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A brief overview

● Neutron stars are complex objects! 
● In order to understand the dynamics of neutron stars, we need….

- Cold/Hot Equation of state 
- Multi-fluid dynamics 
- Multi-layer structure 
- Viscosity 
- Elasticity 
- Magnetic field  
- General relativity 
- Nonlinear hydrodynamics
- ….. 

Our common ambitious goal:
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My lecture plan:
- Cold/Hot Equation of state 
- Multi-fluid dynamics 
- Multi-layer structure 
- Viscosity 
- Elasticity 
- Magnetic field  
- General relativity 
- Nonlinear hydrodynamics 

- Newtonian gravity
- Linearized hydrodynamics (Oscillations, tidal deformations)

Learning Outcomes:
● Understand the basic concepts of Newtonian stellar perturbations 
● Be able to derive the perturbation equations for oscillations and tidal

deformation in the simplest settings and be able to extend to more
general situations

● Have an idea on the concepts on universal relations and their potential
applications
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Part I: Oscillations
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Newtonian Fluid Equations

We consider Newtonian ideal fluid without viscostiy, solid components,
heat flow etc.  The system is governed by 

∂ρ

∂ t
+∇⋅(ρ v⃗)=0Mass conservation: 

 

ρ
d v⃗
dt
=−∇ P−ρ∇ΦEuler’s equation:

Poisson’s equation: ∇
2
Φ=4 πGρ

ρ = mass density 
v = fluid velocity 
P = pressure
Φ = gravitational potential

d /dt≡∂/∂ t+ v⃗⋅∇

The system is completed by providing a one-parameter equation of 
state (EOS):

P=P(ρ)
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Summary of basic concepts for perturbations: 

* Eulerian perturbation: 

* Lagrangian perturbation:  

δQ≡Q(t , x⃗)−Q0(t , x⃗)

[Compare Q with its unperturbed value Q
0
 at the same position]

ΔQ≡Q(t , x⃗+ξ⃗)−Q0(t , x⃗)

[Compare Q at a given fluid element in the perturbed and unperturbed states]

ξ: Lagrangian displacement

* Relation between the two perturbations: Δ=δ+ ξ⃗⋅∇

By definition, the Lagrangian perturbation of fluid velocity is

Δ v⃗= d
dt

( x⃗+ξ⃗ )−d x⃗
dt
=

d ξ⃗
dt
=
∂ ξ⃗

∂ t
+ v⃗⋅∇ ξ⃗

If the unperturbed background is static (v
0
 = 0), to first order accuracy,

we have 
Δ v⃗=δ v⃗=∂ ξ⃗ /∂ t
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Perturbation Fluid Equations

We assume that the unperturbed solution is a nonrotating static star 
which satisfies

and the relevant physical variables are perturbed according to: 

ρ=ρ0+δρ    ,   v⃗=δ v⃗=∂ ξ⃗ /∂ t    ,   P=P0+δP    ,   Φ=Φ0+δΦ

Linearizing the original system of equations, we obtain (to first order in
perturbed quantities): 

δρ+∇⋅(ρ0 ξ⃗)=0

∂
2
ξ⃗

∂ t2 =
δρ

ρ0
2 ∇ P0−

1
ρ0
∇(δP)−∇ (δΦ)

∇
2
(δΦ)=4 πG δρ

∇ P0=−ρ0∇Φ0    ,   ∇2
Φ0=4 πGρ0    ,   v⃗0=0    ,   P0=P0(ρ0)

Homework 
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The EOS for the unperturbed star is governed by

In general, the EOS for the perturbed fluid can be different from the 
unperturbed star. Assuming no heat flow or composition change in
the perturbation, we can relate the Lagrangian perturbations of density 
and pressure by defining an adiabatic index Γ

1
:    

P0=P0(ρ0)

Δ P
P
=Γ1

Δρ
ρ

Using the relation between Δ and δ, we can rewrite the equation in 
terms of Eulerian perturbations:

δρ
ρ =

1
Γ1

δP
P
− A⃗⋅⃗ξ

where A⃗≡
∇ρ
ρ −

∇ P
Γ1 P

[Note: We have dropped the subscript “0” for unperturbed solutions]

(adiabatic condition)
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Side note for A:

The magnitude of A is called the Schwarzschild discriminant. For 
a spherical background star, we only have the radial component:

A=(d lnρ
dr

−
1
Γ1

d ln P
dr )

If the background star is described by a polytropic EOS (P = kρΓ), 
we have

A=( 1
Γ
−

1
Γ1)

d ln P
dr

In general, A ≠ 0 and its sign is used to determine the convective
stability of fluid motion. If the perturbed and unperturbed stars are 
described by the same EOS (Γ

1
 = Γ), we have A = 0.
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∂
2
ξ⃗

∂ t2
=−∇ ( δP

ρ +δΦ)+ A⃗
Γ1 P
ρ (∇⋅⃗ξ )

Making use of the expressions of δρ and δP that we have obtained, 
we can now rewrite the perturbed Euler equation in the following form 
that is more suitable for our later discussion:

