Southampton

Andreas Schmitt

Mathematical Sciences and STAG Research Centre University of Southampton Southampton SO17 1BJ, United Kingdom

Fundamental properties and hydrodynamics of (relativistic) superfluids

Southampton

Andreas Schmitt

Mathematical Sciences and STAG Research Centre University of Southampton Southampton SO17 1BJ, United Kingdom

Fundamental properties and hydrodynamics of (relativistic) superfluids

lecture notes: A. Schmitt, Lect. Notes Phys. 888, 1 (2015)

Contents of lecture

• General remarks

– Basic mechanism of superfludity, relation to superconductivity

- Microsopic model for a relativistic bosonic superfluid
	- Superfluid vortices
	- Superfluid velocity and Landau's critical velocity
	- Goldstone mode
- Two-fluid hydrodynamics of superfluids

– First and second sound

- Superfluid density: definition and microscopic calculation
- Microscopic model for a relativistic fermionic superfluid

Brief history of superfluidity/superconductivity

1908 helium liquefied Kamerlingh Onnes Kamerlingh Onnes superconductivity discovered in mercury 1911 1927 transition to helium II observed Wolfke/Keesom Meissner/Ochsenfeld superconductors expel magnetic fields 1933 1938 helium II is superfluid Kapitza, Allen/Misener 1938 two-fluid model Landau, Tisza Bardeen/Cooper/Schrieffer microscopic theory of superconductivity 1957 Bogoliubov Cooper pairing of nucleons suggested 1958 Ivanenko/Kurdgelaidze Cooper pairing of quarks suggested 1969 1972 superfluidity in 3 He Lee/Osheroff/ Richardson Bednorz/Müller high- T_c superconductors 1986 2005 vortex formation in fermionic gas Ketterle

Basic mechanisms of superfluidity

• Bosons (4He, cold bosonic atom gas, pions, kaons, ...)

Bose-Einstein condensation

• Fermions (electrons in a metal, ³He, cold fermionic atom gas, neutrons, protons, quarks, ...)

Cooper pair condensation (cold fermionic system + arbitrarily small attraction)

Critical temperature

Neutron stars: temperatures are sufficiently low to allow for nucleon and quark Cooper pairs (except for very early stages and during merger)

Superfluidity is a phase transition

- condensate \leftrightarrow order parameter
- superfluid and normal state have different symmetries: "symmetry is spontaneously broken"

For instance ferromagnetism: $SO(3) \rightarrow U(1)$

Superfluidity: $U(1) \rightarrow 1$

Comparing superfluidity to superconductivity

Cooper pairing of neutrons \rightarrow superfluidity

Cooper pairing of protons \rightarrow superconductivity

Cooper pairing of quarks \rightarrow color superconductivity, possibly superfluidity and electromagnetic superconductivity (depends on pairing pattern)

Superfluidity from a complex scalar field (page 1/2) chapter 3 of A. Schmitt, Lect. Notes Phys. 888, 1 (2015)

Start from Lagrangian for $\varphi \in \mathbb{C}$ with mass $m > 0$ and coupling $\lambda > 0$

$$
\mathcal{L}=\partial_\mu\varphi^*\partial^\mu\varphi-m^2|\varphi|^2-\lambda|\varphi|^4
$$

 $\mathcal L$ is invariant under global $U(1)$ trafo $\varphi \to e^{-i\alpha} \varphi$

$$
\varphi = \phi + \text{fluctuations} \qquad \Rightarrow \qquad \mathcal{L} = \mathcal{L}^{(0)} + \text{fluctuations}
$$

with the condensate

$$
\phi = \frac{\rho}{\sqrt{2}} e^{i\psi}
$$

and

$$
\mathcal{L}^{(0)} = \frac{1}{2} \partial_{\mu} \rho \partial^{\mu} \rho + \frac{\rho^2}{2} (\partial_{\mu} \psi \partial^{\mu} \psi - m^2) - \frac{\lambda}{4} \rho^4
$$

