
 
History of AUV’s Hull shape 
 
•   Typically, hull shape is based on a body of revolution with a rounded bow, 
tapered stern with/without a parallel midbody. The recognition of the most 
important factor is to have low drag hull. For over 50 years, the best shape of 
AUV’s hull has never been conclusive.   
•   The schematic diagram of the study of the body of revolution applied to 
vehicle’s hull shape shows in Figure 3. Only one person applied mathematical 
formulation into the body shape was Parsons (1974). 
•   Without these mathematical formulations, shaping of body of revolution is 
usually followed an empirical procedure i.e. the Dolphin, Shark, Myring model. 
Figure 4: Some body of revolution shapes and results of drag on the body.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: History of the study of AUV’s hull shape  
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Some body of revolution shapes and the results of transition point (xtran) 
and drag cofficient (CDA) at Re = 5×107   picture from Zedan (1978)                                          

 

•  For the past two decades, most complex shapes of AUV’s hull efficiently designs 
by employing trial and error techniques or the designer’s experience.  
•  The computer CFD software simulation is the main design tool.  
•  Recently, the shape of fish or related species suggested as an improved AUVs 
hull-form because their flexible and streamline propelled body provides high 
performances. However, the conic formulation cannot provide some curves i.e. a 
cusped-end and the line’s continuity, the other geometric curves’ formulation of 
Granville (1969) can extend this application. 

Motivation 
 

• To use a fleet of autonomous underwater vehicles (AUVs) (Figure 1.) travelling 
in a long-range underwater exploration, especially for deep sea mission.  

• The energy is a key issue. Figure 2. draws a schematic diagram of the energy 
consumed by an AUV, lacking of inexpensive and effective energy sources is the 
main factor in limiting range and duration of the vehicle. Whilst, one of the 
constraints is the hull shape of a vehicle.  

• Thus a minimising drag force around the body shape of an AUV will extensively 
concern various normal shape hulls of AUVs, i.e. torpedo, laminar flow body, 
including various biologically inspired shapes; fish-like body.  

•  Another prospect is a fleet of AUVs, the idea is the follower AUVs moving 
through a wake should consume less energy than that of the leading AUV. Then 
the follower AUVs can carry more payload. 

 

Aims 
 

• To study current designs and optimisation methodology of AUV shapes.  

• To investigate drag force around the body using Computational Fluid Dynamic 
(CFD) methods.  

• To study and describe the formation of a fleet of AUVs and optimal position 
and distance arrangements amongst AUVs in the fleet.  

•  To determine the optimal shapes of a leader and following AUVs.  

•  The demonstrations of an optimal fleet of AUVs will be given by using CFD 
simulation. 

 

 

 

 
 
 
 
 
 
 
               Figure 1: Fleet of AUVs                               Figure 2: schematic diagram of    
                                                                                      the energy consumed by an AUVs 
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Further work 
•   To specify the characteristic of the body shape for the optimisation strategy. 

•   To determine the effective method for calculating laminar/turbulent boundary 

layer thickness and for transition prediction. 

•   To study of how different surface velocity distributions effect the drag, this may 

lead to some information of velocity distribution and the body shape parameters. 

•   To determine and validate a suitable drag calculation and programming. 

•   To determine and validate a suitable optimisation strategy and programming. 

•   To design the optimal shapes of leading AUV and follower AUV. 
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