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Brief history of superfluidity/superconductivity

1908 helium liquefied Kamerlingh Onnes

Kamerlingh Onnes superconductivity discovered in mercury 1911

1927 transition to helium II observed Wolfke/Keesom

Meissner/Ochsenfeld superconductors expel magnetic fields 1933

1938 helium II is superfluid Kapitza, Allen/Misener

1938 two-fluid model Landau, Tisza

Bardeen/Cooper/Schrieffer microscopic theory of superconductivity 1957

Bogoliubov Cooper pairing of nucleons suggested 1958

Ivanenko/Kurdgelaidze Cooper pairing of quarks suggested 1969

1972 superfluidity in 3He Lee/Osheroff/ Richardson

Bednorz/Müller high-Tc superconductors 1986

2005 vortex formation in fermionic gas Ketterle
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Basic mechanisms of superfluidity

• Bosons (4He, cold bosonic atom gas, pions, kaons, ...)

Bose-Einstein condensation

T < T cT > T c

• Fermions (electrons in a metal, 3He, cold fermionic atom gas,
neutrons, protons, quarks, ...)

pF

p

-p Cooper pair condensation
(cold fermionic system
+ arbitrarily small attraction)
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Critical temperature
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Superfluidity is a phase transition

• condensate ↔ order parameter

• superfluid and normal state have different symmetries:
”symmetry is spontaneously broken”

For instance ferromagnetism: SO(3)→ U(1)

SO(3) U(1)

T < TcT > T c

Superfluidity: U(1)→ 1
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Comparing superfluidity to superconductivity

superfluidity superconductivity

condensate neutral condensate electrically charged

frictionless “charge” transport through condensate
(need ”absence” of excitations)

spontaneous breaking of spontaneous breaking of
global symmetry local symmetry

Goldstone mode Meissner effect
(“phonon”) (magnetic screening mass

for gauge boson)

Cooper pairing of neutrons → superfluidity

Cooper pairing of protons → superconductivity

Cooper pairing of quarks → color superconductivity, possibly superfluidity and

electromagnetic superconductivity (depends on pairing pattern)
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Superfluidity from a complex scalar field (page 1/2)
chapter 3 of A. Schmitt, Lect. Notes Phys. 888, 1 (2015)

Start from Lagrangian for ϕ ∈ C with mass m > 0 and coupling λ > 0

L = ∂µϕ∗∂µϕ −m2∣ϕ∣2 − λ∣ϕ∣4

L is invariant under global U(1) trafo ϕ→ e−iαϕ

ϕ = φ + fluctuations ⇒ L = L(0) + fluctuations

with the condensate
φ = ρ√

2
eiψ

and

L(0) = 1

2
∂µρ∂

µρ + ρ
2

2
(∂µψ∂µψ −m2) − λ

4
ρ4

Euler-Lagrange eq. for ψ is current conservation (Noether’s Theorem)

∂µj
µ = 0 jµ = ρ2∂µψ
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Superfluidity from a complex scalar field (page 2/2)

Assume homogeneous condensate (ρ and ∂µψ constant in space and time)

L(0) = −U , U = −ρ
2

2
(σ2 −m2) + λ

4
ρ4

with σ ≡
√
∂µψ∂µψ = µ

√
1 − v2

φ φ

U U

"Mexican hat" potential

σ   <  m2 2 σ   >  m2 2

ρ = 0 ρ2 = σ
2 −m2

λ
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Connect with hydrodynamics (1): Superfluid velocity

Write current in terms of superfluid four-velocity

jµ = nvµ

By contracting with vµ and jµ we get ρ2σ = n and thus

vµ = ∂
µψ

σ
⇒ v⃗ = −∇ψ

µ

→ superflow is rotating phase

Reφ

Im φ

sup
erflo

w

(Non-relativistic: v⃗ = −∇ψ
m
→ ∇× v⃗ = 0 → irrotational flow)
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Connect with hydrodynamics (2): Stress-energy tensor

From microscopic theory:

T µν = 2√−g
δ(√−gL)
δgµν

= ρ2∂µψ∂νψ − gµνL(0)

For hydrodynamics need:

T µν = (ε + P )vµvν − gµνP
Connect both via

P = −1

3
(gµν − vµvν)T µν = L(0) = (σ2 −m2)2

4λ

ε = vµvνT µν = σn − P = (3σ2 +m2)(σ2 −m2)
4λ

⇒ σ is chemical potential in superfluid rest frame

Speed of (first) sound
∂P

∂ε
= σ2 −m2

3σ2 −m2
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Vortex solutions (page 1/2)

Euler-Lagrange equations allowing spatial dependence of ρ

−∆ρ = ρ[µ2 − (∇ψ)2 −m2 − λρ2]

