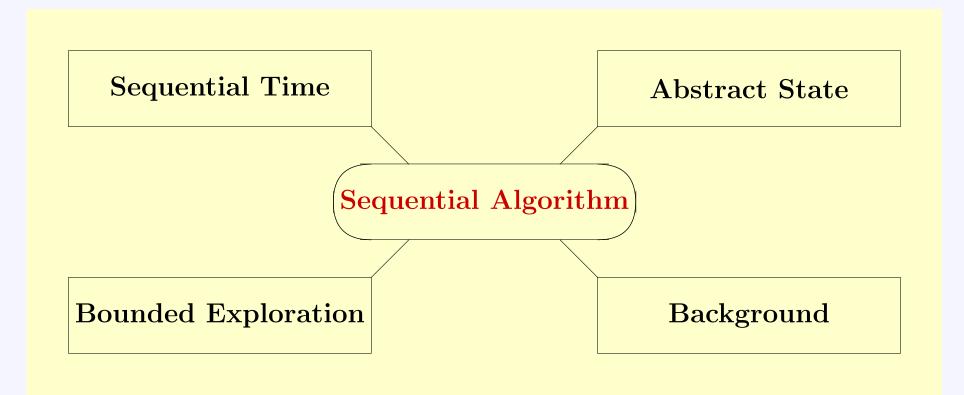
Foundations for Expressiveness and Logical Reasoning:

- Provide a language-independent definition of a $class \ C \ of \ systems \ of \ interest$
- Provide an *abstract machine model* \mathcal{M} (i.e. the rigorous method)
- Prove that the abstract machine model \mathcal{M} captures the class \mathcal{C} of systems
 - \bullet Plausibility: Show the satisfaction of the characterising properties of ${\cal C}$
 - **Capture:** Show that every system stipulated by the characterising properties of C can be specified by a *behaviourally equivalent* abstract machine
- Derive a *logic* \mathcal{L} from \mathcal{M} and show how to express desirable properties of systems in \mathcal{C} in this logic

2 Foundations: Expressiveness

Ur-Instance: **Behavioural Theory of Sequential Algorithms** (aka: Sequential ASM Thesis)

Sequential algorithms are defined by four conditions (**postulates**):



Characterising Postulates

- Sequential Time: A sequential algorithm t is associated with a non-empty set of states S_t , a subset $\mathcal{I}_t \subseteq S_t$ of initial states, and a transition function $\tau_t : S_t \to S_t$.
 - This already determines the notion of a *run* S_0, S_1, \ldots with $S_0 \in \mathcal{I}_t$ and $S_{i+1} = \tau_t(S_i)$
- Abstract State: All states $S \in S_t$ of a sequential algorithm t are structures over the same signature Σ_t . For all states S and $\tau_t(S)$ have the same base set B. The sets of states and initial states are closed under isomorphisms.
- Bounded Exploration: For a sequential algorithm t there exists a fixed, finite set W (bounded exploration witness) of ground terms such that $\Delta(t, S_1) = \Delta(t, S_2)$ holds whenever the states S_1 and S_2 coincide over W.
- **Background:** There exists a background class providing at least truth values and their junctors and a value *undef*.

Here $\Delta(t, S)$ is the uniquely defined **update set** of the algorithm t in state S, i.e. the set of updates (ℓ, v) defined by the transition from S to $\tau_t(S)$.

Sequential ASM Rules

• Sequential ASM rules over a signature Σ are defined as follows:

- If t_0, \ldots, t_n are terms over Σ , and f is a *n*-ary function symbol in Σ , then $f(t_1, \ldots, t_n) := t_0$ is a rule r in \mathcal{R} called **assignment rule**.
- If φ is a Boolean term and $r' \in \mathcal{R}$ is a DB-ASM rule, then if φ then r'endif is a rule r in \mathcal{R} called *conditional rule*.
- If r_1, \ldots, r_n are rules in \mathcal{R} , then the rule r defined as **par** $r_1 \ldots r_n$ **endpar** is a rule in \mathcal{R} , called **parallel rule**.
- Each rule r yields an update set $\Delta(r, S)$ for a state S over Σ .

Sequential Abstract State Machines

Definition. A sequential Abstract State Machine (ASM) \mathcal{M} over a signature Σ consists of

- a set $\mathcal{S}_{\mathcal{M}}$ of states over Σ and a non-empty subset $\mathcal{I}_{\mathcal{M}} \subseteq \mathcal{S}_{\mathcal{M}}$ of initial states, both closed under isomorphisms,
- a closed sequential **ASM** rule $r_{\mathcal{M}}$ over Σ , and
- a function $\tau_{\mathcal{M}} : \mathcal{S}_{\mathcal{M}} \to \mathcal{S}_{\mathcal{M}}$ determined by $r_{\mathcal{M}}$ such that $\tau_{\mathcal{M}}(S) = S + \Delta(r_{\mathcal{M}}, S)$ holds.

Theorem (Plausibility Theorem). Each sequential ASM \mathcal{M} defines a sequential algorithm with the same signature as \mathcal{M} .

Theorem (Characterisation Theorem). For every sequential algorithm there exists a behaviourally equivalent sequential ASM \mathcal{M} .

Y. Gurevich, Sequential abstract-state machines capture sequential algorithms, ACM Trans. Comput. Log. 1 (1) (2000): 77-111.