Note that the perturbed mass conservation equation can be written as: 

δρ+ ξ⃗⋅∇ρ=−ρ∇⋅⃗ξ 

Δ P
P
=Γ1

Δρ
ρ

=> 

=Δρ

δP=− ξ⃗⋅∇ P−Γ1 P∇⋅⃗ξ

Homework 
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A brief summary: 

δρ+∇⋅(ρ ξ⃗)=0

∂
2
ξ⃗

∂ t2
=−∇ ( δP

ρ +δΦ)+ A⃗
Γ1 P
ρ (∇⋅⃗ξ )

∇
2
(δΦ)=4 πG δρ

where we have defined 
Δ P
P
≡Γ1

Δρ
ρ    ,   A⃗≡

∇ρ
ρ −

∇ P
Γ1 P

   The Eulerian perturbations δρ and δP are calculated by

δP=− ξ⃗⋅∇ P−Γ1 P∇⋅⃗ξ

The (adiabatic) perturbation equations for a nonrotating static 
background star are given by

δρ
ρ =

1
Γ1

δP
P
− A⃗⋅⃗ξ
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Vector Spherical Harmonics

Before moving on, let us introduce the concept of vector spherical harmonics 
which we shall need in order to solve the set of fluid perturbation equations. 
But let us first recall how to apply the scalar spherical harmonics Y

lm 
in solving 

PDE like
∇

2
Φ(r ,θ ,ϕ)=G(r ,θ ,ϕ)

Step 1: Φ(r ,θ ,φ)=∑
lm

f lm(r)Y lm(θ ,φ)    ,    G(r ,θ ,φ)=∑
lm

glm(r)Y lm(θ ,φ)

A given source function

Step 2: Substitute into the PDE and matching coefficients of Y
lm

: 

1

r2

d
dr (r

2 d f lm

dr )− l(l+1)

r2
f lm(r)=glm(r)

where we have used r2
∇

2Y lm=−l(l+1)Y lm

Important message: The angular part is canceled and we only need
                                 to solve ODE for the radial functions!
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Let us now consider the following PDE with a vector field:

∇⋅E⃗=ρ(r ,θ ,ϕ)

A naive (but not helpful) approach:  Expand the vector components in Y
lm

E⃗(r ,θ ,ϕ)=Er r̂+Eθ
θ̂+Eϕ

ϕ̂

                =(∑
lm

E lm
r
(r)Y lm) r̂+(∑

lm

Elm
θ
(r)Y lm)θ̂+(∑

lm

Elm
ϕ
(r)Y lm) ϕ̂

The scalar function is also expanded in Y
lm

:

  

ρ(r ,θ ,ϕ)=∑
lm

ρlm(r)Y lm(θ ,φ)

Substitute the expansions into the PDE as before, you will see that the resulting
equation would involve Y

lm
 and its angular derivatives, and the angular part 

cannot be canceled out. The radial parts cannot be separated in the process.

Homework 
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We need something better and let us start off with a scalar field and try to 
construct vectors out of it:

f (r ,θ ,ϕ)=∑
lm

f lm(r )Y lm(θ ,φ)

The gradient of f seems to be a natural choice:

∇ f (r ,θ ,ϕ)=∑
lm
[ df lm(r)

dr
Y lm r̂+ f lm(r )∇ Y lm]

angular part

Let us define two dimensionless vectors: 

Y⃗ lm(θ ,ϕ)≡Y lm r̂    ,   Y⃗ lm
(p)
(θ ,ϕ)≡r∇ Y lm

Y⃗ lm
(a)
(θ ,ϕ)≡r̂×Y⃗ lm

( p)
(θ ,ϕ)= r⃗×∇Y lm

  We can also construct another vector: 

Note: The three vectors as defined are orthogonal
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{Y⃗ lm , Y⃗ lm
(p) , Y⃗ lm

(a)
}

We have constructed 3 vector spherical harmonics:

Claim: They form a complete set and we can expand any vector field V as

V⃗ (r ,θ ,ϕ)=∑
lm

[V lm
r
(r)Y⃗ lm+V lm

( p)
(r )Y⃗ lm

( p)
+V lm

(a)
(r )Y⃗ lm

(a)]

                =∑
lm

[V lm
r
(r)Y lm r̂+r V lm

(p)
(r )∇ Y lm+V lm

(a)
(r) r⃗×∇ Y lm ]

This decomposition can be divided into 2 classes according to how they behave 
under parity transformation:

Y lm→(−1)l Y lm

V⃗ (r ,θ ,ϕ)=∑
lm

[V lm
r
(r)Y lm r̂+r V lm

(p)
(r)∇Y lm+V lm

(a)
(r) r⃗×∇ Y lm ]

This part has the same parity as Y
lm

and is said to have even parity:  

This part has opposite parity
and is said to have odd parity: 

Under parity transformation:

(−1)l (−1)l+1
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Some useful relations:

Y⃗ lm(θ ,ϕ)≡Y lm r̂    ,   Y⃗ lm
( p)
(θ ,ϕ)≡r∇ Y lm    ,   Y⃗ lm

(a)
(θ ,ϕ)= r⃗×∇ Y lm

∇⋅(F (r)Y⃗ lm )=
1

r2

d
dr

(r2 F (r))Y lm

∇⋅(F (r)Y⃗ lm
(p))=−

l (l+1)
r

F(r)Y lm

∇⋅(F (r)Y⃗ lm
(a))=0

∇×(F (r)Y⃗ lm )=−
F (r)

r
Y⃗ lm
(a)

∇×(F(r)Y⃗ lm
( p))=

1
r

d
dr

(r F (r)) Y⃗ lm
(a)

∇×(F(r)Y⃗ lm
(a))=−

l(l+1)
r

F (r)Y⃗ lm−
1
r

d
dr

(r F (r)) Y⃗ lm
(p)

∇ (F (r)Y lm )=
d
dr

(F (r)) Y⃗ lm+
F (r)

r
Y⃗ lm
( p)

∇
2
(F (r)Y lm )=[ 1

r2

d
dr (r

2 dF
dr )−

l(l+1)

r2 F (r)]Y lm
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Example: 
∇⋅E⃗=ρ(r ,θ ,ϕ)

We now decompose the vector field E in vector spherical harmonics and the
source function in Y

lm
:

A given source function

E⃗(r ,θ ,ϕ)=∑
lm

[Elm
r
(r)Y⃗ lm+Elm

(p)
(r)Y⃗ lm

(p)
+E lm

(a)
(r) Y⃗ lm

(a)]

ρ(r ,θ ,ϕ)=∑
lm
ρlm(r)Y lm(θ ,φ)

Using the relations given on the last page: 

∇⋅E⃗=∑
lm
[ 1

r2

d
dr
(r2 Elm

r
(r))−

l (l+1)
r

Elm
(p)]Y lm

The angular dependence in the PDE can be canceled and we are left with

1

r2

d
dr

(r2 Elm
r
(r))−

l(l+1)
r

Elm
( p)
(r)=ρlm(r)

To solve the problem, we need to impose an extra equation such as 

∇×E⃗=0 Homework 
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Oscillation Equations

Assume that the Lagrangian displacement behaves as ξ⃗∼eiω t

The set of perturbation equations become

δρ+∇⋅(ρ ξ⃗)=0 ∇
2
(δΦ)=4 πG δρ

Let us focus on a given pair of (l,m) and expand the Lagrangian displacement 
in vector spherical harmonics:

ξ⃗≡U (r)Y lm r̂+r V (r )∇ Y lm+W (r) r⃗×∇Y lm

ξ⃗
(p) ξ⃗

(a)

Polar modes Axial modes

−ω
2
ξ⃗=−∇ ( δP

ρ +δΦ)+ A⃗
Γ1 P
ρ (∇⋅⃗ξ )

δρ≡δ~ρ (r)Y lm  , δP≡δ~P(r)Y lm  , δΦ≡δ~Φ(r)Y lm

The scalar fields are expanded in Y
lm

:  
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Axial modes:

Let us consider axial perturbations so that ξ⃗≡ξ⃗(a)=W (r)Y⃗ lm
(a)

* Perturbed mass conservation equation:

δ~ρ Y lm+∇⋅(ρ(r)W (r)Y⃗ lm
(a))=0

(Y⃗ lm
(a)
≡ r⃗×∇ Y lm)

= 0

δ~ρ(r)=0=> 

∇⋅⃗ξ
(a)
=0               This class of modes satisfies

* Eulerian perturbation of P:  δP=−ξ⃗(a)⋅∇ P−Γ1 P∇⋅⃗ξ(a)

      =−W (r)P ' (r)Y⃗ lm
(a)
⋅r̂

      =0

Together with the perturbed Euler’s equation, it can be shown that

δρ=δP=δΦ=ω=0

    =>  Axial modes do not exist for Newtonian non-rotating star. 

   [But these modes do exist for stars with solid components or rotation]

Homework 
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Our main interest is the polar modes described by 

ξ⃗≡ξ⃗
(p)
≡U (r )Y⃗ lm+V (r)Y⃗ lm

( p)

Polar modes:

=> ∇⋅⃗ξ
( p)
=[ 1

r2

d
dr
(r2U (r))−

l(l+1)
r

V (r)]Y lm≡α(r)Y lm

Consider the perturbed Euler’s equation:

−ω
2
ξ⃗=−∇ ( δP

ρ +δΦ)+ A⃗
Γ1 P
ρ (∇⋅⃗ξ )

Expanding the perturbed scalar fields as before:                                        etc δP≡δ~P(r)Y lm(θ ,ϕ)

−ω
2
ξ⃗
(p)
=[− d

dr (
δ
~P
ρ +δ

~
Φ)+α A

Γ1 P
ρ ]Y⃗ lm−

1
r (
δ
~P
ρ +δ

~
Φ)Y⃗ lm

( p)