∇ ⋅ (ρ2∇ψ) = 0

Cylindrical coordinates (r, θ, z), ψ = nθ (n ∈ Z) and ρ(x) = ρ(r):

1

r

∂

∂r
(r∂ρ
∂r

)+(1 − n
2

r2
)ρ−ρ3 = 0

(dimensionless variables)
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Vortex solutions (page 2/2)

vo
rte

x
position space order parameter space 

phase winds as 
we move around vortex

n ∈ Z winding number

π1[U(1)] = Z

vortex is ”topologically
stable”

vortex array in rotating atomic superfluid
M. Zwierlein et al., Nature 435, 7045 (2005)

Rotating neutron star: vortices from neutron superfluidity
or color-flavor locked phase
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Including fluctuations and Goldstone mode (page 1/3)

Recall that so far we have dropped fluctuations

L = L(0) + fluctuations = L(0) +L(1) +L(2) +L(3) +L(4)

Terms of second order in the fluctuations L(2) give the inverse propagator

D−1(K) =
⎛
⎝
−K2 +m2 + 3λρ2 − σ2 −2iKµ∂µψ

2iKµ∂µψ −K2 +m2 + λρ2 − σ2
⎞
⎠

which is needed for the thermodynamic potential

Ω = −T
V

lnZ = U + 1

2

T

V
Tr ln

D−1(K)
T 2

= U +∑
e=±
∫

d3k

(2π)3 [
εek
2
+ T ln (1 − e−εek/T)]

ε±k are the poles of D, detD−1 = [k20 − (ε+k)2][k20 − (ε−k)2]
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Including fluctuations and Goldstone mode (page 2/3)

Excitation energies without condensation

ρ = 0 ∶ ε±k =
√
k2 +m2 ∓ µ

and with condensation

ε+k =
√

µ2 −m2

3µ2 −m2
k +O(k3)

Goldstone mode

condensed

uncondensed
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A massless mode has appeared!
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Including fluctuations and Goldstone mode (page 3/3)

If a continuous global symmetry of the Lagrangian
is spontaneously broken there exists a gapless mode.

This mode is called Goldstone mode.

superfluid helium:
excitations modeled by

εp = cp (phonon)

εp = ∆+(p − p0)2

2m
(roton)

εp

p
pho
non

roton

universal behavior
(Goldstone mode)

But ... superfluidity means absence of excitations ...

shouldn’t the Goldstone mode destroy dissipationless flow??
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Landau’s critical velocity (page 1/2)

Excitations potentially lead to dissipation:

capillary

superfluid v

εp excitation energy in fluid rest frame

total energy in capillary frame (non-rel.)

E = Ekin + εp + p⃗ ⋅ v⃗

→ fluid loses energy through dissipation if

εp + p⃗ ⋅ v⃗ < 0 ⇒ superfluid for v < vc = min
p

εp

p
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Landau’s critical velocity (page 2/2)

minimum of εp/p:

∂εp

∂p
= εp
p

εp

p

→ superfluidity = condensate + nonzero critical velocity vc

• superfluidity exists despite Goldstone mode

• in the absence of roton, vc = c with ε = cp
• if the Goldstone mode had quadratic dispersion, vc = 0
→ no superfluidity
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Relativistic two-fluid formalism (page 1/2)
non-rel.:London, Tisza (1938); Landau (1941)

rel: Khalatnikov, Lebedev (1982); Carter (1989)

Two fluids: conserved current jµ and entropy current sµ

Tµν = −gµνΨ + jµ∂νψ + sµΘν

Conjugate momenta ∂νψ and Θν

jµ = ∂Ψ

∂(∂µψ)
= B ∂µψ +AΘµ

sµ = ∂Ψ

∂Θµ
= A∂µψ + CΘµ

B = 2
∂Ψ

∂(∂ψ)2 , C = 2
∂Ψ

∂Θ2

A = ∂Ψ

∂(∂ψ ⋅Θ)
“entrainment coefficient”
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Relativistic two-fluid formalism (page 2/2)

Hydrodynamic equations: with dΨ = jµd(∂µψ) + sµdΘµ we compute

∂µT
µν = ∂νψ ∂µjµ

±
=0

+jµ (∂µ∂νψ − ∂ν∂µψ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+Θν∂µs
µ + sµ(∂µΘν − ∂νΘµ)

⇒ ∂µj
µ = 0 , ∂µs

µ = 0 , sµω
µν = 0

with the vorticity ωµν ≡ ∂µΘν − ∂νΘµ

Alternatively: two fluids from normal fluid and superfluid

jµ = nnuµ + nsvµ =
nn
s
sµ + ns

σ
∂µψ

Superfluid density ns needed for sound modes (next slide), pulsar glitches, ...
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Second sound