Distributed Adaptive Systems – Theory, Specification, Reasoning

Proof Sketch

- 1. Fix a bounded exploration witness W (w.l.o.g. closed under subterms)
- 2. Take a state S and an update $((f, (v_1, \ldots, v_n)), v_0) \in \Delta(S)$
- 3. Show that each v_i is a *critical value* in S, i.e. it results from interpretation of a ground term $t_i \in W$ in the state S
- 4. Then the update is yielded by the rule $f(t_1, \ldots, t_n) := t_0$, and consequently $\Delta(S)$ results from a rule r_S that is the parallel composition of such assignments
- 5. Generalise to states that coincide on W: If S' and S coincide on W, then $\Delta(S') = \Delta(r_S, S')$
- 6. Extend to isomorphic states: If S_1, S_2 are isomorphic and $\Delta(S_1) = \Delta(r_S, S_1)$, then also $\Delta(S_2) = \Delta(r_S, S_2)$ holds
- 7. Define W-similarity: States S_1, S_2 are W-similar iff $val_{S_1}(t_i) = val_{S_1}(t_j) \Leftrightarrow val_{S_2}(t_i) = val_{S_2}(t_j)$ holds for all $t_i, t_j \in W$
- 8. Extend to W-similar states: If S' and S are W-similar, then $\Delta(S') = \Delta(r_S, S')$
- 9. As there are only finitely many W-equivalence classes, use conditional rules to finally create a rule r with $\Delta(S') = \Delta(r, S')$ for all states S'

Easy Observations

- The proof mainly exploits properties derived from the postulates
- Any other method providing parallel assignments and guards could have been used in the proof as well
- An extension to cover *bounded non-determinism* is also straightforward:
 - In the sequential time postulate replace the state transition function τ_t by a relation
 - Add a bounded choice rule to sequential ASMs

2.1 Extension: Unbounded (Synchronous) Parallelism

- The parallel "branches" involved in a single step do not only depend on the algorithm, but also on the state
 - The key is to exploit **multiset comprehension terms** (instead of just ground terms) in the bounded exploration postulate (conjecture launched at ABZ 2012)
 - In addition, the background structure in the background postulate must provide constructors for tuples and multisets together with the corresponding operators on them
- Sequential ASMs need to be extended to *parallel ASMs* that exploit a general **forall**-rule for unbounded parallelism:
 - If φ is a term with $\{x_1, \ldots, x_k\} \subseteq fr(\varphi)$ and $r' \in \mathcal{R}$ is an ASM rule, then forall x_1, \ldots, x_k with φ do r' enddo is a rule r in \mathcal{R}

Proof Sketch

Only Step 4 in the previous proof (trivial for sequential algorithms) requires an amendment, the rest remains more or less the same

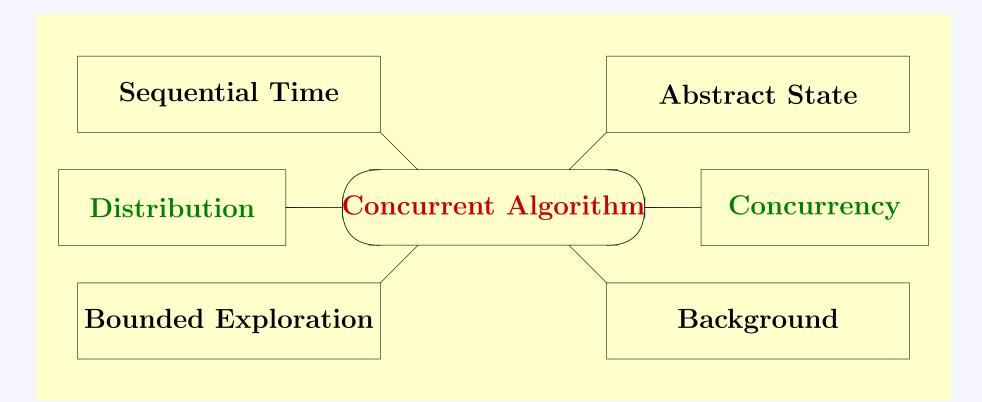
- 1. Define a logical theory (derived from W) and show that whenever tuple $\bar{a} = (a_0, \ldots, a_r)$ and $\bar{b} = (b_0, \ldots, b_r)$ have the same type (i.e. they satisfy exactly the same formulae in this theory), then $((f, (a_1, \ldots, a_r), a_0)$ appears in an update set $\Delta(S)$ iff $((f, (b_1, \ldots, b_r), b_0) \in \Delta(S)$.
- 2. For this assume first that there is an isomorphism taking \bar{a} to \bar{b} and apply the bounded exploration postulate, then use a Gödelisation to tackle the general case.
- 3. Show that for the theory isolating formulae exist, i.e. tuples have the same type iff they are satisfied by the isolating formula of the type.
- 4. Use the isolating formula to define a rule

forall x_0, x_1, \ldots, x_r with $t_{\chi}^{\bar{a}}(x_0, x_1, \ldots, x_r)$ do $f(x_1, \ldots, x_r) := x_0$

F. Ferrarotti, K.-D. Schewe, L. Tec, Q. Wang: A New Thesis concerning Synchronised Parallel Computing – Simplified Parallel ASM Thesis. Theor. Comp. Sci. 649 (2016): 25-53.

