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Definitions

• We have some set of data 𝑑 = {𝑥𝑖 , 𝑦𝑖}

• We have a model

• The model makes a prediction, e.g.,

𝑦 𝑥 = 𝑚𝑥 + 𝑐

• The 𝑚 and 𝑐 are model parameters 
which we denote by 𝜃 = {𝑚, 𝑐}
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Questions

• How do we determine the model parameters, given the data?

• How do we decide if the model is a good fit to the data?
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Parameter estimation / inference

For model 𝑀, how do we determine the model parameters, given the data?

• In Bayesian analysis, this question is answered by calculating the 
posterior distribution

𝑃 𝜃 𝑑,𝑀)

• This distribution can be obtained by the application of conditional 
probability
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Conditional probability

• Bag containing 2 identical red balls and 1 blue ball

• Take one ball at a time and don’t replace it

• Draw a tree diagram of the probabilities..
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Conditional probability

• Bag containing 2 identical red balls and 1 blue ball

• Take one ball at a time and don’t replace it

• Draw a tree diagram of the probabilities..
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On the first draw, 
𝑃 𝑅 = 2/3
𝑃 𝐵 = 1/3

On the second draw,
𝑃 𝑅 𝑅) = 1/2
𝑃 𝐵 𝑅) = 1/2
𝑃 𝐵 𝐵 = 0

And so on…



Conditional probability

• 𝑃 𝐴 𝐵 ⇒ The probability of “A” given “B”

• Relation to the logical “AND”

𝑃 𝐴 and 𝐵 = 𝑃 𝐴𝐵 = 𝑃 𝐴 𝐵 × 𝑃(𝐵)

• E.g., draw 2 balls from the bag, what is the probability of a R and R?

𝑃 𝑅𝑅 = 𝑃 𝑅 𝑅 × 𝑃 𝑅 = 1/2 × 2/3 = 1/3
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Bayes theorem

• We can write down two statements:
𝑃 𝐴𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵
𝑃 𝐴𝐵 = 𝑃 𝐵 𝐴 𝑃 𝐴

• Therefore

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃 𝐴

𝑃(𝐵)

This is known as “Bayes theorem” 
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Why is this useful?

• Question: how do we determine the model parameters, given the 
data?

• Answer: the posterior distribution:

𝑃 𝜃 𝑑,𝑀) =
𝑃 𝑑 𝜃,𝑀)𝑃(𝜃|𝑀)

𝑃(𝑑|𝑀)
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Calculating the posterior and evidence

• Calculating the posterior can be done a few ways
1. Analytically, if the maths is easy enough
2. Numerically on a grid of points (if in a small number of dimensions)
3. Using stochastic sampling (MCMC/Nested Sampling)

• The evidence is a normalizing factor

𝑃 𝑑 𝑀) = ∫ 𝑑𝜃 𝑃 𝑑 𝜃,𝑀) 𝑃(𝜃| 𝑀)

• Which can be discarded if only the model parameters are of interest
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How do we decide if the model is a good fit to 
the data?

• We can use conditional probability

𝑃 𝑀 𝑑 =
𝑃 𝑑 𝑀)𝑃(𝑀)

𝑃 𝑑

• If we can compute this, then it is exactly the probability of the model 
given the data

• Unfortunately, in practise computing 𝑃(𝑑) requires us to know every
model which can generate the data!
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How do we decide if the model is a good fit to 
the data?
• Instead, we can make comparative statement via “the odds”
• Let 𝑀𝑎 and 𝑀𝑏 be two models, then

𝑃 𝑀𝑎 𝑑)

𝑃(𝑀𝑏|𝑑)
=
𝑃 𝑑 𝑀𝑎)

𝑃 𝑑 𝑀𝑏)

𝑃(𝑀𝑎)

𝑃(𝑀𝑏)

𝐵𝐹 =
𝑃 𝑑 𝑀𝑎)

𝑃 𝑑 𝑀𝑏)
if 𝐵𝐹 > 1, model A is preferred

if 𝐵𝐹 < 1, model B is preferred
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The 2016 Vela glitch
• Continuous monitoring by the 26m Mount 

Pleasant observatory in Hobart Tasmania 
(Palfreyman et al. (2018))

• First pulse-to-pulse data taken during a glitch

• New insights about the behaviour of the 
magnetosphere during the glitch

• Here, we focus on the dynamics: 

What is happening to the rotation of the star 
during the glitch?
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https://ui.adsabs.harvard.edu/abs/2018Natur.556..219P/abstract