Y⃗ lm≡Y lm r̂

Y⃗ lm
(p)≡r ∇ Y lm

=>

A⃗=A r̂[Note: For spherical unperturbed background               ]

Homework 
[Recall: ρ, P, Φ are spherical background solutions depending only on r]



  21

Comparing the coefficients on both sides, we obtain

−ω
2U (r)=−

d
dr (

δ~ρ
ρ +δ

~
Φ)+α A

Γ1 P
ρ

ω
2V (r)=−

1
r (
δ~ρ
ρ +δ

~
Φ)

The density perturbation can be eliminated by the perturbed mass
conservation equation:

δρ=−∇ρ⋅⃗ξ
( p)
−ρ∇⋅⃗ξ

( p) δ~ρ(r)=−U
dρ
dr
−ρα=> ∇⋅⃗ξ

( p)
≡α(r)Y lm

The pressure perturbation can be eliminated by the following relation we 
obtained before:

δP=− ξ⃗⋅∇ P−Γ1 P∇⋅⃗ξ δ
~P(r)=−U

dP
dr
−αΓ1 P=>

The perturbed Poisson’s equation can be handled easily:

∇
2
(δ
~
Φ(r)Y lm)=4 πG δ~ρ(r)Y lm

1

r2

d
dr (r

2 d~Φ
dr )−

l(l+1)

r2 δ
~
Φ=−4 πG(U dρ

dr
+ρα)

Recall:

=>
Homework 
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Summary: Equations for polar oscillation modes

ξ⃗
( p)
≡U (r) Y⃗ lm+V (r)Y⃗ lm

( p)
=U (r)Y lm r̂+r V (r)∇ Y lm

ω
2U=

d χ
dr
+α A

Γ1 P
ρ

ω
2V=

χ

r

1

r2

d
dr (r

2 d~Φ
dr )−

l (l+1)

r2
δ
~
Φ=−4 πG(U dρ

dr
+ρα)

α≡
1

r2

d
dr
(r2U )−

l (l+1)
r

V

χ≡
−1
ρ

dP
dr

U−
Γ1 P
ρ α+δ

~
Φ

The above equations have to been solved with appropriate boundary conditions 
at the center and surface. [see McDermott et al. (1988) and Cox (1980)] 
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Part II: Tidal deformation
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Tidal Deformation

Star A

Star B
r AB

(M A , R A)
(M B , RB)

Circular orbital period: T orbit∼√ r AB
3

G(M A+M B)

Internal dynamical timescale of A: T int∼√ RA
3

G M A

(
T orbit

T int
)∼(

r AB

RA
)

3

If r
AB

 >> R
A
, then the orbital timescale is much longer than the internal

dynamical timescale of A, and so the gravitational effects due to B can be
considered as “static” as viewed by A. 
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Assume that the unperturbed state of star A is non-rotating (spherical), the
perturbed fluid inside A is described by

0≡
∂

2
ξ⃗

∂ t2=
δρ

ρ
2 ∇ P−

1
ρ ∇(δP)−∇(δΦ)

The perturbation due to the
companion B is time-independent
(static tides) 

(Recall: variables without δ are 
             background solutions)

The perturbed potential has 2 contributions: 

δΦ=δΦA+δΦ
(ext)

“Self” part: 
due to the deformation of A 
(away from spherical background)

“External” part:
due to the companion star B

characterized by mass
multipoles of A: Q

lm

Q
lm

 is created by the external tidal

field moments ε
lm

Q lm∼εlm
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The gravitational field outside star A (r > R
A
), but far away from B, is given by

Φtotal=ΦA
(0)
+δΦA+δΦ

(ext)

−
GM A

r
(spherical background monopole solution)

δΦA=−G∑
l=2

∞

∑
m=−l

l
4 π

2 l+1

Qlm

rl+1 Y lm

The “self” part is given by the standard multipole expansion:

[The l=1 term vanishes by choosing the origin at the center of mass of A]

Qlm≡∫
A

r̄ l+2
ρlm(t , r̄ )d r̄

where the mass multipole moments are defined by:  
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As we are interested in the neighborhood of star A, we can Taylor expand
the “external” field (generated by B) about star A’s center of mass:

δΦ
(ext)
(t , x⃗)=δΦ(ext)

(t ,0)+x j
∂ jδΦ

(ext)
(t ,0)+1

2
x j xk

∂ j∂k δΦ
(ext)
(t ,0)+.. .

This term is canceled by a corresponding term due to the 
acceleration of A’s center of mass [see Poisson & Will (2014)]

Constant
(no contribution)

It is standard to express the tidal field using multi-index notation: 

δΦA=∑
l=2

1
l!
εL xL xL

≡x
i
1 x

i
2 ... x

i
l

∂L≡∂i
1
∂i

2
....∂i

l

εL≡∂LδΦ
(ext)
(t ,0)

where the tidal moment ε
L
 is a symmetric tracefree (STF) tensor:

** symmetric and tracefree with respect to any pair of indices
[Note: ε

L
 is tracefree because δΦ(ext) satisfies the Laplace’s equation]
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The tidal field ε
L
 is defined naturally as a STF tensor, while the fluid 

perturbations inside star A are expanded in Y
lm

. In order to relate ε
L
 to 

the fluid perturbations, we expand ε
L
 in STF tensor             which is defined 

by                
Y lm(θ ,ϕ)=Ŷ lm

k1 k2 ...k l nk1
nk2

...nk l

Ŷ lm
k1 k2 ...k l

(see Appendix for more details)

Although initially defined as STF tensor, the tidal field can be re-expressed 
in Y

lm
 expansion via the above connection. 