2.2 Extension: (Asynchronous) Concurrency

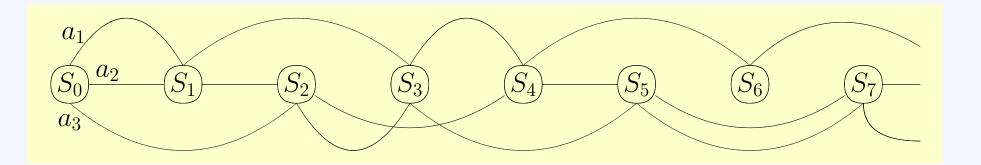
Concurrent algorithms require two additional **postulates**:



Characterising Postulates

- **Distribution:** A *distributed (adaptive) system* (DAS) is given by a set \mathcal{A} of agents a, each equipped with a parallel (reflective) algorithm alg(a). Furthermore, there is a set \mathbb{L} of localities and and assignment $loc : \mathcal{A} \to \mathbb{L}$.
- Concurrency: A DAS $\mathcal{D} = \{(a, alg(a)) \mid a \in \mathcal{A}\}$ defines concurrent \mathcal{D} -runs S_0, S_1, \ldots starting in some initial state S_0 , such that each state S_n $(n \geq 0)$ yields a next state S_{n+1} by a finite set \mathcal{A}_n of agents simultaneously completing the execution of their current alg(a)-step they had started in some preceding state S_j $(j \leq n$ depending on a), i.e. $S_{n+1} = S_n + \bigcup_{a \in \mathcal{A}_n} \Delta_a(S_j)$.
 - Informally phrased, in a concurrent run the sequence of states results from simultaneously applying update sets of several individual machines that have been built on previous (not necessarily the last nor the same) states.
 - Concurrent runs do not rely on interleaving, but permit simultaneous updates by several machines

Concurrent ASMs Capture Concurrent Algorithms



- Simply use families of ASMs indexed by agents, i.e. $\{(a, \mathcal{M}_a) \mid a \in \mathcal{A}\}$
- Exploit that locations between different ASMs in the family can be shared
- Define concurrent runs in analogy to the concurrency postulate
- The proof that concurrent ASMs capture concurrent algorithms is straightforward: reduction to the already known proofs

E. Börger, K.-D. Schewe: Concurrent Abstract State Machines. Acta Inform. 53 (5), (2016): 469-492 (open access).

Distributed Adaptive Systems - Theory, Specification, Reasoning

2.3 Extension: Adaptivity through Linguistic Reflection

- **Reflection:** each agent computes not only updates to the state, but also to itself, which requires (for each agent) a function from pairs of states and specifications to specifications:
 - Think of pairs (S_i, P_j) comprising a state S_i (as in the sequential thesis), and a (sequential or parallel) algorithm P_j
 - Consider transition functions $\tau_j : (S_i, P_j) \mapsto (S_{i+1}, P_j)$ not changing the algorithm P_j , and transition functions $\sigma_i : (S_i, P_j) \mapsto (S_i, P_{j+1})$ changing only the algorithm
 - A run of a reflective algorithm corresponds to the sequence of pairs (S_i, P_i) , where in each step both the state S_i and the algorithm P_i are updated
- This requires changes to all postulates; the key issue is to permit *terms as values*
- F. Ferrarotti, K.-D. Schewe, L. Tec: A Behavioural Theory for Reflective Sequential Algorithms. Perspectives in Systems Informatics. LNCS vol. 10742, pp. 117-131, Springer 2018.

Sequential Time

- We can capture the state-algorithm pairs by an extension Σ_{ext} of the signature Σ using additional function symbols to represent the algorithm, e.g. capturing the signature and some syntactic description
- We must further permit new function symbols to be created, which can be done by exploiting the concept of "reserve"

Reflective Sequential Time Postulate. A *reflective algorithm* \mathcal{A} consists of the following:

- A non-empty set $\mathcal{S}_{\mathcal{A}}$ of *extended states*.
- A non-empty subset $\mathcal{I}_{\mathcal{A}} \subseteq \mathcal{S}_{\mathcal{A}}$ of *initial extended states* such that for all $(S, P), (S', P') \in \mathcal{I}_{\mathcal{A}}$, it holds that S and S' are first-order structures of a same signature Σ and $P|_{\Sigma}$ and $P'|_{\Sigma}$ have exactly the same runs.
- A one-step transformation function $\tau_{\mathcal{A}} : S_{\mathcal{A}} \to S_{\mathcal{A}}$ such that $\tau_{\mathcal{A}}((S, P)) = (S', P')$ iff $\tau_P((S, P)) = (S', P')$ for the one-step transformation function τ_P of the algorithm P.

Behavioural Equivalence

- While behavioural equivalent sequential/parallel algorithms have exactly the same runs, this is not necessarily the case for reflection
- For runs $r_1 = (S_0, P_0), (S_1, P_1), (S_2, P_2), \ldots$, and $r_2 = (S'_0, P'_0), (S'_1, P'_1), (S'_2, P'_2), \ldots$, define that r_1 and r_2 are **essentially equivalent** if for every $i \ge 0$ the following holds:
 - $S_i = S'_i$
 - S_i and S'_i are first-order structures of a same signature Σ_i and $P_i|_{\Sigma_i}$ and $P'_i|_{\Sigma_i}$ have exactly the same runs

Definition (Behavioural Equivalence).

