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Introductory Notes

Outline

The Einstein Toolkit uses the Valencia Formulation of
conserved variables for evolving GRMHD.

In our current work, we only consider fluids without a
magnetic field (assume B i = 0).
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Introductory Notes

Equations of State

2 main types of EoS:
1 Analytic:

Polytrope: p(ρ) = κρΓ, ε(ρ) = κ
Γ−1

ρΓ−1

Ideal Gas (Gamma-Law): p(ρ, ε) = (Γ− 1)ρε

2 Tabulated:

1 parameter: p, ε(ρ) = Pp,Pε(ρ)
2 parameter: p, ε(ρ,T ) = Pp,Pε(ρ,T )
3 parameter: p, ε(ρ,T ,Ye) = Pp,Pε(ρ,T ,Ye)

Also possible to hybridise analytic and tabulated EoSs e.g.:

p(ρ, ε) = PT=0
p (ρ) + (Γth − 1)ρεth(ρ, ε)

εth(ρ, ε) = ε− PT=0
ε (ρ)

N.B. ε = (E/mn)− 1
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Conserved Variables

The Conserved Variables

The conserved variables are:

D - Density
Si - Momentum
τ - Internal energy

We also use the conserved electron fraction DYe .

Evolved variables are multiplied by
√
γ.
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Conserved Variables

Expression of Conserved Variables

Conservative
Variable

Evolved
Quantity

Primitive
Expression

D

Si

τ

DYe

D̃ =
√
γD

S̃i =
√
γSi

τ̃ =
√
γτ

D̃Ye =
√
γDYe

D = ρW

Si = ρhW 2vi

τ = ρhW 2 − p − D

DYe = ρWYe

Table of conserved variables, where γ is the determinant of the spacial metric, rho is
the rest mass density of the fluid, W is the local lorentz factor, h is the specific
enthalpy density, vi is the fluid 3-velocity, p is the (isotropic) fluid pressure, and Ye is
the electron fraction. h, p are calculated from the equation of state of the fluid.

Peter Hammond University of Southampton

Con2Prim



Introduction Recovery Schemes Summary References

Conserved Variables

The Problem

Conserved variables are easily expressed in terms of the
primitive variables.

In general, no analytic expression of the primitive variables in
terms of the conserved variables is possible.

In order to recover the primitive variables, one (or more) of a
number of root finding algorithms is used.

This is a computationally expensive process; in some cases
primitive recovery can take ∼ 40% of the total runtime of a
simulation.
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Conserved Variables

Motivation

With the high cost of performing the primitive reconstruction,
why not just evolve the conserved variables?

Two main reasons:

The primitive variables are required to construct Tµν , used in
both the fluid and spacetime evolution
v i is required for the flux terms in the fluid evolution

We are stuck with having to perform the primitive
reconstruction; it is the price we must pay for using the
Valencia formulation.
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Overview of Recovery Schemes

Overview

Need to use some method of recovering the 6 primitive
variables p = {ρ, v i , {T , ε},Ye} from the 6 conserved
variables U = {D,Si , τ,DYe}.
It is trivial to obtain Ye , so the problem is essentially 5
dimensional.

We will cover 3 different methods for performing this:
1 1D Newton-Raphson (NR) in p as in GRHydro.
2 2D NR in W ,T .
3 Bracketed root finding in hW .
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Overview of Recovery Schemes

Method Classification

Methods can be grouped as to whether the solution is
bounded or unbounded.

NR based methods are unbounded

Faster convergence
Less stable

The bracketed root method is bounded

Slower
More robust

Conventional approach:
1 Try unbounded method
2 If that fails, use bounded method
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Unbounded Schemes

1D NR in p

This is the method shipped with the Einstein Toolkit in
GRHydro.

Used mainly for analytic EoSs.

Quite difficult to use with tabulated EoSs.

We want to find a root of the equation

f (p) = p − p (ρ (U , p) , ε (U , p)) = 0,

where p is the current pressure guess, p(ρ, ε) is the EoS of the
fluid, and ρ, ε (U , p) are the density and specific internal
energy calculated from p and the conserved variables.
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Unbounded Schemes

1D NR in p

The method is based on making iterative guesses for p which
are improved upon by using NR on f (p).

The derivative df /dp is needed:

df

dp
= 1− ∂ρ

∂p

∂p

∂ρ

∣∣∣∣
ε

− ∂ε

∂p

∂p

∂ε

∣∣∣∣
ρ

.

The derivatives w.r.t. p can be calculated analytically from
the conserved variables.

The derivatives of p are easily calculated from the EoS if it is
analytic, but can become problematic if the EoS is tabular in
T .
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Unbounded Schemes

1D NR in p

Once the root has been found to the specified precision, the
values of ρ, ε, p can be used to calculate the remaining
primitives.

If one wishes to use T instead of ε as an independant variable
in the EoS, an inversion step will be needed to obtain this.

Performing this inversion step on tabulated EoSs can be a
computationally expensive task due to repeated EoS calls.
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Unbounded Schemes

1D NR in p

Can also bracket root of f (p) using conserved variables and
assumptions of physicality.

Use bisection to improve the pressure guess.

Can lead to failure of the T inversion step required for a
tabulated EoS, so different methods are needed for a more
robust recovery scheme.
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Unbounded Schemes

2D NR in W ,T

For EoSs based on T , it makes sense to use a scheme that
solves for this directly.

This removes the need for an expensive T inversion stage ⇒
make recovery method faster and more robust.

Currently working on the implementation of a 2D NR method
derived in [Siegel et al., 2018], based on work by
[Antón et al., 2006].
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Unbounded Schemes

2D NR in W ,T

The roots to be solved in this method are

f1(W ,T ,U) = [τ + D − z + p]W 2,

f2(W ,T ,U) =
[
z2 − S2

]
W 2 − z2,

where z = ρhW 2 and p are calculated throught the EoS using
ρ = D/W and Ye = DYe/D.