Claim: The total perturbed field is 

δΦ=−G∑
l=2

∞

∑
m=−l

l
4 π

2 l+1

Qlm

rl+1 Y lm+∑
l=2

∞

∑
m=−l

l
4 π

(2 l+1)!!
εlm r l Y lm

      ≡∑
l=2

∞

∑
m=−l

l

δ
~
Φlm(r)Y lm

[We follow the normalization used in Poisson & Will (2014), but we use a different
sign convention for the potential. ]

ni≡xi /r



  29

The mass multipole moments of AA is a linear response of the tidal field, it is 
conventional to define the so-called tidal deformability λ

l
: 

G Qlm=−λ lεlm

For a given pair of (l, m), we relabel: H (r )≡δ~Φlm(r )

Outside star A (r > R
A
), and making use of the definition of λ

l
, we have

H (out )(r)=
4 π

2 l+1
εlm [ λl

r l+1+
r l

(2 l−1)!! ]
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Static Tides

When the separation between the two stars is much larger than the radius 
of star A (r

AB
 >> R

A
), the fluid perturbation inside A is determined by the set 

of polar oscillation equations in the zero-frequency limit (ω = 0): 

ω
2U=0=

d χ
dr
+α A

Γ1 P
ρ

ω
2V=0=

χ

r

1
r2

d
dr (r

2 dH
dr )−

l (l+1)

r2 H=−4 πG(U
dρ
dr
+ρα)

α≡
1

r2

d
dr
(r2U )−

l (l+1)
r

V χ≡
−1
ρ

dP
dr

U−
Γ1 P
ρ α+H

=> α=χ=0
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From the definition of    : χ U=(1ρ dP
dr )

−1

H

The perturbed Poisson’s equation becomes:

1

r2

d
dr (r

2 dH
dr )−

l(l+1)

r2
H=−4 πG ( 1

ρ
dP
dρ )

−1

H

This is the main Newtonian equation for determining the tidal deformation of 
a non-rotating (spherical) star in the static-tide limit. 
[Regularity condition at r = 0: H(r) ~ rl ]

In principle, the tidal deformation is determined by integrating the equation 
for H(r) inside the star and then match the solution at the star surface H(R) to 
the exterior solution:

H (out )(r)=
4 π

2 l+1
εlm [ λl

r l+1+
r l

(2 l−1)!! ]
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To extract λ
l
, we consider the log derivative: y (r)≡

r H ' (r)
H (r)

r H out ' (r)=
4 π

2 l+1
εlm [−(l+1)

r l+1
λl+

l
(2 l−1)!!

rl]

λ l≡
2

(2 l−1)!!
k l R

2 l+1

This motivates the definition of the (dimensionless) Love number k
l 
: 

For the exterior solution:

This exterior solution of y at r = R is then given by: yout(R)=
−2(l+1)k l+l

2k l+1

Once the interior solution has been solved y
in
(r), we can match the two 

solutions at the surface to determine the Love number k
l
:

y in(R)= yout (R) k l=
l− y in(R)

2 [ y in(R)+l+1 ]
=>
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Uniform density model:

ρ(r)≡ρ0Θ(R−r)

The background density and pressure profiles are 

1
r2

d
dr (r

2 dH
dr )−

l (l+1)

r2 H=−4 πG(ρ
dρ
dP )HMaster equation:

P(r)=
2πGρ0

2

3
(R2

−r2
)

Note: 
dρ
dP

3
4 πGρ0

1
r
δ(R−r) H’(r) and hence y(r) has a jump 

at the surface
=> 

The boundary condition at r = R needs to be considered carefully! 

Outline of the solution:
Step 1: Show that the interior solution satisfies y in(r)=l

Step 2: We cannot simply match y
out

(R) = y
in
(R) = l because of the delta

            function. Instead, show that the appropriate matching condition is 

yout(R)= y in(R)−3

Step 3: Solve for the Love number:  
Homework 

k l=3 /4(l−1)
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Part III: Universal Relations

The following results are done in the framework of
general relativity
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Universal Relations

● It is well known that many physical quantities of neutron stars depend 
sensitively on EOS (Good for constraining EOS)

● It is also known that there exist various approximately EOS-insensitive 
relations connecting different quantities of neutron stars. We simply call 
them universal relations in this lecture
[Definition? EOS-insensitive to ~O(1%) level?]
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Universal relation between 
x and y (in GR)

● If one of the quantities can be measured, the other one can be 
   inferred from the relation  
● If both quantities can be measured together, then we can test
   for GR…..or may be some exotic microphysics?    