Two reflective algorithms \mathcal{A} and \mathcal{A}' are **behaviourally equivalent** iff \mathcal{A} and \mathcal{A}' have essentially equivalent classes of essentially equivalent runs, i.e. there is a bijection ζ between runs of \mathcal{A} and \mathcal{A}' , respectively, such that r and $\zeta(r)$ are essentially equivalent for all run r.

Abstract States

- States are first-order structures, but must also include (an encoding of) an algorithm given by a finite text
- The representation of algorithms in a state requires terms that are used by the algorithms to appear as values. So we have to allow terms over Σ (including the dormant function symbols in the reserve) to be at the same time values in an extended base set
- States (S, P) and (S', P') are **essentially isomorphic** if S and S' are isomorphic first-order structures of some vocabulary Σ and $P|_{\Sigma}$ and $P'|_{\Sigma}$ have exactly the same runs
- If ζ is an isomorphism form S to S', then we say that (S, P) and (S', P') are essentially isomorphic via ζ

Extended Abstract States

Reflective Abstract State Postulate.

Let \mathcal{A} be a reflective algorithm. Fix a signature Σ and an extension Σ_{ext} of the signature Σ with additional function names.

- States of \mathcal{A} are first-order structures of signature Σ_{ext} .
- Every state (S, P) of \mathcal{A} is formed by the *disjoint* union of an arbitrary firstorder structure S of some *finite* signature $\Sigma_{st} \subseteq \Sigma$ and a first-order structure S_P of signature $\Sigma_{wt} = \Sigma_{ext} \setminus \Sigma$ which contains an encoding of the sequential algorithm P.
- The one-step transformation $\tau_{\mathcal{A}}$ of a RSA \mathcal{A} does not change the base set of any state of \mathcal{A} .
- The sets $\mathcal{S}_{\mathcal{A}}$ and $\mathcal{I}_{\mathcal{A}}$ of, respectively, states and initial states of \mathcal{A} , are closed under essentially isomorphic states.
- If two states (S, P) and (S', P') of \mathcal{A} are essentially isomorphic via an isomorphism ζ from S to S', then $\tau_{\mathcal{A}}((\mathbf{S}_1, A_1))$ and $\tau_{\mathcal{A}}((\mathbf{S}_2, A_2))$ are also essentially isomorphic via ζ .

Bounded Exploration

- Each algorithm P_i represented in state (S_i, P_i) has its own bounded exploration witness W_i
- For parallel algorithms P_i such a bounded exploration witness is a set of multiset comprehension terms, where each element in such a multiset corresponds to a branch (or proclet) of the parallel computation
- Due to the construction of W_i in the characterisation proof we know that W_i is somehow contained in the finite representation of P_i
- E.g., the ASM rule constructed in the proof of the parallel ASM thesis only contains terms derived from the terms in W_i , and this holds analogously for any other representation of P_i
- Thus, the terms in W_i result by interpretation from terms that appear in the representation of any algorithm, and there must exist a finite set of terms W such that its interpretation in an extended state yields both values and terms, and the latter represent W_i
- Consequently, the interpretation of W and of its interpretation in an extended state suffice to determine the update set in that state

Strong Coincidence

We first need an extension of the notion of **strong coincidence** over a set of multiset comprehension terms

Definition (Strong Coincidence).

Let (S, P) and (S', P') be states of signature Σ_{ext} . Let W_{st} be a set of multiset comprehension terms over signature Σ and W_{wt} be a set of multiset comprehension terms over signature $\Sigma_{ext} \setminus \Sigma$. (S, P) and (S', P') **strongly coincide** over $W_{st} \cup$ W_{wt} iff the following holds:

- For every $t \in W_{st}$, $val_{(S,P)}(t) = val_{(S',P')}(t)$.
- For every $t \in W_{wt}$,
 - $val_{(S,P)}(t) = val_{(S',P')}(t).$
 - $val_{(S,P)}(raise(t)) = val_{(S',P')}(raise(t))$, where raise(t) denotes the interpretation of t as a term of signature Σ .

Reflective Bounded Exploration

• Use $\Delta(P, S)$ to denote the unique set of updates produced by the sequential algorithm P in state S

• The unique set of updates produced by a RSA \mathcal{A} in a state (S, P) is defined as $\Delta(\mathcal{A}, (S, P)) = \Delta(P, (S, P))$

• The idea of the modified bounded exploration postulate is that, for every state (S_i, P_i) , the multiset comprehension terms obtained by the interpretation in (S_i, P_i) of the terms in W_{wt} together with the "standard" terms in W_{st} form a bounded exploration witness for the sequential algorithm P_i

Reflective Bounded Exploration Postulate

Reflective Bounded Exploration Postulate.

For every reflective \mathcal{A} of signature Σ_{ext} there is a finite set W_{st} of multiset comprehension terms over signature Σ and a finite set W_{wt} of multiset comprehension terms over signature $\Sigma_{ext} \setminus \Sigma$ such that $\Delta(\mathcal{A}, (S, P)) = \Delta(\mathcal{A}, (S', P'))$ holds, whenever states (S, P) and (S', P') of \mathcal{A} strongly coincide on $W_{st} \cup W_{wt}$.