In order to perform NR, we need the Jacobian of this system.
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Unbounded Schemes

2D NR in W ,T

The four derivatives required to write down the Jacobain are:

∂f1
∂W

= 2W [τ + D − z + p] + W 2

[
∂p

∂W
− ∂z

∂W

]
∂f1
∂T

= W 2

[
∂p

∂T
− ∂z

∂T

]
∂f2
∂W

= 2W
[
z2 − S2

]
+ 2z

[
W 2 − 1

] ∂z
∂W

∂f2
∂T

= 2z
[
W 2 − 1

] ∂z
∂T
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Unbounded Schemes

2D NR in W ,T

The derivatives of z and the derivatives w.r.t. W can be
written in terms of EoS derivatives:

∂p

∂W
= − D

W 2

∂p

∂ρ

∂z

∂W
= D

[
1 + ε− D

W

∂ε

∂ρ

]
+ 2pW − D

∂p

∂ρ

∂z

∂T
= DW

∂ε

∂T
+ W 2 ∂p

∂T

These derivatives are more stable for an EoS table given in
terms of ρ,T ,Ye than those in the first method.

Peter Hammond University of Southampton

Con2Prim



Introduction Recovery Schemes Summary References

Unbounded Schemes

2D NR in W ,T

This method is both faster and better behaved than the
previous method for a tabulated EoS.

NR convergence may still stall or fail; we want a backup
method should this happen.

Insted of the pressure based bisection method mentioned
previously, we choose a variation of another method presented
in [Siegel et al., 2018] that brackets hW .
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Bounded Schemes

Bracketed Root Finding

Instead of using an unbounded method such as NR, some
methods find a root in a quantity that is known to be between
two values.

By doing this we can avoid derivatives of the EoS, greatly
improving stability for tabulated EoSs.

We will cover one such method that solves for the value of
hW .
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Bounded Schemes

Bracketed Root Finding in hW

We will be solving the root of the equation

f (x) = x − ĥŴ

where x = hW is our unknown, and ˆ denotes that the
quantity is calculated using U , the EoS, and the current guess
for x .

It can be shown that the root of f (x) will satisfy the condition

1 +
τ

D
≤ x ≤ 2

(
1 +

τ

D

)
.

We can then use any of a number of bracketed root finding
methods such as bisection, Dekker’s method, Brent’s method,
etc.
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Bounded Schemes

Bracketed Root Finding in hW

ĥ, Ŵ are calculated throught the following:

Ŵ−2 = 1− S2

x2D2
,

ε̂ = −1 +
x

Ŵ

[
1− Ŵ 2

]
+ Ŵ

[
1 +

τ

D

]
.

The EoS is then inverted to find T̂ given ρ̂ = D/Ŵ , ε̂, and
Ye = DYe/D.

The EoS is then used to find p̂ using ρ̂, T̂ , and Ye .

Finally, ĥ is given by ĥ = 1 + ε̂+ p̂/ρ̂.
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Bounded Schemes

Bracketed Root Finding in hW

There are, however, some caveats that should be mentioned:

This method (as with any method that does not solve for T
directly) requires a T inversion step for tabulated EoSs.
It is also possible that a given x does not correspond to a
physical region of the EoS (i.e. for a given x , T inversion may
be impossible).

While the first of these means out root finding will be slow,
the second can be fatal to the method.

It is this second issue that our extended method is designed to
circumvent.
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Bounded Schemes

Bracketed Root Finding in hW

If one of the initial guesses for the bracket of x is unphysical,
the method cannot proceed, so we propose the following
extension, should this be the case.

Assume f (x) was calculated successfully at the bottom end of
the bracket (if it was the other root that was successful, the
directions in the method are swapped).

We begin by defining the following:

xmax is the lowest position where the root failed
xmin is the highest position where the root takes the same sign
as the successful root

For the first iteration, xmin = 1 + τ/D and xmax = 2 + 2τ/D.
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Bounded Schemes

Bracketed Root Finding in hW

To obtain a bracket on x , we iterate the following procedure:
1 Calculate xtemp = (xmax + xmin)/2
2 Calculate f (xtemp)

If f (xtemp) could not be calculated, we set xmax = xtemp and
loop.
If f (xmin)× f (xtemp) ≤ 0 then we can use these values as our
bracket and proceed with the root finding.
If If f (xmin)× f (xtemp) > 0 then we set xmin = xtemp and loop.

This method can also be extended to the case that neither of
the initial values could be used successfully by performing a
brute force search in the initial bracket, then attempting to
find a bracket using the above method on either side of the
found value.
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Conclusions

Overview

Performing primitive recovery is a necessary consequence of
using the Valencia formulation.

In the General Relativisitic Hydrodynamics case, it is
essentially a 5D problem.

It can be a computationally expensive part of a simulation.

Different methods are more suited to different types of EoS.
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Conclusions

Method comparison

We have studied 3 different methods for performing primitive
recovery, with the following pros and cons:
Method Pros Cons

1D NR in p
Good for analytic EoSs

Easy to bracket if NR fails
Poor derivatives for tabulated EoSs

T inversion required for tabulated EoSs

2D NR in W ,T
Derivatives are along table axes

T is solved for directly
No bracket if NR fails

Bracketed in hW
Bracketed methods guarantee convergence

No derivatives needed
T inversion required for tabulated EoSs

Can be very slow if brackets must be modified

Comparison of pros and cons for different primitive recovery schemes.

As with [Siegel et al., 2018], we propose a combinantion of
methods be used to perform primitive recovery, namely 2D
NR in W ,T with bracketed root finding in hW as a fallback.
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