Model-agnostic frequency-evolution 

• Fit a constant-frequency 
model in a 200s sliding 
window

• Features are “smeared out” 
due to sliding window
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Inference 

• Using the time-of-arrival (TOA) data

• Model the frequency evolution

• Integrate to get phase, then invert to get the 

predicted TOA

• Use Bilby, Ashton et al. (2019), to perform 

parameter estimation and model selection
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git.ligo.org/lscsoft/bilby

https://ui.adsabs.harvard.edu/abs/2019ApJS..241...27A/abstract
https://git.ligo.org/lscsoft/bilby


Step-glitch model 

• The simplest model of a glitch

• Parameterise by the measureable glitch size Δ𝑓
and glitch time

𝑓 𝑡 = 𝑓0 +𝐻 𝑡 − 𝑡𝑔 Δ𝑓

• Posterior on the glitch size agrees with 
Palfreyman et al (2016):

Δ𝑓 ∼ 16.11 ± 0.04 𝜇Hz

• Time of the glitch consistent (to within 90% 
credible interval)

• Indicates we have handled the data consistently
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The glitch rise time
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Rise-time model 

• Parameterise by the measureable glitch size 
Δ𝑓 and rise time 𝜏𝑟

𝑓 𝑡 = 𝑓0 + 𝐻(𝑡 − 𝑡𝑔) Δ𝑓 + Δ𝑓𝑟𝑒
−
𝑡−𝑡𝑔
𝜏𝑟

Physics:

• Simple two-component model

• Coupling torque proportional to the lag 
between the crust and core
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Rise-time model results

• Fit and compare model with a rise time to a 
step-glitch model:

𝐵𝐹 = 10−1.7

• In favour of step-glitch: we cannot resolve the 
rise-time

• Upper limit on the rise time of ∼ 13s (90% 
confidence)

• Previous best upper limit was 30s (Dodson et al. 
(2007))

• Can use this to constrain the mutual friction 
coefficient, directly related to the superfluid 
vortex dynamics
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http://adsabs.harvard.edu/abs/2007Ap&SS.308..585D


The overshoot
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Overshoot model

• Already a number of models in the literature for relaxation in glitches 
on timescales of order hours or longer (see, Haskell & Melatos (2015))

• The dynamics here are happening on order of seconds-minutes

• A few plausible known mechanisms:
• Three-component model (Graber et al. (2018))

• Two-component model (Haskell et al. (2012), Antonelli et al. (2017)) 

• Ekman pumping (Van Eysden & Melatos (2015))
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http://adsabs.harvard.edu/abs/2015IJMPD..2430008H
http://adsabs.harvard.edu/abs/2018ApJ...865...23G
http://adsabs.harvard.edu/abs/2012MNRAS.420..658H
http://adsabs.harvard.edu/abs/2017MNRAS.464..721A
http://adsabs.harvard.edu/abs/2012JLTP..166..151V


Overshoot model: results
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• Compare rise-time + overshoot model 
with just rise-time

𝐵𝐹 = 102.1

• Overshoot model preferred!

• Decay time ∼ 1min

• Dodson et al. (2002) found a similar 
component with a similar timescale

--- raw frequency evolution
time-averaged

http://adsabs.harvard.edu/abs/2002ApJ...564L..85D


A precursor slowdown?
An “antiglitch”?
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Precursor slowdown

• Not predicted in the literature

• Substantially favoured over any 
of the other models tested

𝐵𝐹 > 102.5

• Magnitude ∼ 5 × 10−6 Hz
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--- raw frequency evolution
time-averaged



Physics of the preceding slowdown

• Model is very coarse with no physics: opportunity for better physics 
input

• While this may be the first confirmed observation of a slowdown 
prior to a glitch,  it is hinted at in Dodson et al (2002)
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http://adsabs.harvard.edu/abs/2002ApJ...564L..85D


Speculation

• Stochastic frequency noise oscillations 
are ∼ 10% of the glitch size

• Perhaps a glitch is “triggered” by a 
particularly large (and negative) noise 
event

• We can test this using “off-glitch” data
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Summary

• Lots of interesting dynamics to pull out of the 2016 Vela glitch

• Improved constraints on the rise time

• Strong support for an overshoot 

• Support for a pre-cursor slowdown, but lacking a physical model
• Corroborated by previous 2000 Vela glitch

• We speculate the slow-down may trigger the glitch

• The slow-down could be a large stochastic frequency noise event

• Or, something else entirely…

• Paper arXiv:1907.01124 accepted in Nature Astronomy
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https://arxiv.org/pdf/1907.01124.pdf