If a set of multiset comprehension terms $W_{st} \cup W_{wt}$ satisfies the reflective bounded exploration postulate, we call it a *reflective bounded exploration witness* (**R-witness**) for \mathcal{A}

A *reflective algorithm* (RA) is characterised by the Reflective Sequential Time, Reflective Abstract State, Reflective Background and Reflective Bounded Exploration Postulates.

Background Postulate

• Parallelism and reflection require the presence of additional constructors

Reflective Background Postulate.

Let A be a reflective algorithm of *vocabulary* Σ_{ext} with background class \mathcal{K} . The vocabulary $\Sigma_{\mathcal{K}}$ of \mathcal{K} includes (at least) a binary *tuple constructor* and a *multiset constructor* of unbounded arity; and the vocabulary $\Sigma_{\mathbf{B}}$ of the background of the computation states of A includes (at least) the following *obligatory* function symbols:

- Nullary function symbols true, false, undef and \oslash .
- Unary function symbols reserve, atomic, Boole, ¬, first, second, {{·}}, ↓ and AsSet.
- Binary function symbols =, \land , \lor , \rightarrow , \leftrightarrow , \uplus and (,).
- raise mapping terms over Σ_{ext} to terms over Σ .

All function symbols in $\Sigma_{\mathbf{B}}$, with the sole exception of **reserve**, are static.

Reflective ASMs

- In a **reflective ASM** the following extensions to signature, background and rules apply:
 - The signature contain a function symbol **self** capturing the signature and rule of the actual ASM
 - The background structure captures all constructs required by the reflective background postulate
 - If **self** is to be bound to a tree structure, then the tree operators are defined in the background
- In a run of an individual ASM asm_a in each step always the actual rule in **self** is applied

Tree Algebra

- An *unranked tree* is a structure $(\mathcal{O}, \prec_c, \prec_s)$ consisting of a finite, non-empty set \mathcal{O} of node identifiers, called *tree domain*, ordering relations \prec_c and \prec_s over \mathcal{O} called *child relation* and *sibling relation*, respectively, satisfying the following conditions:
 - there exists a unique, distinguished node $o_r \in \mathcal{O}$ (called the *root* of the tree) such that for all $o \in \mathcal{O} \{o_r\}$ there is exactly one $o' \in \mathcal{O}$ with $o' \prec_c o$,
 - whenever $o_1 \prec_s o_2$ holds, then there is some $o \in \mathcal{O}$ with $o \prec_c o_i$ for i = 1, 2, and
 - the relations \prec_c and \prec_s are irreflexive $(x \not\prec x)$.

K.-D. Schewe, Q. Wang: XML Database Transformations. J. UCS vol. 16 (20): 3043-3072, 2010

Trees, Hedges and Contexts

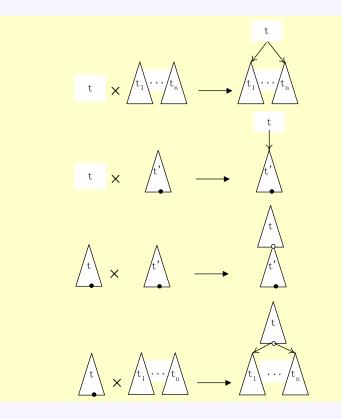
- A tree t (over the set of labels \mathcal{L} with values in the universe U) is a triple $(\gamma_t, \omega_t, \upsilon_t)$ consisting of an unranked tree $\gamma_t = (\mathcal{O}_t, \prec_c, \prec_s)$, a total label function $\omega_t: \mathcal{O}_t \to \Sigma$, and a partial value function $\upsilon_t: \mathcal{O}_t \to U$ such that whenever υ_t is defined on the argument o, o is a leaf in γ_t .
- A sequence $t_1, ..., t_k$ of trees is called a *hedge*, and a multiset $\{\!\{t_1, ..., t_k\}\!\}$ of trees is called a *forest* ε denotes the *empty hedge*.
- The set of *contexts* over an alphabet \mathcal{L} ($\xi \notin \mathcal{L}$) is the set $T_{\mathcal{L} \cup \{\xi\}}$ of unranked trees over $\mathcal{L} \cup \{\xi\}$ such that for each tree $t \in T_{\mathcal{L} \cup \{\xi\}}$ exactly one leaf node is labelled with the symbol ξ and has undefined value, and all other nodes in a tree are labelled and valued in the same way as a tree.