Superfluid helium

u1 =
√
∂P

∂ρ
, u2 =

√
s2Tρs
ρcV ρn

phonons

rotons
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Relativistic ϕ4 model
M. G. Alford, S. K. Mallavarapu, A. Schmitt and S. Stetina, PRD 89, 085005 (2014)
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Calculation of the superfluid density (page 1/2)

To compute superfluid density start from spatial components of

jµ = nn
s
sµ + ns

σ
∂µψ

work in normal fluid rest frame, u⃗ = 0, contract with ∇ψ,

ns = −σ
∇ψ ⋅ j⃗
(∇ψ)2

Abbreviate q⃗ = ∇ψ and work at vanishing superflow

ns = µq̂iq̂j
∂Ω

∂qi∂qj
∣
q⃗=0
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Calculation of the superfluid density (page 2/2)

Recall thermodynamic potential from bosonic model

Ω = −T
V

lnZ = U + 1

2

T

V
Tr ln

D−1(K)
T 2

, U = −(µ
2 − q2 −m2)2

4λ

⇒ ∂Ω

∂qi∂qj
= ∂U

∂qi∂qj
+ 1

2

T

V
Tr [−D∂D

−1

∂qi
D
∂D−1

∂qj
+D ∂D−1

∂qi∂qj
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

+

Compute Matsubara sum and momentum integral, take low-temperature limit,

ns ≃
µ(µ2 −m2)

λ
− π

2T 4

45

µ(3µ2 −m2)1/2(12µ2 −m2)
(µ2 −m2)5/2



Southampton, Jul 19, 2019 25

Microscopic theory of fermionic superfluids (brief sketch)
chapter 5 of A. Schmitt, Lect. Notes Phys. 888, 1 (2015)

Fermions with pointlike interaction (L invariant under U(1), ψ → eiαψ)

L = ψ(iγµ∂µ + γ0µ −m)ψ +G(ψ̄ψ)2

[More realistically: interaction mediated by lattice phonons, gluons, ...]

Mean field approximation: write ψψ = ⟨ψψ⟩ + fluctuations, Gψψψψ → ψΦψ

Since ⟨ψψ⟩ really is ⟨ψCψ̄⟩ → ”Nambu-Gorkov space” Ψ = (ψ,ψC)

S−1 = ( [G+
0]−1 Φ−

Φ+ [G−
0]−1

) , [G±
0]−1 = γµKµ ± γ0µ −m

→ propagator acquires 2 × 2 structure

S = ( G
+ F −

F + G− ) anomalous propagators F ±
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Quasi-particle excitations

Fermions acquire energy gap ∆
in their spectrum

εek ≡
√

(µ − ek)2 +∆2

2D
hole

particle
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For instance in QCD at ultra-high
densities and T = 0:

∆ ≃ 2bµ exp(− 3π2√
2g

)

with b ≡ 256π4[2/(Nfg2)]5/2

→ system is superfluid since fermions cannot be excited

(and Goldstone mode has linear dispersion)
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Superfluid density in fermionic superfluid (page 1/2)

Compute Goldstone dispersion
from fluctuations
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ω
/(2
Δ

)

k/μ

Goldstone mode

Thermodynamic potential, needed for superfluid density:

Ω = ∆2

G
− 1

2

T

V
∑
K

Tr ln
S−1(K)

T
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

condensate + fermionic exc.

+ 1

2

T

V
∑
K

Tr ln
D−1(K)
T 2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Goldstone exc.
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Superfluid density in fermionic superfluid (page 2/2)

Recall bosonic theory:

boson

Fermionic theory:

fermion

condensate

Goldstone

+

ns =
µ3

3π2
+ ...

Even lowest-order contribution in T very tedious to calculate
D. Müller, Master Thesis, TU Wien (2014)
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Summary

• Superfluidity is a very general phenomenon and occurs on vastly
different scales from low-energy physics (cold atoms) to high-energy
physics (nuclear & quark matter in neutron stars)

• Superfluids and superconductors are close relatives

• Superfluidity is a phase transition:
spontaneous symmetry breaking → Goldstone mode

• Hydrodynamics of superfluids at nonzero T requires two-fluid
formalism – and microscopic input is needed for instance for
superfluid density
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Outlook – some selected open questions

• superfluid density in fermionic relativistic superfluid

• vortices in the color-flavor locked phase: coexistence with magnetic
flux tubes? continuously connected to vortices in nuclear matter?

• superfluid hydrodynamics in the presence of vortices
(→ quantum turbulence?)

• unconventional behavior of multi-component superfluids
(cold neutron/proton matter, color-flavor locking, ...)
A. Haber and A. Schmitt, PRD 95 116016 (2017); JPG 45, 065001 (2018)

• hydrodynamic instabilities in two-component superfluids
A. Haber, A. Schmitt and S. Stetina, PRD 93, 025011 (2016)

N. Andersson and A. Schmitt, in preparation