Euler-Lagrange eq. for ψ is current conservation (Noether's Theorem)

$$
\partial_{\mu}j^{\mu} = 0 \qquad \qquad j^{\mu} = \rho^2 \partial^{\mu} \psi
$$

Superfluidity from a complex scalar field (page 2/2)

Assume homogeneous condensate (ρ and $\partial_{\mu}\psi$ constant in space and time)

$$
\mathcal{L}^{(0)} = -U, \qquad U = -\frac{\rho^2}{2}(\sigma^2 - m^2) + \frac{\lambda}{4}\rho^4
$$

with $\sigma \equiv$ √ $\overline{\partial_{\mu}\psi\partial^{\mu}\psi}=\mu$ $1 - v^2$

Connect with hydrodynamics (1): Superfluid velocity

Write current in terms of superfluid four-velocity

 $j^{\mu} = nv^{\mu}$

By contracting with v_{μ} and j_{μ} we get $\rho^2 \sigma = n$ and thus

$$
v^{\mu} = \frac{\partial^{\mu} \psi}{\sigma} \qquad \Rightarrow \qquad \vec{v} = -\frac{\nabla \psi}{\mu}
$$

 \rightarrow superflow is rotating phase

(Non-relativistic:
$$
\vec{v} = -\frac{\nabla \psi}{m} \to \nabla \times \vec{v} = 0 \to \text{irrotational flow}
$$
)

Connect with hydrodynamics (2): Stress-energy tensor

From microscopic theory:

$$
T^{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}\mathcal{L})}{\delta g_{\mu\nu}} = \rho^2 \partial^{\mu} \psi \partial^{\nu} \psi - g^{\mu\nu} \mathcal{L}^{(0)}
$$

For hydrodynamics need:

$$
T^{\mu\nu} = (\epsilon + P)v^{\mu}v^{\nu} - g^{\mu\nu}P
$$

Connect both via

$$
P = -\frac{1}{3}(g_{\mu\nu} - v_{\mu}v_{\nu})T^{\mu\nu} = \mathcal{L}^{(0)} = \frac{(\sigma^2 - m^2)^2}{4\lambda}
$$

$$
\epsilon = v_{\mu}v_{\nu}T^{\mu\nu} = \sigma n - P = \frac{(3\sigma^2 + m^2)(\sigma^2 - m^2)}{4\lambda}
$$

 \Rightarrow σ is chemical potential in superfluid rest frame

Speed of (first) sound

$$
\frac{\partial P}{\partial \epsilon} = \frac{\sigma^2 - m^2}{3\sigma^2 - m^2}
$$

Vortex solutions (page 1/2)

Euler-Lagrange equations allowing spatial dependence of ρ

$$
-\Delta \rho = \rho [\mu^2 - (\nabla \psi)^2 - m^2 - \lambda \rho^2]
$$

$$
\nabla \cdot (\rho^2 \nabla \psi) = 0
$$

Cylindrical coordinates (r, θ, z) , $\psi = n\theta$ $(n \in \mathbb{Z})$ and $\rho(\mathbf{x}) = \rho(r)$:

Vortex solutions (page 2/2)

 $n \in \mathbb{Z}$ winding number $\pi_1[U(1)] = \mathbb{Z}$ vortex is "topologically stable"

vortex array in rotating atomic superfluid M. Zwierlein et al., Nature 435, 7045 (2005)

Rotating neutron star: vortices from neutron superfluidity or color-flavor locked phase

Including fluctuations and Goldstone mode (page 1/3)

Recall that so far we have dropped fluctuations

$$
\mathcal{L} = \mathcal{L}^{(0)} + \text{fluctuations} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \mathcal{L}^{(3)} + \mathcal{L}^{(4)}
$$