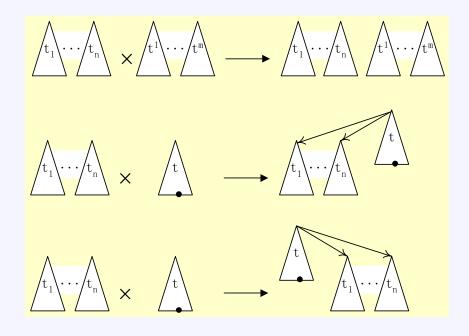
Operations on Trees

- **Tree-to-tree substitution.** For a tree $t_1 \in T_{\mathcal{L}_1}$ with a node $o \in \mathcal{O}_{t_1}$ and a tree $t_2 \in T_{\mathcal{L}_2}$ the result $t_1[\widehat{o} \mapsto t_2]$ of substituting t_2 for the subtree rooted at o is a tree in $T_{\mathcal{L}_1 \cup \mathcal{L}_2}$.
- **Tree-to-context substitution.** For a tree $t_1 \in T_{\mathcal{L}_1}$ with a node $o \in \mathcal{O}_{t_1}$ the result $t_1[\widehat{o} \mapsto \xi]$ of substituting the trivial context for the subtree rooted at o is a context in $T_{\mathcal{L}_1 \cup \{\xi\}}$.
- Context-to-context substitution. For a context $c_1 \in T_{\mathcal{L}_1 \cup \{\xi\}}$ and a context $c_2 \in T_{\mathcal{L}_2 \cup \{\xi\}}$ the result $c_1[\xi \mapsto c_2]$ of substituting c_2 for the node labelled by ξ in c_1 is a context in $T_{\mathcal{L}_1 \cup \mathcal{L}_2 \cup \{\xi\}}$.
- Context-to-tree substitution. For a context $c_1 \in T_{\mathcal{L}_1 \cup \{\xi\}}$ and a tree $t_2 \in T_{\mathcal{L}_2}$ the result $c_1[\xi \mapsto t_2]$ of substituting t_2 for the node labelled by ξ in c_1 is a tree in $T_{\mathcal{L}_1 \cup \mathcal{L}_2}$.

Further Operations on Trees

- context is a binary, partial function defined on pairs (o_1, o_2) of nodes with $o_i \in \mathcal{O}_t$ (i = 1, 2) such that o_1 is an ancestor of o_2 , i.e. $o_1 \prec_c^* o_2$ holds for the transitive closure \prec_c^* of \prec_c . We have $context(o_1, o_2) = \widehat{o}_1[\widehat{o}_2 \mapsto \xi]$.
- subtree is a unary function defined on \mathcal{O}_t . We have $subtree(o) = \hat{o}$.





A Glimpse of the Proof

• Define the set of *terms generated by* W_{wt} in (S, P) as

$$G_{W_{wt}}^{(S,P)} = \{ raise(t') \mid val_{(S,P)}(t) = t' \text{ for some } t \in W_{wt} \}$$

- Show again that every value occurring in an update is *critical*, i.e. results from the interpretation of the bounded exploration witness terms
- Show again that any tuple with the same logical type as the tuple defined by an update in $\Delta(\mathcal{A}, (S, P))$ also gives rise to an update, from which we can conclude again the existence of an ASM rule that yields the update set at hand
- We obtain for every extended state (S, P) a rule $r_{(S,P)}$ such that $r_{(S,P)}$ uses only critical terms and $\Delta(r_{(S,P)}, (S, P)) = \Delta(\mathcal{A}, (S, P))$ holds
- If two states (S, P) and (S', P') of \mathcal{A} are relative W[(S, P)]-equivalent and coincide over W[(S, P)], then it follows that $\Delta_{st}(r_{(S,P)}, (S', P')) = \Delta_{st}(\mathcal{A}, (S', P'))$
 - Two states (S_1, P_1) and (S_2, P_2) of \mathcal{A} are W-equivalent relative to $\mathcal{C}[(S, P)]$ iff $(S_1, P_1), (S_2, P_2) \in \mathcal{C}[(S, P)]$ and $E_{(S_1, P_1)} = E_{(S_2, P_2)}$, where (for i = 1, 2) $E_{(S_i, P_i)}(t_1, t_2) \equiv val_{(S_i, P_i)}(t_1) = val_{(S_i, P_i)}(t_2)$ is an equivalence relation on the set of critical terms of (S, P)

A Glimpse of the Proof (cont.)

- For every class $\mathcal{C}([S_i, P_i])$ of states of \mathcal{A} , we have a corresponding rule $r_{[(S_i, P_i)]}$ with
 - $\Delta_{st}(r_{[(S,P)]}, (S_i, P_i)) = \Delta_{st}(\mathcal{A}, (S_i, P_i))$ for every state $(S_i, P_i) \in \mathcal{C}[(S, P)]$, i.e., for every state that is relative W[(S, P)]-equivalent to (S, P)
- Extend this result to all states which belong to some run of \mathcal{A} , not just for the states in the class $\mathcal{C}([S_i, P_i])$
 - Fix an arbitrary initial state (S, P) of \mathcal{A} and define \mathcal{M} as the *reflective* ASM machine with:

 $\mathcal{S}_{\mathcal{M}} = \{ (S_i, P'_i) \mid (S_i, P_i) \in \mathcal{S}_{\mathcal{A}} \text{ and } P'_i \text{ is the "self" representation of } r_{[(S_i, P_i)]} \}$ $\mathcal{I}_{\mathcal{M}} = \{ (S_i, P'_i) \mid (S_i, P'_i) \in \mathcal{S}_{\mathcal{M}} \text{ and } P'_i \text{ is the "self" representation of } r_{[(S, P)]} \}$

• With this show that for every run $(S_0, P_0), (S_1, P_1), \ldots$ of \mathcal{A} and corresponding run $(S'_0, P'_0), (S'_1, P'_1), \ldots$ of \mathcal{M} with $S_0 = S'_0$, it holds that $\Delta_{st}(r_{[(S_i, P'_i)]}, (S'_i, P'_i)) = \Delta_{st}(\mathcal{A}, (S_i, P_i))$