Potential applications:
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f-mode universal relations

f (kHz)≈0.78+1.635(
M 1.4

R10
3 )

1/2

In 1998, Andersson & Kokkotas(1998) proposed the following empirical relations
for the f-mode oscillation frequency and damping time.
[Note: In GR, nonradial oscillations emits gravitational waves and so the oscillations
           are damped. ] 

1
τ (s)≈

M 1.4
3

R10
4 [22.85−14.65(

M 1.4

R10
)]

Andersson & Kokkotas (1998)

M 1.4=M /(1.4 M sun)

R10=R /(10  km)
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I
MR2

Haensel et al. (2007)

● Empirical relations between NS’s moment of inertia (I) and compactness (M/R) 
[Bejger & Haensel (2002); Lattimer & Schutz (2005)]

xGR=
M /M sun

R /km
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Scaled f-mode 
oscillation frequency

η≡√M 3

I Moment of inertiaEffective compactness:

In Andersson & Kokkotas (1998), the compactness M/R is used to connect the 
f-mode frequency. Motivated by the fact that I carries richer information about the 
mass distribution, it turns out that a more robust universal relation for the f-mode 
can be obtained by replacing R by I: 

[Lau, Leung and LML (2010)]

M ωr=−0.0047+0.133η+0.575η2

Remark:
We set G = c = 1 and 
so Mω is dimensionless 
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A similar universal relation exists for the imaginary part ω
i
  : 

I 2
ωi /M

5
=0.00694−0.0256η2

[Lau, Leung and LML (2010)]

= η2
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Potential application: Inversion of physical parameters

If the f-mode frequency (real & imaginary parts) is measured, M 
and I can be obtained.
* If we additionally assume the empirical relation between I and M/R proposed 
  by Lattimer and Schutz (2005), we can also obtain the radius R:   

I /MR2
=0.237(1+4.2 x+90 x4

)    ,  x=(M /M sun)(km /R)

[%]
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I-Love-Q universal relations

Ī≡
I

M 3      ,     Q̄≡−
Q

M 3 j2      ,     λ̄≡ λ

M 5

Yagi & Yunes (2013)

● Q = rotation-induced quadrupole moment
● λ = tidal deformability
● j = spin parameter 

In 2013, Yagi and Yunes discovered the so-called I-Love-Q relations for 
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f-mode-Love universal relations

The f-mode relation of Lau et al. (2010) and the I-Love-Q relation of Yagi and Yunes 
(2013) both involve the effective compactness parameter, and hence it is natural to 
expect that a universal relation between ω and λ should exist. 

ω̄l≡Mωl

λ̄ l≡
λl

M 2 l+1

[Chan, Sham, Leung, and LML (2014)]

In Chan et al. (2014), such a relation is proposed and it is also found that the relation
becomes more EOS-sensitive for ω and λ with different values of l. The reason behind
this observation is also studied in Newtonian gravity in Chan et al. (2014).
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“Universal” relation in binary neutron star simulations

k
2
 = Love number

C = compactness
q = mass ratio

 Bernuzzi, Dietrich, and Nagar (2015)

f
2
 = post-merger GW peak frequency
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Learning Outcomes: 
● Understand the basic concepts of Newtonian stellar perturbations 
● Be able to derive the perturbation equations for oscillations and tidal

deformation in the simplest settings and be able to extend to more
general situations

● Have an idea on the concepts on universal relations and their potential
applications
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** Oscillations
- P. N. McDermott et al., ApJ 325, 725 (1988)
- J. P. Cox, “The theory of stellar pulsation”, Princeton University Press (1980)
- K. D. Kokkotas and B. G. Schmidt, gr-qc/9909058
- K. S. Thorne and A. Campolattaro, ApJ 149, 591 (1967)
- S. Detweiler and L. Lindblom, ApJ 292, 12 (1985)

** Tidal deformations and universal relations
- T. Hinderer, ApJ 677, 1216 (2008)
- H. K. Lau, P. T. Leung, and L. M. Lin, ApJ 714, 1234 (2010)
- Yagi and Yunes, PRD 88, 023009 (2013)
- Chapters 1 & 2 in E. Poisson and C. M. Will, “Gravity: Newtonian, 
  Post-Newtonian, Relativistic”, Cambridge University Press (2014)
- Yagi and Yunes, Physics Reports 681, 1 (2017)
  
    

Some references for beginners:
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Appendix
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Why I-Love-Q?

● We propose that the stiffness of modern EOS is the key!

● Realistic EOS models typically have effective adiabatic index Г ≥ 2     

(above nuclear density)

Our proposal: 
NS EOSs are stiff enough!

