Pathways to Decarbonisation of the Fossil Fuel Cycle

Jürg M. Matter Associate Professor Ocean and Earth Science, National Oceanography Center Southampton

Energy/Clean Carbon Awayday, 13th May 2015

Anthropogenic CO₂ Emissions

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

IPCC Model Simulations of $CO₂$ Emissions

Source: IPCC Data Distribution Center

World Primary Energy Demand

World Energy Outlook – Special Report (2011)

Environmental Limits – Call for Mitigation

Carbon Capture and Storage

Without carbon capture and storage fossil fuels will have to be phased out

 CO_2 from concentrated sources

Capture from power plants, cement, steel, refineries, etc.

Permanent & safe disposal *Geologic and mineral storage*

 $CO₂$

extraction

from air

Geologic CO₂ Storage

Problem of Scale

- 1,000 Mwe coal-fired power plant: 10 Mt CO₂/year -> 700 Mt CO₂
- Total CO₂ volume ~1 km³ (density of 780 kg/m³ at 40°C, 150 bar)
- CO₂ foot print in the subsurface could reach 100 km² (Pruess et al. 2001)
- US: 1,500 coal-fired generators, capacity of 335,830 MWe

CCS Scale Million – Billion Tons per year

Risk of Leakage

Source: www.westcarb.org

Mineral Carbonation

 $+ CO₂ =$

basalt $SiAl_{0.36}Ca_{0.30}Mg_{0.25}Fe_{0.17}O_{3.35}$

peridotite

 $SiAl_{0.08}Mg_{1.32}Fe_{0.14}O_{3.42}$

 $+ CO₂ =$

Calcite Magnesite siderite

Target zone for CO₂ sequestration identified at 400-800 m depth

Groundwater

Gas injected fully dissolved in water into target zone

 0.05 kg/s of $CO₂$ from **Condensers**

800 kg/s of steam, gas and water from deep and hot (>240 °C) geothermal wells Hellisheiði geothermal

ᄆ

power plant

CarbFix Pilot Injection Site

Alfredsson et al., IJGGC, 2013

Tracer injection system

SF₆, SF₅CF₃, DIC & pH monitoring

• Goal: Monitor solute transport in subsurface

¹⁴C monitoring

• Goal: Monitor CO₂-fluid-rock reactions (carbon mass balance)

Carbon mass balance

1. Calculating mixing between injected solution and reservoir fluid using $SF₆$

$$
\left[SF_6 \right]_i = X \left[SF_6 \right]_{IS} + (1 - X) \left[SF_6 \right]_{BW}
$$

 $[SF_6]_i = X[SF_6]_{IS} + (1-X)[SF_6]_{BW}$

coretical dissolved inorganic carbon concentration

pure mixing in the reservoir
 ${}^{IC}C_{mix} = X_{SF6} \times DIC_{IS} + (1-X_{SF6}) \times DIC_{BW}$

ference between measured and theoretical DIC
 $DDIC = DIC_{sample} - DIC_{mix}$ 2. Calculating theoretical dissolved inorganic carbon concentration (DIC_{mix}) due to pure mixing in the reservoir

$$
DIC_{mix} = X_{SF6} \times DIC_{IS} + (1 - X_{SF6}) \times DIC_{BW}
$$

3. Calculating difference between measured and theoretical DIC

$$
DDIC = DIC_{sample} - DIC_{mix}
$$

Carbon mass balance

expected vs. measured DIC concentration

¹⁴C mass balance

expected vs measured ¹⁴C concentration

Future Opportunities at CarbFix Test Site

- Study effect of gas composition (impurities) injected into subsurface on geologic carbon storage efforts on industrial scale
- Improvement and optimization of gas separation techniques
- Develop new and refine existing chemical and geophysical monitoring and verification techniques
- Study practical tolerance levels of injected gas composition (impurities) with regard to pipeline and well design and separation capabilities
- Definition and evaluation of environmental safety risks associated with impure CO₂ injections
- Develop best practices for geologic storage of impure $CO₂$

Service of the Contract of the Contract of

Oman Drilling Project **Sultanate of Oman**

Project Sponsors

NASA

VSE

CALL PART

Mineral Carbonation in Mantle Peridotite

Map of Samail Ophiolite, Oman

Carbonation on surface

Carbonation in subsurface

 H_2 and CH₄ production

Hydrogeological Model – Carbonation Flow Path

Properties Mineral Carbonation Rate

- rate of solid carbonate formation in Oman is \sim 10⁴ to 10⁵ tons CO₂/year
- 1000 tons CO_2 /km³/year in actively carbonating upper 15 m of mantle peridotite
- 4 tons C/km^2 /year (CO₂ consumed by weathering: global average is 2 tons C/km²/yr; Hartmann et al. 2009)

Engineered Carbonation System

- Total amount of CO₂ mineralized in the 90°C scenario is \sim 1200 x the amount sequestered in the natural system over the same time frame.
- The kg CO₂/kg peridotite ratio in the 90°C scenario is 0.61, which indicates almost complete mineralization (complete forsterite mineralization -> 0.63 ratio) Paukert et al. 2012

Research Opportunities Oman Drilling Project

- Oman Drilling Project will provide a subsurface laboratory to study CO_2 water interactions relevant for $CO₂$ storage, to evaluate feedback a subsurface laboratory to study CO₂-rock-

2 storage, to evaluate feedback mechanism between CO_2 -rock-water reactions and geomechanics, and to test novel chemical and geophysical monitoring techniques related to geologic carbon storage
- Study feedback mechanism between CO_2 -rock-water interaction and geomechanics
- Understand generation of abiotic methane and hydrogen
- Study role of deep subsurface biosphere in carbon storage