3 Foundations: Logic

• Formulae of the logic for determistic ASMs (Stärk / Nanchen):

$$\begin{array}{l} \varphi,\psi \, ::=\!s=t \mid \neg\varphi \mid \varphi \wedge \psi \mid \varphi \lor \psi \mid \varphi \rightarrow \psi \mid \forall x.\varphi \mid \exists x.\varphi \mid \\ \mid \operatorname{def}(r) \mid \operatorname{upd}(r,f,\vec{s},t) \mid [r]\varphi \end{array}$$

- Here $upd(r, f, \vec{s}, t)$ informally means that rule r yields an update at location $(f, val_S(\vec{s}))$ with new value $val_S(t)$
- A proof system has been defined the logic is complete
 - The logic is a definitional extension of first-order logic
- The logic does not cover non-determinism
- The logic does not cover synchronisation of parallel branches

3.1 Extension to Non-Deterministic ASMs

• Formulae of the logic for non-determistic ASMs:

$$\begin{split} \varphi, \psi &::= s = t \mid s_a = t_a \mid \neg \varphi \mid \varphi \land \psi \mid \forall x(\varphi) \mid \forall x(\varphi) \mid \forall M(\varphi) \\ &\mid \forall X(\varphi) \mid \forall \mathcal{X}(\varphi) \mid \forall \ddot{X}(\varphi) \mid \forall \ddot{X}(\varphi) \mid \forall F(\varphi) \mid \forall G(\varphi) \\ &\mid \operatorname{upd}(r, X) \mid \operatorname{upm}(r, \ddot{X}) \mid M(s, t_a) \mid X(f, t, t_0) \\ &\mid \mathcal{X}(f, t, t_0, s) \mid \ddot{X}(f, t, t_0, t_a) \mid \ddot{\mathcal{X}}(f, t, t_0, t_a, s) \\ &\mid F(f, t, t_0, t_a, t', t'_0, t'_a, s) \mid G(f, t, t_0, t_a, t', t'_0, t'_a, s_a) \mid [X]\varphi \end{split}$$

- s, t and t' denote terms in \mathcal{T}_f
- s_a , t_a and t'_a denote terms in \mathcal{T}_a
- $x \in \mathcal{X}_f$ and $\mathbf{x} \in \mathcal{X}_a$ denote first-order variables
- $M, X, \mathcal{X}, \ddot{\mathcal{X}}, \ddot{\mathcal{X}}, F$ and G denote second-order variables
- r is an ASM rule
- f is a dynamic function symbol in $\Upsilon_f \cup \mathcal{F}_b$
- t_0 and t'_0 denote terms in \mathcal{T}_f or \mathcal{T}_a depending on whether f is in Υ_f or \mathcal{F}_b , respectively

Informal Meaning

- upd(r, X) and upm(r, X) respectively state that a finite update set represented by X and a finite update multiset represented by X are generated by a rule r
- $X(f, t, t_0)$ describes that an update (f, t, t_0) belongs to the update set represented by X
- $\ddot{X}(f, t, t_0, t_a)$ describes that an update (f, t, t_0) occurs at least once in the update multiset represented by \ddot{X}
- If (f, t, t_0) occurs *n*-times in the update multiset represented by \ddot{X} , then there are *n* distinct $a_1, \ldots, a_n \in B_a$ such that $(f, t, t_0, a_i) \in \ddot{X}$ for every $1 \le i \le n$ and $(f, t, t_0, a_j) \notin \ddot{X}$ for every a_j other than a_1, \ldots, a_n
- $[X]\varphi$ expresses that φ holds in the state resulting from executing the update set represented by X on the current state

Completeness

- The second-order variables \mathcal{X} and \mathcal{X} are used to keep track of the parallel branches that produce the update sets and multisets, respectively
- M denotes binary second-order variables which are used to represent the finite multisets in the semantic interpretation of ρ -terms
- $\bullet~F$ and G to denote second-order variables which encode bijections between update multisets

A proof system for this logic has been developed

Theorem. The logic of non-deterministic ASMs is complete with respect to Henkin semantics for higher-order logics.

F. Ferrarotti, K.-D. Schewe, L. Tec, Q. Wang: A complete logic for Database Abstract State Machines1. Logic Journal of the IGPL vol. 25 (5): 700-740 (2017)

3.2 Extension: Concurrency

• Simple observation: concurrency can be mimicked by non-determinism: for each agent a replace its rule r by

IF ctl = idle THEN CHOOSE r OR $local(r) \parallel ctl := active ENDIF$ IF ctl = active THEN CHOOSE skip OR $final(r) \parallel ctl := idle ENDIF$

- In an initial state the "control-state" location ctl is set to idle
 - If idle the agent executes either immediately its rule or executes a local version of it, i.e. all updates will be written to a local copy
- Otherwise the control-state becomes active
 - If active, the agent may either do nothing or finalise the execution by copying all updates to the shared locations and returning to an idle control state

F. Ferrarotti, K.-D. Schewe, L. Tec, Q. Wang: A unifying logic for non-deterministic, parallel and concurrent Abstract State Machines. Annals of Mathematics and Artificial Intelligence (2018), to appear