Terms of second order in the fluctuations $\mathcal{L}^{(2)}$ give the inverse propagator

$$
D^{-1}(K) = \begin{pmatrix} -K^2 + m^2 + 3\lambda \rho^2 - \sigma^2 & -2i K_\mu \partial^\mu \psi \\ 2i K_\mu \partial^\mu \psi & -K^2 + m^2 + \lambda \rho^2 - \sigma^2 \end{pmatrix}
$$

which is needed for the thermodynamic potential

$$
\Omega=-\frac{T}{V}\ln Z=U+\frac{1}{2}\frac{T}{V}\mathrm{Tr}\ln\frac{D^{-1}(K)}{T^2}=U+\sum_{e=\pm}\int\frac{d^3\mathbf{k}}{(2\pi)^3}\left[\frac{\epsilon_k^e}{2}+T\ln\left(1-e^{-\epsilon_k^e/T}\right)\right]
$$

 ϵ_k^{\pm} $\frac{1}{k}$ are the poles of D, det $D^{-1} = [k_0^2 - (\epsilon_k^+)]$ $\binom{k}{k}^2 \left[k_0^2 - \left(\epsilon_k^- \right) \right]$ $\binom{1}{k}$ ²]

Including fluctuations and Goldstone mode (page 2/3)

Excitation energies without condensation

$$
\rho = 0:
$$
 $\epsilon_k^{\pm} = \sqrt{k^2 + m^2} \mp \mu$

and with condensation

$$
\epsilon_k^+ = \sqrt{\frac{\mu^2 - m^2}{3\mu^2 - m^2}} k + \mathcal{O}(k^3)
$$

A massless mode has appeared!

Including fluctuations and Goldstone mode (page 3/3)

If a continuous global symmetry of the Lagrangian is spontaneously broken there exists a gapless mode. This mode is called Goldstone mode.

But ... superfluidity means absence of excitations ... shouldn't the Goldstone mode destroy dissipationless flow??

Landau's critical velocity (page 1/2)

Excitations potentially lead to dissipation:

 ϵ_p excitation energy in fluid rest frame total energy in capillary frame (non-rel.) $E = E_{\text{kin}} + \epsilon_p + \vec{p} \cdot \vec{v}$

 \rightarrow fluid loses energy through dissipation if

$$
\epsilon_p + \vec{p} \cdot \vec{v} < 0 \qquad \Rightarrow \qquad \text{superfluid for} \quad v < v_c = \min_p \frac{\epsilon_p}{p}
$$

Landau's critical velocity (page 2/2)

 \rightarrow superfluidity = condensate + nonzero critical velocity v_c

- superfluidity exists *despite* Goldstone mode
- in the absence of roton, $v_c = c$ with $\epsilon = cp$
- if the Goldstone mode had quadratic dispersion, $v_c = 0$ \rightarrow no superfluidity

Relativistic two-fluid formalism (page 1/2)

non-rel.:London, Tisza (1938); Landau (1941) rel: Khalatnikov, Lebedev (1982); Carter (1989)

Two fluids: conserved current j^{μ} and entropy current s^{μ}

$$
T^{\mu\nu}=-g^{\mu\nu}\Psi+j^\mu\partial^\nu\psi+s^\mu\Theta^\nu
$$

Conjugate momenta $\partial^{\nu}\psi$ and Θ^{ν}

$$
j^{\mu} = \frac{\partial \Psi}{\partial(\partial_{\mu}\psi)} = \mathcal{B}\partial^{\mu}\psi + \mathcal{A}\Theta^{\mu}
$$

$$
s^{\mu} = \frac{\partial \Psi}{\partial\Theta_{\mu}} = \mathcal{A}\partial^{\mu}\psi + \mathcal{C}\Theta^{\mu}
$$

$$
\mathcal{B} = 2 \frac{\partial \Psi}{\partial (\partial \psi)^2}, \quad \mathcal{C} = 2 \frac{\partial \Psi}{\partial \Theta^2}
$$

$$
\mathcal{A} = \frac{\partial \Psi}{\partial (\partial \psi \cdot \Theta)}
$$

"entraiment coefficient"