[Sham, Chan, Lin, & Leung (2015)]
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● The EOS models are so stiff that the I-Love-Q relations are well modeled by
the incompressible limit

Δ Ī≡
Ī− Ī incom

Ī incom

similarly for Δ Q̄  and Δ λ̄

For incompressible model

Sham, Chan, Lin, & Leung
ApJ, 798, 121 (2015)
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Analytical study
● Here we study the I-Love relation analytically in Newtonian gravity and 

show that the incompressible limit is a key point to the universal relations

● Neutron stars are modeled well by the density profile:

ρ=ρ0(1−δ x2
)

δ=1

x≡ r
R

Quark star
(MIT bag model)

δ≈0

 δ = free parameter
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● Scaled moment of inertia

Ī=
∫
0

R

ρr4 dr

24 π2(∫
0

R

ρr2 dr)
3

With the density profile ρ=ρ0(1−δ x2
)

Ī=
2(7−5δ)
7(5−3δ)

C−2

C≡M
R
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● Tidal deformability λ   (in Newtonian gravity)

d2 h

dr2 +
2
r

dh
dr
−(

6

r2−4πρ
dρ
dP )h=0

λ̄=
2− y (R)

3 [3+ y (R)]
C−5

y (R)≡
R h' (R)

h(R)

λ̄= λ

M 5

● By eliminating the compactness C, we obtain the I-Love relation

f (δ)≡λ̄ Ī−5 /2=
2− y (R)

3(3+ y (R)) [
2(7−5δ)
7(5−3δ)]

−5/2
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f (δ)≡λ̄ Ī−5/2
=

2− y (R)
3(3+ y (R)) [

2(7−5δ)
7(5−3δ) ]

−5 /2

ρ=ρ0(1−δ x2
)

x≡
r
R

δ=0  incompressible limit 

● The I-Love relation f(δ) depends weakly on δ
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● We can expand the I-Love relation about the incompressible limit (δ=0)

λ̄ Ī−5/2=5√5
2 (

5
8
−

1
588

δ
2
+....)

● The incompressible stellar model is a stationary point for the I-Love relation

2nd order

Remark: y(R) has a formal solution given by the hypergeometric function
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● Brief summary

Ī=
2(7−5δ)
7(5−3δ)

C−2

λ̄=
2− y (R)

3 [3+ y (R)]
C−5

ρ=ρ0(1−δ x2
)

δ is used to model the 
stellar structure and EOS

They depend non-trivially
on δ  

● However, the I-Love relation depends weakly on δ (and hence EOS)

λ̄ Ī−5/2
=

2− y (R)
3(3+ y (R)) [

2(7−5δ)
7 (5−3δ) ]

−5/2

          =a+bδ2
+....
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Construction of Ŷ k1 k2 ...k l

lm

 Y lm
(θ ,φ)=Ŷ k1 k2 ...k l

lm nk1
nk2

...nk l

Here we shall obtain the explicit form of            by starting with standard 
results of Ylm:

Ŷ k 1 k2 ... kl

lm

Y lm
(θ ,φ)≡C lm ei mφ Plm

(cosθ) C lm
=(−1)m[ 2 l+1

4 π
(l−m)!
(l+m)! ]

1 /2

Plm
(x)≡(1−x2

)
m/2 dm

dxm
Pl( x)Associated Legendre function:

Pl(x)=∑
j=0

[l/2]

alj x l−2 j alj=(−1) j (2 l−2 j)!

2l j!(l− j)!(l−2 j)!

[l/2] = largest integer less than or equal to l/2

(0≤m≤l)

Y lm
(θ ,φ)=(−1)m(Y l|m|

(θ ,φ))*Note: For negative m, we use 
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Plm
(x)=(1−x2

)
m/2 ∑

j=0

[(l−m)/2]

almj xl−m−2 j

Y lm
(θ ,φ)=C lm

(eiφ sinθ)m ∑
j=0

[(l−m)/2 ]

almj
(cosθ)l−m−2 j

=> almj
≡alj

(l−2 j)!
(l−2 j−m)!

Hence, Ylm can be written as

Recall: Unit vector in the direction (θ,φ) 

nx+in y=eiφ sinθ    ,    nz=cosθ

Y lm
(θ ,φ)=C lm

(nx+i ny)
m ∑

j=0

[(l−m)/2]

almj
(nz)

l−m−2 j

Note that we can express
n x=δk1

1 nk1
=δk2

1 nk2
...etc

n y=δk1

2 nk1
... etc

n z=δk1

3 nk1
... etc
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(nx+in y)
m
=(δk1

1
+iδk1

2
)(δk2

1
+iδk2

2
)....(δkm

1
+iδkm

2
)nk1

nk2
... nkm

(nz)
l−m−2 j

=(δkm+1

3
δkm+2

3 ...δk l−2 j

3
)(nkm+1

nkm+2
... nkl−2 j

)

Y lm
(θ ,φ)=C lm

∑
j=0

[(l−m)/2]

almj
(δk

1

1
+iδk

1

2
)(δk

2

1
+iδk

2

2
).....(δk

m

1
+iδk

m

2
)

                                  ×(δk
m+1

3
δk

m+2

3 .....δk
l−2 j−1

3
δk

l−2 j

3

)
                                  ×(nk

1
nk

2
.....nk

m
nk

m+1
.....nk

l−2 j)