3.3 Extension: Reflection

- Reflection concerns rules r in the logic, which only appear in formulae of the form $\mathrm{upd}(r,X)$ and $\mathrm{upm}(r,\ddot{X})$
 - In a non-reflective ASM the main rule is given as part of the specification and treated as extra-logical constant
 - In a reflective ASM the main rule is the value in a location such as self: we have $val_S(self) = r_S$
 - That is, the interpretation of the term self in a state S yields the rule that is to be applied in S
- As in a reflective ASM the main rule does not change within a single step, we have to take multiple steps into account

Predicates for Multiple Steps

- Use two additional predicates r-upd and r-upm with the following informal meaning:
 - r-upd(n, X) means that n steps of the reflective ASM yield the update set X, where in each step the actual value of *self* is used
 - ${\scriptstyle \bullet}$ r-upm(n,X) means that n steps of the reflective ASM yield the update multiset X
- The proof theory for non-deterministic ASMs used in the completeness proof defines upd(r, X) and $upm(r, \ddot{X})$ for sequence rules
- Inductively define axioms for r-upd and r-upm
 - Clearly, we have r-upd(1, X) \leftrightarrow upd(self, X) and r-upm(1, X) \leftrightarrow upm(self, X)

Predicates for Multiple Steps (cont.)

$$\begin{aligned} \operatorname{r-upd}(n+1,X) \leftrightarrow \left(\operatorname{r-upd}(1,X) \wedge \neg \operatorname{conUSet}(X)\right) \lor \\ \left(\exists Y_1 Y_2(\operatorname{r-upd}(1,Y_1) \wedge \operatorname{conUSet}(Y_1) \wedge [Y_1]\operatorname{r-upd}(n,Y_2) \wedge \right. \\ \left. \bigwedge_{f \in \mathcal{F}_{dyn}} \forall x y(X(f,x,y) \leftrightarrow \left((Y_1(f,x,y) \wedge \forall z(\neg Y_2(f,x,z))) \lor Y_2(f,x,y)))\right) \right) \end{aligned}$$

$$\begin{aligned} \operatorname{upm}(n+1,\ddot{X}) \leftrightarrow \left(\operatorname{r-upm}(1,\ddot{X})\wedge \right. \\ & \left. \forall X \Big(\bigwedge_{f \in \mathcal{F}_{dyn}} \forall x_1 x_2 (X(f,x_1,x_2) \leftrightarrow \exists \mathbf{x}_3(\ddot{X}(f,x_1,x_2,\mathbf{x}_3))) \wedge \neg \operatorname{conUSet}(X) \Big) \right) \vee \\ & \left(\exists \ddot{Y}_1 \ddot{Y}_2 \Big(\operatorname{r-upm}(1,\ddot{Y}_1) \wedge \forall Y_1 \Big(\bigwedge_{f \in \mathcal{F}_{dyn}} \forall x_1 x_2 (Y_1(f,x_1,x_2) \leftrightarrow \\ \exists \mathbf{x}_3(\ddot{Y}_1(f,x_1,x_2,\mathbf{x}_3))) \wedge \operatorname{conUSet}(Y_1) \wedge [Y_1] \operatorname{r-upm}(n,\ddot{Y}_2) \Big) \wedge \\ & \left. \bigwedge_{f \in \mathcal{F}_{dyn}} \forall x_1 x_2 \mathbf{x}_3 \Big(\ddot{X}(f,x_1,x_2,\mathbf{x}_3) \leftrightarrow (\ddot{Y}_2(f,x_1,x_2,\mathbf{x}_3) \vee \\ (\ddot{Y}_1(f,x_1,x_2,\mathbf{x}_3) \wedge \forall y_2 \mathbf{y}_3(\neg \ddot{Y}_2(f,x_1,y_2,\mathbf{y}_3)))) \Big) \Big) \end{aligned}$$

4 Outlook

Open Issues

- The behavioural theory of distributed adaptive systems still needs to be written up in an integrated way
- Agents in the theory are assumed to be deterministic; extensions to capture non-determinism are open
 - In particular, the case of unbounded parallelism in combination with unbounded choice appears to be at least as challenging as the behavioural theory of parallel algorithms
- The completeness of the extended logic for concurrent reflective algorithms is open
- Further extend the theory towards probabilistic choice with arbitrary distribution (not just equal distribution)
- In all cases the logic needs to be extended by integration probabilistic logic concepts

Hybrid Systems

- In hybrid systems the sequential time postulate should become a continuous time postulate turning runs into continuous functions from R to the set of states
 - Using the usual topology on \mathbb{R} , product topology, discrete topology the set of states can be easily turned into a topological space
 - Showing an equivalence to discrete runs (as before) with continuous functions as values should be possible
 - With this equivalence an extension to hybrid ASMs appears to be straightforward
- A crucial problem concerns conditions, under which a discretisation of an (observed) continuous function can be used as surrogate for the continuous function itself
- Concerning the logic it is crucial to integrate functional (such as derivatives), maybe be looking into higher-order categorical logic

Complexity

- Specifications in (concurrent, reflective) ASMs may also be exploited for analysing and classifying complexity
- State of the art in complexity theory still refers to Turing machines
 - In descriptive complexity theory many proofs construct logical formulae describing the behaviour of a particular Turing machine, which could be simplified using ASMs and other rigorous methods
 - Complexity classes based on "alternating" Turing machines refer to parallelism
 - Alternating sequences of quantifiers in descriptive complexity are closely linked to the interaction of choice and unbounded parallelism

Thank you