Relativistic two-fluid formalism (page 2/2)

Hydrodynamic equations: with $d\Psi = j_{\mu} d(\partial^{\mu} \psi) + s_{\mu} d\Theta^{\mu}$ we compute

$$
\partial_{\mu}T^{\mu\nu} = \partial^{\nu}\psi \underbrace{\partial_{\mu}j^{\mu}}_{=0} + j_{\mu} \underbrace{(\partial^{\mu}\partial^{\nu}\psi - \partial^{\nu}\partial^{\mu}\psi)}_{=0} + \Theta^{\nu}\partial_{\mu}s^{\mu} + s_{\mu}(\partial^{\mu}\Theta^{\nu} - \partial^{\nu}\Theta^{\mu})
$$
\n
$$
\Rightarrow \qquad \qquad \frac{\partial_{\mu}j^{\mu} = 0 \,, \qquad \partial_{\mu}s^{\mu} = 0 \,, \qquad s_{\mu}\omega^{\mu\nu} = 0 \qquad \qquad
$$

with the vorticity $\omega^{\mu\nu} \equiv \partial^{\mu}\Theta^{\nu} - \partial^{\nu}\Theta^{\mu}$

Alternatively: two fluids from normal fluid and superfluid

$$
j^{\mu} = n_n u^{\mu} + n_s v^{\mu} = \frac{n_n}{s} s^{\mu} + \frac{n_s}{\sigma} \partial^{\mu} \psi
$$

Superfluid density n_s needed for sound modes (next slide), pulsar glitches, ...

Second sound

Superfluid helium

$$
u_1 = \sqrt{\frac{\partial P}{\partial \rho}}, \qquad u_2 = \sqrt{\frac{s^2 T \rho_s}{\rho c_V \rho_n}}
$$

Relativistic φ^4 model M. G. Alford, S. K. Mallavarapu, A. Schmitt and S. Stetina, PRD 89, 085005 (2014)

Calculation of the superfluid density (page 1/2)

To compute superfluid density start from spatial components of

$$
j^{\mu} = \frac{n_n}{s} s^{\mu} + \frac{n_s}{\sigma} \partial^{\mu} \psi
$$

work in normal fluid rest frame, $\vec{u} = 0$, contract with $\nabla \psi$,

$$
n_s = -\sigma \frac{\nabla \psi \cdot \vec{j}}{(\nabla \psi)^2}
$$

Abbreviate $\vec{q} = \nabla \psi$ and work at vanishing superflow

$$
n_s = \mu \hat{q}_i \hat{q}_j \left. \frac{\partial \Omega}{\partial q_i \partial q_j} \right|_{\vec{q} = 0}
$$

Calculation of the superfluid density (page 2/2)

Recall thermodynamic potential from bosonic model

$$
\Omega = -\frac{T}{V} \ln Z = U + \frac{1}{2V} \text{Tr} \ln \frac{D^{-1}(K)}{T^2}, \qquad U = -\frac{(\mu^2 - q^2 - m^2)^2}{4\lambda}
$$
\n
$$
\Rightarrow \qquad \frac{\partial \Omega}{\partial q_i \partial q_j} = \frac{\partial U}{\partial q_i \partial q_j} + \frac{1}{2V} \text{Tr} \left[-D \frac{\partial D^{-1}}{\partial q_i} D \frac{\partial D^{-1}}{\partial q_j} + D \frac{\partial D^{-1}}{\partial q_i \partial q_j} \right]
$$
\n
$$
\text{and} \qquad \qquad \text{and} \q
$$

Compute Matsubara sum and momentum integral, take low-temperature limit,

$$
n_s \simeq \frac{\mu(\mu^2 - m^2)}{\lambda} - \frac{\pi^2 T^4}{45} \frac{\mu(3\mu^2 - m^2)^{1/2} (12\mu^2 - m^2)}{(\mu^2 - m^2)^{5/2}}
$$

Microscopic theory of fermionic superfluids (brief sketch) chapter 5 of A. Schmitt, Lect. Notes Phys. 888, 1 (2015)

Fermions with pointlike interaction ($\mathcal L$ invariant under $U(1)$, $\psi \to e^{i\alpha}\psi$)

$$
\mathcal{L} = \overline{\psi}(i\gamma^{\mu}\partial_{\mu} + \gamma^{0}\mu - m)\psi + G(\overline{\psi}\psi)^{2}
$$

[More realistically: interaction mediated by lattice phonons, gluons, ...]