We need 2j more factors of n
j
 in order to extract the factor (nk

1
nk

2
....nk

l
)

l−2j factors

n is unit vector:  na1 na1=1=(δk p

a1 nk p
)(δkn

a1 nkn
)

We can insert the following factor in the summation:

1=(δk
l−2 j+1

a
1 δk

l−2 j+2

a
1 )(δk

l−2 j+2

a
2 δk

l−2 j+3

a
2 ) .... (δk

l−1

a
j δkl

a
j) (nk l−2 j+1

nk l−2 j+2
....nk

l−1
nk l)

2j of them
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Y lm
(θ ,φ)=C lm ∑

j=0

[(l−m)/2 ]

almj
(δk1

1
+iδk1

2
)(δk2

1
+iδk2

2
).....(δkm

1
+iδkm

2
)

                                    ×(δk m+1

3
δkm+2

3 .....δk l−2 j−1

3
δk l−2 j

3
) (δk l−2 j+1

a1 δk l−2 j+2

a1 ) ...... (δk l−1

a j δk l

a j)
                                    ×(nk1

nk2
.....nkm

nkm+1
.....nk l−1

nk l
)

Y lm
(θ ,φ)=Ŷ k 1 k 2... kl

lm nk1
nk 2

...nk l
Hence, we have 

Ŷ k1 k2 ...k l

lm
≡C lm ∑

j=0

[(l−m)/2]

almj
(δ(k1

1
+iδ(k1

2
)(δk2

1
+iδk2

2
).....(δkm

1
+iδkm

2
)

                                ×(δkm+1

3
δkm+2

3 .....δk l−2 j−1

3
δk l−2 j

3
) (δk l−2 j+1

a1 δk l−2 j+2

a1 ) ...... (δk l−1

a j δk l )
a j )

In the above definition, we have included a symmetrization operation. It can also be 
shown that the object so defined is completely tracefree. So, it is a STF tensor. 

Remark: For an arbitrary tensor S
abc

,   

Sabc na nb nc=S(abc)na nb nc

(contracted and summed over
 the indices)

(for 0≤m≤l)

Ŷ k1 k 2 ...k l

lm
≡(−1)m (Ŷ k 1 k 2 ...k l

l|m| )
*
       (for −l≤m<0)
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Example:  Explicit expressions for l = 2

Ŷ k1 k2 ...k l

lm
≡C lm ∑

j=0

[(l−m)/2]

almj
(δ(k1

1
+iδ(k1

2
)(δk2

1
+iδk2

2
).....(δkm

1
+i δkm

2
)

                                ×(δkm+1

3
δkm+2

3 .....δk l−2 j−1

3
δk l−2 j

3
) (δk l−2 j+1

a1 δk l−2 j+2

a1 ) ...... (δk l−1

a j δk l )
a j )

For l = 2, m = 0, there are two terms ( j = 0, 1 ) in the sum: 

 For j=0:       δ( k1

3
δk2 )

3
=δk1

3
δk2

3

 For j=1:       δ( k1

a1 δk2 )
a1 =δk1

1
δk2

1
+δk1

2
δk2

2
+δk1

3
δk2

3

C lm
=(−1)m [ 2 l+1

4 π
(l−m)!
(l+m)! ]

1/2

almj
≡

(−1) j

2l j!(l− j)!

(2 l−2 j)!
(l−m−2 j)!

Ŷ k1 k2

20
=√ 5

16π (2δk1

3
δk2

3
−δk1

1
δk2

1
−δk1

2
δk2

2
)

Ŷ k1 k 2 ...k l

lm
≡(−1)m (Ŷ k1 k2 ...k l

l|m| )
*
       (for −l≤m<0)

We need to consider m = 0, 1, 2 only. Negative values of m (−1, −2) are obtained by
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For l = 2, m = 1, there is only one term ( j = 0 ) in the sum: 

 For j=0:       (δ( k1

1
+iδ( k1

2
)δk2 )

3

Ŷ k1 k2

21
=−√ 15

32π (δk1

1
δk2

3
+δk2

1
δk1

3
+iδk1

2
δk2

3
+i δk2

2
δk1

3
)

For l = 2, m = 2, there is only one term ( j = 0 ) in the sum: 

 For j=0:       (δ( k1

1
+iδ( k1

2
) (δk2

1
+iδk2 )

2
)

Ŷ k1 k2

22
=√ 15

32π (δk1

1
δk2

1
−δk1

2
δk2

2
+iδk1

1
δk2

2
+iδk1

2
δk2

1
)

Summary: 

Ŷ k1 k2

20
=√ 15

16π [
−1 0 0
0 −1 0
0 0 2]       Ŷ k1 k2

21
=−√ 15

32π [
0 0 1
0 0 i
1 i 0]      Ŷ k1 k2

22
=√ 15

32π [
1 i 0
i −1 0
0 0 0]

Ŷ k1 k2

2,−1
=−(Ŷ k1 k2

21
)
*

Ŷ k1 k2

2,−2
=(Ŷ k1 k2

22
)
*
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