Mean field approximation: write $\psi \psi = \langle \psi \psi \rangle +$ fluctuations, $G \psi \psi \psi \psi \rightarrow \psi \Phi \psi$

Since $\langle \psi \psi \rangle$ really is $\langle \psi_C \bar{\psi} \rangle \rightarrow$ "Nambu-Gorkov space" $\Psi = (\psi, \psi_C)$

$$
\mathcal{S}^{-1} = \left(\begin{array}{cc} \left[G_0^+ \right]^{-1} & \Phi^- \\ \Phi^+ & \left[G_0^- \right]^{-1} \end{array} \right), \qquad \left[G_0^{\pm} \right]^{-1} = \gamma^{\mu} K_{\mu} \pm \gamma^0 \mu - m
$$

 \rightarrow propagator acquires 2×2 structure

$$
S = \begin{pmatrix} G^+ & F^- \\ F^+ & G^- \end{pmatrix}
$$
 anomalous propagators F^{\pm}

Quasi-particle excitations

Fermions acquire energy gap ∆ in their spectrum

$$
\epsilon_k^e \equiv \sqrt{(\mu - ek)^2 + \Delta^2}
$$

For instance in QCD at ultra-high densities and $T = 0$:

$$
\Delta \simeq 2 b \mu \exp \left(- \frac{3 \pi^2}{\sqrt{2} g} \right)
$$

with
$$
b\equiv 256\pi^4[2/(N_f g^2)]^{5/2}
$$

 \rightarrow system is superfluid since fermions cannot be excited (and Goldstone mode has linear dispersion)

Superfluid density in fermionic superfluid (page 1/2)

Thermodynamic potential, needed for superfluid density:

$$
\Omega = \frac{\Delta^2}{G} - \frac{1}{2V} \sum_{K} \text{Tr} \ln \frac{\mathcal{S}^{-1}(K)}{T} + \frac{1}{2V} \sum_{K} \text{Tr} \ln \frac{D^{-1}(K)}{T^2}
$$

condensate + fermionic exc. Goldstone exc.

Superfluid density in fermionic superfluid (page 2/2)

Even lowest-order contribution in T very tedious to calculate D. Müller, Master Thesis, TU Wien (2014)

Summary

- Superfluidity is a very general phenomenon and occurs on vastly different scales from low-energy physics (cold atoms) to high-energy physics (nuclear & quark matter in neutron stars)
- Superfluids and superconductors are close relatives
- Superfluidity is a phase transition: spontaneous symmetry breaking \rightarrow Goldstone mode
- Hydrodynamics of superfluids at nonzero T requires two-fluid formalism – and microscopic input is needed for instance for superfluid density

Outlook – some selected open questions

- superfluid density in fermionic relativistic superfluid
- vortices in the color-flavor locked phase: coexistence with magnetic flux tubes? continuously connected to vortices in nuclear matter?
- superfluid hydrodynamics in the presence of vortices $(\rightarrow$ quantum turbulence?)
- unconventional behavior of multi-component superfluids (cold neutron/proton matter, color-flavor locking, ...) A. Haber and A. Schmitt, PRD 95 116016 (2017); JPG 45, 065001 (2018)
- hydrodynamic instabilities in two-component superfluids A. Haber, A. Schmitt and S. Stetina, PRD 93, 025011 (2016) N. Andersson and A. Schmitt, in preparation